A Stand-Alone Forth System

D. B. Brumm Upendra D. Kulkarni
Michigan Technological University Information Processing Systems of California
Electrical Engineering Department 70 Glenn Way
Houghton, MI 49931 Belmont, CA 94002
Abstract

A general purpose, diskless microprocessor system operating in Forth has been implemented.
It behaves just like a normal disk-based system. The Forth kernel, contained in EPROMs, was
generated with the Laboratory Microsystems metacompiler.
This system has the following features:
Forth 83 standard (except for vocabularies)
nonvolatile source code storage
nonvolatile retention of compiled code
interrupt support (written in Forth)
stand-alone operation
built-in editor
Z-80 STD bus
low power consumption
no mechanical devices
The source code storage area consists of up to 64 K bytes of nonvolatile memory on a separate
board which is accessed through I/0 ports. New source code can be entered into the screen memory
by using the built-in editor, downloading through a serial link, or plugging the board into a disk-based
STD bus system. Any block can be designated as a boot screen, permitting any sequence of words
to be executed automatically at power-on.
The use of CMOS chips for the main memory permits the nonvolatile retention of compiled code
as well, so that any application words are ready to run immediately after turning the system on.
This system is being used to control an automatic tree harvesting machine designed by the U.S.
Forest Service; it can easily be adapted for other tasks.

Introduction

The conventional approach to implementing a microprocessor-based controller involves putting
the object code into EPROMS in a seemingly unending cycle of edit, assemble (or compile, if a high-
level language is used), program the EPROM, and test. The slightest program change or addition
requires at least one repetition (usually more) of the entire cycle. This is a painful and time-
consuming process.

Debugging and testing such a system is further complicated because the software often does not
include any hooks or routines for such purposes. Some simple operations such as the ability to read
and modify RAM locations and registers can help somewhat, but much more control over the
program is usually needed. An interactive ability is almost essential when some part of the hardware
or software does not work as expected. The designer needs to be able to exercise immediate control
over various routines or peripherals rather than to only observe system behavior under the control
of some inflexible main routine.

Journal of Forth Application and Research Volume 4, Number 3
389

390 The Journal of Forth Application and Research Volume 4 Number 3

Other authors (1,2,3) have pointed out that Forth is nearly ideal for the development of
dedicated, real-time controllers. It permits one to build a very versatile stand-alone system upon
which the application can be developed quickly and easily while incurring a relatively small speed
penalty (compared with optimized machine language). With Forth, routines can be exercised as
desired; any set of input parameters can be used for initializing routines; and output parameters can
be viewed or changed. In short, the operator is in control of the system rather than vice-versa.

Conventional Forth implementations require some sort of mass storage, usually a magnetic disk.
The mass storage is needed to provide a mechanism for editing and testing new routines and for
saving the results of the work. An alternative to disks must be found, however, if their use is
prevented by excessive vibration, dust and dirt, low-power requirements, or temperature extremes.

This paper describes a Forth system in ROM that implements mass storage with non-volatile
semiconductor memory. It appears to the user to be a conventional (but small) disk-based system.
Compiled code can be saved in nonvolatile memory; an application word can run automatically at
power-on or reset; and the service routine for hardware interrupts can be written in high-level Forth.
The system is constructed entirely with CMOS logic to achieve low power, high noise immunity,
large power supply tolerances, and a wide operating temperature range. Thus it can operate from
batteries for extended periods in a wide variety of environments and it can be sealed in a box for
protection, if necessary (no fan or air circulation is required).

Metacompiling Forth

One means of generating a new Forth system that is tailored for a specific environment is by
using a metacompiler. The general characteristics and uses of Forth metacompilers have been
described by Laxen (4). In the context of this paper metacompilation is the process of using a special
Forth program (the metacompiler) running on a host computer to convert an input text file (the target
source file) into a binary ROM image file. The image is then dumped into one or more EPROMs
which are plugged into the target system; the result is an implementation of Forth in ROM on the
target machine.

The built-in words and capabilities of the target computer can be altered, enhanced, and
supplemented by editing the target source file. This file looks very much like a conventional Forth
screen file except that forward references can be used (words can be used in the definition of a new
word before they have been defined). There are also special commands available called compiler
directives that permit the user to control the metacompiling process (such as to generate headerless
code, for example).

The metacompiler used for this work (5) is available from Laboratory Microsystems, Inc.
(LMI). It runs on an IBM PC for a Z80 target (target source files for many other microprocessors
are available from LMI). The package supplied by LMI (version 2.1) includes target source files
for both ROM and disk based systems and a well-written manual.

The image generated for a disk-based system is tailored for use under the CP/M operating
system and meets the Forth-83 Standard. This is a generic Forth-83 that is not the same as LMI’s
Z-80 Forth which is further optimized and extended.

The ROM-based target source file also meets the Forth-83 Standard except for the absence of
all words related to disk access and the lack of vocabularies. The definitions of words such as KEY,
EMIT, and ?TERMINAL in the source file are edited as required by the target hardware, and any
routines needed for system-specific initialization are added to COLD (the cold boot routine). From
this source file the metacompiler then produces an image file (on disk) that is ready to dump into
EPROMs (or a ROM if it is to be mass produced).

This particular metacompiler permits the creation of new defining words in the metacompilation
process as well as words that use them. This is a powerful capability. Data and control structures
can be put into ROM:s nearly as readily as they can be generated with a conventional Forth system.

The system generated from the ROM source file as supplied by LMI permits new words to be

A Stand-Alone Forth System 391

added to the dictionary by keying them in from the terminal. Of course, the new definitions are lost
when the power is turned off or the system is reset. An alternative method of adding words is to edit
them into the target source file, rerun the metacompiler, and reprogram the EPROMs. Although this
is a lengthy process (much like using a conventional compiler), the added words are instantly
available when the system is turned on or reset. The results of these two different processes are
either permanent or volatile; there is no means of interactivly creating, testing, and saving new
definitions as one normally does with a disk-based system. The hardware and software additions
presented here overcome these problems and yield a system that is still ROM based while permitting
the usual interactive debugging and software development associated with a disk-based system.

Hardware

Magnetic bubbles, battery-backed CMOS RAM, or EEPROMs could readily be used for non-
volatile memory space (called screen memory in this paper) that can be used to implement the virtual
memory structure used by most Forth systems. A bubble memory card would probably be quite
satisfactory for this purpose in most cases. One particular application of this system is to control a
tree harvesting machine, however, which requires reliable operation at low temperatures. Since
suitable bubble devices were not yet available when this project started, the other two approaches
were used for this implementation. A semiconductor memory system also permits adding screen
memory in smaller increments (8 blocks or screens, using 8 K X 8 memory ICs), is simpler to design
(especially for one who has not previously used bubble devices), and costs much less to try out.
Bubbles would have the advantage of a larger memory space (512 blocks for a 4 M bit unit), but this
much space is seldom needed.

The screen memory was implemented as a 64 K byte space accessed through three /0 ports.
Two output ports (each 8 bits wide) were used for the address, and a bidirectional port was used for
the data. Eight 28-pin sockets connected in the standard JEDEC configuration were used, permitting
8 K byte EEPROMs or CMOS RAMs to be used.

Both nonvolatile memory types were tried. The battery-backed RAMs selected were those with
lithium cells inside a molded package (DS1225 by Dallas Semiconductor). No electrical problems
have been experienced with these units, but the package is higher and heavier than conventional
packages and must be held down with retainers if used in a system subject to vibration. We have also
used AMD AM9864 and Xicor X2864 EEPROMs. The read time required for these devices is the
same as for the RAMs, but they require considerably more time for writing. This results in a
noticeable delay when a block is saved.

Software

Adding the required block support words was fairly straightforward; they were essentially
copied from the disk-based target source file provided by LMI. Of course, new words for accessing
the screen memory were needed. These primitives are shown in screens 2-5. @ (screen 1) is the
code word that reads a byte from the screen memory array. We have elected to use a percent sign
as the initial character in metacompiler equates (such as %#HIBYTE) to distinguish them from
constants. Metacompiler equates act like constants during the meta-compilation process in that they
associate a value with a symbolic name, but no headers are built for them in the system that is being
compiled. Consequently their names are not recognized by the target system and fewer bytes are
used in the target memory.

S (screen 2) writes a byte to the screen memory. An EEPROM (of the types used) will not
return the same data written to it until the end of the internally-timed write cycle. Thus $! writes
a byte, then reads it back continually until the byte returned matches the one written. This approach
(rather than using a fixed timing loop) permits the interchangeable use of nonvolatile RAMs as well
as faster or slower EEPROMSs with no software changes; extra time for writing is taken only if it
is required.

392 The Journal of Forth Application and Research Volume 4 Number 3

Some EEPROMS have a page write mode in which several bytes can be stored during one write
cycle of a few milliseconds. Utilizing this mode would greatly decrease the time required to update
a block, but it requires that an entire page be latched into the EEPROM within a certain time interval
(16 bytes within 200 microseconds in the Xicor units, for example). The page write mode has not
been implemented in this system because of the increased complexity and because the present method
has been fast enough for our purposes.

SCR! (screen 3) is a high-level equivalent of S! but without a wait loop. It could replace $!
if nonvolatile RAMs are used for screen memory and is included here to demonstrate how the screen
memory is accessed for those who may be unfamiliar with Z80 CODE definitions. An equivalent
Forth definition to replace S@ is also readily written.

The words M>$ and S>M (screen 3) move multiple-byte strings from RAM to screen memory
or vice-versa; they are used directly by BLK-WRITE and BLK-READ (screen 4), respectively, to
perform block transfers. These words are also useful for moving data arrays from or to screen
memory.

The screen memory can be segregated into separate sections for programs and data, if desired.
The variable #SCR (screen 5) contains the number of contiguous blocks (beginning with block 0)
that are intended for program storage and that contain only textual material (seven bit ASCII
characters). These blocks are called screens and are accessable to words such as LIST, EDIT, and
LOAD (except for screen 0 which cannot be loaded). The remaining blocks, if any, can be used for
data in any desired format.

Program screens are denoted by a backslash in their first byte (which also makes the first line
of these screens a comment). SET-#SCR (screen 5) will initialize #SCR by searching for the first
missing backslash. ?BLK (screen 5) is then used to prevent LIST, LOAD, and EDIT from gaining
access to the blocks intended for data. This obviates crashes and other surprises caused by listing,
loading, or trying to edit the data blocks, especially by Forth novices. It enables a friendlier
environment to be created, and in a sense permits dividing the screen memory into two separate files.

Since block O cannot be loaded, it provides adequate nonvolatile storage space for a small
amount of data in a form readable by the user. One example is the storage of a block number for
a boot screen to be loaded whenever the system is turned on or reset. The words presented in screens
6-7 implement this function. The number of the desired boot screen is coded as three ASCII
characters stored in locations 24 in block 0. This permits designating any one of 999 different blocks
and provides for a future increase in the size of the screen memory. The three locations are read by
?BOOT (screen 6) which is executed by SCR-BOOT which is, in turn, part of COLD (screen 13). If
a valid non-zero decimal number is found, then the corresponding screen is loaded. Of course, the
boot screen can in turn load other screens so there is virtually no limit to what can be done
automatically at turn-on without requiring user action. This feature greatly facilitates tailoring the
system for different stand-alone applications without requiring the EPROM:s to be reprogrammed.
The desired boot screen number can be saved by putting it on the stack and executing ! BOOT-SCR
(screen 7) or by editing the appropriate locations in screen 0. The word $>T (definition not shown)
types a string fetched from screen memory. It is used by .BOOT~SCR (screen 7) which displays the
current boot screen number on the terminal as well as by INDEX (also not shown) which displays
the first line of all screens (i.e., of all blocks from O through #SCR-1).

Screen Generation and Maintenance

Several ways of generating, maintaining, and editing the screen memory contents have been
implemented. A small screen editor based on the one described by Kelly and Spies (6) was included
in the EPROM s so it is always instantly available without consuming any screen memory space. This
editor is a good example of the power of Forth. It only consumes about 2900 bytes (including a help
screen) in an EPROM while implementing sufficient text-massaging capabilities to permit adding
or modifying screens with ease.

A Stand-Alone Forth System 393

Words derived from Ericson and Feucht (7) for transferring screens to and from a conventional
disk-based system via a serial link were also included in the EPROMs; they require about 490 bytes.
This facility permits any disk-based system that has both Forth and an auxiliary serial port to be used
for mass storage of Forth screens. The screens can be initially generated using the more powerful
capabilities of the larger system, then downloaded to the screen memory as needed. This also permits
the screen memory contents to be backed up on a disk and alleviates some difficulties caused by the
relatively small capacity of the screen memory system. The 63 block limit (block O cannot be loaded)
still applies for each application, but the programs required for multiple applications can readily be
saved and restored as desired.

Blocks containing arbitrary binary data can be sent through the serial link if both ports are set
up to send and receive eight data bits rather than the usual seven. Thus any data generated by the
specific application can also be transferred to a more powerful system in this manner. It should be
noted however that this protocal has no error checking; a more robust method should be used if the
channel is not highly reliable.

The screen memory was constructed on a single board that plugs into the backplane. Thus the
entire board can be moved to any disk-based system that uses the same bus (STD in this case). This
gives instant access to both the screen memory board and a disk on the same system and permits one
to move blocks between the screen memory and the disk very easily and quickly.

The nonvolatile memory ICs can also be unplugged from one system and inserted into another.
This permits moving groups of eight blocks, if desired. The groups of blocks can also be rearranged
in this manner.

Blocks could also be dumped into 8 K byte EPROMs for semi-permanent storage. This could
be useful, for example, for mature code that is seldom used that one does not wish to metacompile
into the target EPROMs (thus saving main memory space), for on-board system documentation, or
to prevent software alteration or tampering (while preserving the viewability of source code). Since
EPROMs are considerably cheaper than the other nonvolatile memory types, installing them in the
screen memory has economic advantages under certain conditions.

Operation Without a Terminal

If the final application word is written such that the terminal is not needed, i.e., no keyboard
or video display I/O is used, then it can be run with the terminal unplugged. This may be necessary
in some environments where vibration is a problem, where suitable power is not available, or where
there is not adequate space available for a terminal. If the automatic running of an application
program upon power-up without terminal control is desired, then all terminal I/O must be disabled,
including the sign-on message. This can be done by using a flag to enable all terminal I/O routines,
with the state of the flag being determined by COLD from the position of a switch or a jumper. An
alternative for some applications is to use a small, battery-operated lap-top computer running a
terminal emulator program to replace a conventional terminal.

Hardware Interrupts

Real-time controllers generally require the use of hardware interrupts. Other authors (1,2,8,9)
have described methods of implementing interrupts in a Forth system. Some approaches have either
required that the entire interrupt service routine be written in machine language or they have incurred
a delay while waiting for the current Forth word to finish execution. An interrupt system in which
the response is immediate is needed in many real-time systems. Monitoring the speed of a shaft, for
example, could require periodic sampling of its position; variable delays can't be tolerated in such
a case. The general scheme described by Melvin (8) permits the interrupt service routine to be
written (and tested) directly in high-level Forth while still achieving an immediate response to the
interrupt request.

394 The Journal of Forth Application and Research Volume 4 Number 3

The words used for this purpose are shown in screens 8 and 9. An array is defined (INT-VECT
in screen 8) that contains two compilation addresses; it simulates the body of a colon definition
containing two words. The first cell is used for the compilation address of the Forth word to be
executed in response to an interrupt, while the second is for the word that returns the processor to
the state that was interrupted. The directive ALLOT~RAM forces the alloted space to be in the target
RAM rather than in the ROM image.

The word PUT (screen 8) initializes INT-VECT by storing the compilation address of the
desired interrupt response word in the first cell and the compilation address of the CODE word
RETURN (screen 8) in the second cell. Executing PUT <NAME> thus sets up the array to execute
<NAME> when an interrupt occurs.

ZINTSRV (screen 9) is equated to the beginning address of the interrupt service routine for the
interrupt mode being used (address @@38H for interrupt mode 1 on the Z-80). Since the assembler
routine labelled INTSRV must be located at this address in the EPROM, this screen must be located
near the beginning of the target source file, not in the relative location shown here. INTSERV saves
the contents of the registers on the parameter stack, initializes the users return stack (with UR®),
fetches the compilation address stored in the first cell of INT=VECT, and jumps to NEXT.

This sequence of events serves to set up the virtual Forth machine to execute <NAME> and
RETURN as though they were parts of a normal Forth word without disturbing the previous state of
the processor. A new return stack is needed because 1Y (the Z-80 register used for the Forth return
stack pointer RP) does not always point to the top of the return stack. Failing to provide for a
separate return stack could cause the system to crash when RETURN is executed. Thus afier <NAME>
is executed, the second cell of the vector directs the program flow back to the CODE word RETURN
which pops the saved registers and returns to the interrupted word.

The compiler directive L: identifies INTSERYV as a label for the metacompiler that is associated
with the current target address (§$38H in this case). No header is built for INTSERV and the word
is not recognized by the target system. The contents of location ®®38H (in the Z-80) must be an
executable machine instruction, not the beginning of a name field.

INT-ON and INT-OFF (screen 8) permit enabling and disabling the interrupts. The Z-80 has
three different interrupt modes. Mode 1 (the simplest one) is set by INT-ON. Operation in this mode
forces a jump to address @®38H for all enabled maskable interrupt requests.

The word instatled by PUT (called <NAME> in the previous example) must not use the terminal
or otherwise alter any system variables indiscriminately. EMIT increments OUT, for example, which
keeps track of the current column on the terminal. Using EMIT within an interrupt service word
would upset any formatting being done on the screen.

Nonvolatile Compiled Code

This system as described so far can function almost like a disk-based system in most respects.
It cannot save a file containing a compiled application, however. The application must be loaded
from screen memory (or typed in) each time the system is reset or turned on. All that is needed to
permit compiled code to remain viable after the power has been off is to use nonvolatile RAM for
the memory in which the compiled code is stored and to provide for the proper initialization of two
pointers. The hardware modification is easily achieved by replacing one or more of the RAM chips
in the main memory space with battery-backed CMOS memory chips. The software required to
implement this feature is shown in screens 10-13.

The word COLD, as supplied by LMI, initializes the variables DP and CONTEXT to point to the
next available RAM location and the top word in the dictionary, respectively. Since the initial values
of these pointers (INIT-DP and INIT-FORTH) are in EPROM, they cannot be changed. The
variables WARM~-DP and WARM~-CONTEXT (screen 10) were added to permit a new word (WARM)
(screen 11) to initialize DP and CONTEXT with values previously saved in nonvolatile memory rather
than the unalterable ones. When COLD (screen 13) executes, it will execute either (WARM) or
(COLD) depending on the setting of a switch as determined by ?WARM (definition not shown).

A Stand-Alone Forth System 395

The values stored in WARM~DP and WARM-CONTEXT are set by FREEZE and THAW (screen
10). FREEZE will cause the current dictionary contents to be preserved and reestablished after a
reset while THAY sets the warm values to be the same as the cold ones. FORGET (screen 10) was
also modified to prevent losing part of the frozen dictionary.

A switch is used to determine whether (COLD) or (WARM) will be executed rather than a
software flag because a crash could potentially corrupt the warm variables without altering the state
of the flag, making recovery impossible. This situation is avoided by using an external switch; the
user can always recover from a crash by putting the switch in the cold position and pushing the reset
button.

Summary

The techniques described here have been implemented in two systems. One is for general
laboratory use in an academic setting and has been used primarily for software and hardware
development and testing and for student projects. The other is being used by the U. S. Forest Service
as a controller for an automated tree harvesting machine (10). Interrupts are used in this second
system for monitoring the speeds and positions of several hydraulically-controlled mechanisms. The
use of Forth in developing this harvester greatly reduced the software development time and
facilitated hardware design and testing: it also permits the software to be altered in the field (more
accurately, in the woods).

References
1. Bernier, Gerald E. “Forth Based Controller.” WESCON Conference Record, 1982, p. 17B/4.

2. Dumse, Randy M., and Duane E. Smith. “High Level Language Solutions for Dedicated
Applications.” WESCON Conference Record, 1982, p. 17B/2.

3. Solley, Evan L. “Sphere: An In-circuit Development System with a Forth Heritage.” 1984
Rochester Forth Applications Conference, p. 25.

4. Laxen, Henry. “Techniques Tutorial: Meta Compiling.” Forth Dimensions, 4(6):19, 5(2):23,
5(3):31.

5. Duncan, Ray, and Richard Wilton. LMI Forth-83 Metacompiler. Laboratory Microsystems,
Inc. 1986.

6. Kelly, Mahlon G., and Nicholas Spies. Forth: A Text and Reference. Prentice Hall, 1986,
chap. 12 and 13.

7. Ericson, Keith, and Dennis Feucht. “Simple Data Transfer Protocol.” Forth Dimensions,
6(2):32.

8. Melvin, Stephen. “Handling Interrupts in FORTH.” Forth Dimensions, 4(2):17.

9. Winterle, R. G., and W. F. S. Poehlman. “Asynchronous Words for Forth.” 1984 Rochester
Forth Applications Conference, p. 32.

10. Brumm, D. B., and Michael A. Wehr. “A Forth-Controlled Tree Harvester.” Proceedings
IECON 86, 1986, p. 851.

396 The Journal of Forth Application and Research Volume 4 Number 3

D. B. Brumm received a B.S. from Michigan Technological University and an M.S. and Ph.D.
from the University of Michigan, all in electrical engineering. He is currently an Associate Professor
of Electrical Engineering at Michigan Technological University. His interests include small computer
systems, instrumentation, and fiber optics.

Upendra D. Kulkarni received a B.S. from the University of Bombay and an M.S. from
Michigan Technological University, both in electrical engineering. He is currently a Computer

Engineer with Information Processing Systems of California. His interests are satellite and weather
image processing.

Manuscript received August 1986.

|
:
|

A Stand-Alone Forth System 397

Glossary

IBOOT-SCR n---
Store boot screen number. Set boot screen to n by storing three ASCII characters into locations
2, 3, and 4 in block 0.

.BOOT-SCR -
Print boot screen number. Retrieve three ASCIH characters from locations 2, 3, and 4 in block
0 and display them on the terminal.

#SCR --- addr
Variable containing the number of contiguous blocks (including block 0) available for source
code storage.

ZHIBYTE
A metacompiler equate for the address of the output port to which the high byte of the screen
memory address must be sent. This word is not in the dictionary of the target system.

ZINTSRV
A metacompiler equate for @38H, the address at which the Z80 mode 1 interrupt service
routine must start. This word is not in the dictionary of the target system.

ZLOBYTE
A metacompiler equate for the address of the output port to which the low byte of the screen
memory address must be sent. This word is not in the dictionary of the target system.

ZMAXH#SCR
A metacompiler equate for the maximum number of screens or blocks supported by the target
system hardware. Limited to 64 in the system described. This word is not in the dictionary of
the target system.

%SCRPORT
A metacompiler equate for the address of the I/O port used for sending data to and from the
screen memory. This word is not in the dictionary of the target system.

(coLD) -
Initialize system pointers for a cold boot. The dictionary will contain only the words compiled
into ROM by the metacompiler. DP (the dictionary pointer) is set to INIT-DP and CONTEXT
issetto INIT-FORTH. INT-VECT is initialized to execute NOOP, a null word, in response to
an interrupt.

(WARM) ---
Initialize system pointers for a warm boot. All words compiled before FREEZE was most
recently executed will be in the dictionary. Hardware interrupts will be disabled but the contents
of INIT-VECT will not be disturbed.

7BLK n--—-1n
Abort with error message if n is outside the range of permitted screen numbers (0 through
H#SCR-1).

?7B0OOT --- 1 true
or -- false
Interrogate bytes 2, 3, and 4 in block zero and determine if they are the ASCII codes for a three-
digit number greater than zero. If they are then the corresponding number is left on the stack
along with a true flag. ?BOOT does not compare the number with #SCR.

398 The Journal of Forth Application and Research Volume 4 Number 3

BLK-READ addrn---
Read block n from the screen memory into a block buffer beginning at addr.

BLK-WRITE addrn--
Write from a block buffer beginning at addr into block n in the screen memory.

BOOT ---
Portion of initialization sequence that is executed after every reset. Always executed as part of
coLbD.

coLp -
Main initialization routine; executed after every reset. This word executes BOOT plus either
(WARM) or (COLD). It also issues a sign-on message and loads a boot screen if one is defined.

FORGET -
FORGET <name> deletes <name> and all words added to the dictionary after <name>. If
<name> was compiled before FREEZE was most recently executed, then FORGET aborts and
an error message is displayed.

FREEZE -
FREEZE performs two functions. It saves the current values of DP and CONTEXT in WARM-
DP and WARM-CONTEXT, respectively. The current dictionary contents at the time FREEZE is
executed will still be resident after a power down condition while any words compiled
subsequently will be lost. FREEZE also establishes a fence that protects all current words from
FORGET.

INDEX -
Display the first line of all blocks from 0 through #SCR-1.

INIT-DP -
Metacompiler label for a location in ROM that contains the first free Jocation in the target RAM.
It is used as the initial value for the variable DP when a cold boot is performed. This word is
not in the dictionary of the target system.

INIT-FORTH -
Metacompiler label for a location in ROM that contains the initial value for the variable
CONTEXT when a cold boot is performed. This word is not in the dictionary of the target

system.
INT-0FF -

Interrupt off. Disables maskable hardware interrupts.
INT-ON -

Interrupt on. Enables hardware interrupts (Z80 mode 1 in the system described).
INT-VECT ---addr

Two-element array. Contains the execution address of the word to be executed when an
interrupt occurs as well as the address of the word RETURN. The array is initialized by PUT.

INTSRV
Metacompiler label associated with the address in the target system given by ZINTSRV. This
word is not in the dictionary of the target system.

M>$ buf-addr scr-addr n ---
Move n bytes from RAM beginning at buf-addr to screen memory beginning at scr-addr.
PUT ---

Initialize INT-VYECT. Used in the form PUT <name> which places the compilation address of
<name> into the first element of INT-VECT and the address of RETURN into the second. A

|
|
|
i
i

A Stand-Alone Forth System 399

hardware interrupt will then cause <name> to be executed immediately followed by a return
to the interrupted word.

RCV n--
Receive a sequence of consecutive blocks through the auxiliary serial port and save them in
screen memory. The protocol described in reference 7 is used; no error checking is done.

RETURN -
Return from interrupt. A CODE word that restores the CPU register contents, thus restoring the
virtual Forth machine to its status before the interrupt occurred. PUT stores the compilation
address of RETURN into the second element of INT-VECT.

S| byte addr ---
Store a byte in location addr in the screen memory. The code version given reads back the
stored byte until the byte fetched is equal to the byte stored. This permits using self-timed
EEPROMs for screen memory and signifies that the byte has been successfully written.

S$>M scr-addr buf-addr n ---
Move n bytes from screen memory beginning at scr-addr to RAM beginning at buf-addr.

S>T addr n ---
Similar to the Forth-83 word TYPE. Send n characters from screen memory, beginning with
addr, to the terminal.

Sa addr --- byte
Fetch a byte from location addr in the screen memory.

SCR! byte addr ---
A high level version of §! without the capability of using self-timed EEPROMs.

SCR-BOOT -
Load boot screen if it is greater than zero. The boot screen number is stored as ASCII characters

-

in bytes 2, 3, and 4 of block zero.

SET-#SCR -
Determine the number of blocks available for source code storage by searching for the first
block with a backslash missing from its first location. The number found is stored into the
variable #SCR.

THAW -
Cancels the effects of FREEZE. A warm boot will then be equivalent to a cold one and FORGET
can operate on any word compiled into RAM (words put in ROM by the metacompiler cannot
be forgotten, of course). THAW sets INIT-DP and INIT~FORTH equal to WARM-DP and
HARM-CONTEXT, respectively.

WARM-CONTEXT --- addr
A variable containing the initial value of CONTEXT to be used for a warm boot. WARM-
CONTEXT is set equal to the current value of CONTEXT by FREEZE.

WARM-DP --- addr
A variable containing the initial value of DP to be used for a warm boot. All words in the
dictionary below WARM-DP remain resident in nonvolatile memory and FORGET is not
permitted below this position (acts like FENCE in LMI versions of FORTH). WARM-DP is set
equal to the current value of DP by FREEZE.

XMT nln2--
Send blocks nl through n2 to another system through the auxiliary serial interface. The protocol
described in reference 7 is used; no error checking is done.

400 The Journal of Forth Application and Research Volume 4 Number 3
Screen # 1
(sd DBB 860528)
HEX
CODE Sa (addr =~ b) (fetch byte from screen memory)
HL POP (get address from stack)
A, H LD ZHIBYTE , A OUT (output addr)
A, L LD %LOBYTE , A OUT
A, ZSCRPORT IN (fetch byte from addr)
L, A LD H, #0 LD HL PUSH (put byte on stack)
NEXT JP END-CODE
Screen # 2
(s DBB 860528)
CODE St (b addr =~) (store byte in screen memory)
HL POP (get addr from stack)
A, H LD ZHIBYTE , A OUT (output addr)
A, L LD #LOBYTE , A OUT
HL POP (get byte from stack)
A, L LD %#SCRPORT , A OUT (store byte to addr)
(loop until byte is stored -- for EEPROM)
1%: A, %SCRPORT IN (read byte from addr)
A, L CP (compare it with byte stored)
NZ, 1% JR (loop until they are the same)
NEXT JP END-CODE
Screen # 3
(scr! m>s s>m DBB 860528)
: SCR! (b addr ==) (high-level equiv of St)
DUP %LOBYTE P! (without wait for data match)
100 / %HIBYTE P!
#SCRPORT P! ;
: M>S (buf-addr scr-addr n --)
(move n bytes from RAM to screen memory)
OVER + SWAP
DO DUP C& I S! 1+
LOOP
DROP ;
: SOM (scr-addr buf-addr n --)

OVER + SWAP (move n bytes from scr mem to RAM)

Do pup s I C! 1+ LOOP DROP ;

A Stand-Alone Forth System

401

Screen # 4
(blk-read blk-write DBB 860528)
: BLK-READ (addr blk ---)

(read a block from scr memory to buffer)
B/BUF * SWAP B/BUF S>M ;
: BLK-WRITE (addr blk =--)
(write a block from buffer to screen memory)
B/BUF * B/BUF M>S ;

Screen # 5

(#scr set-#scr 7blk DBB 860528)
40 EQU %MAX#SCR (maximum possible number of screens)
(limited to 64 in this system)
(by hardware configuration)
VARIABLE #SCR (number of screens for prog in SMEM board)
: SET-#SCR (--) (find number of screens and set #SCR)
(looks for a missing '"\' in first addr of each scr)

-1 BEGIN
1+ DUP B/BUF * S@ 5C < (5CH = '"\'")

OVER Z%MAX#SCR = OR
UNTIL #SCR ! ;
: 7BLK (n--n) (error if screen number is out of range)

DUP #SCR @ U< ¢=
ABORT'" screen # out of range" ;

Screen # 6
(?boot scr-boot DBB 861030)
: ?7BOOT (--nt]| f) (valid boot screen?)
3 PAD C! (store count)
2 (scr-addr) PAD 1+ (buff addr for digits)
3 S>M (move 3 bytes) 20 PAD 4 + C! (append a space)
PAD NUMBER? (--df) (convert to a number?)
SWAP DROP (convert d to 16 bit number)
(valid boot scr if it is a positive number)
DUP IF
OVER 0> 9= (if negative or zero, return ¢)
IF 2DROP ¢ THEN
ELSE SWAP DROP
THEN ;
: SCR-BOOT () (load boot scr if not zero)

7B00T IF CR ." loading boot screen ' CR LOAD THEN ;

402 The Journal of Forth Application and Research Volume 4 Number 3
Screen # 7
(tboot-scr .boot-scr DBB 860528)
IBOOT-SCR {n--) (set boot scr ton)

FLUSH 7BLK @ <# # # # #> 02 SWAP M>S ;

.BOOT-SCR (==) (print boot scr #)

Screen # 8

2 SPACES 2 3 S>T SPACE ;

(int-vect, return, put, int-on, int-off DBB 860528)
VARIABLE INT-VECT 2 ALLOT-RAM (array for int serv routine)
CODE RETURN (return from interrupt)
HL POP DE POP BC POP (restore registers)
EXX 1Y POP 1IX POP HL POP
DE POP BC POP AF POP
EI RETI END-CODE (enable interrupts and return)
s PUT (PUT <name> vectors interrupt to <name>)
[COMPILE] ' INT-VECT !
['] RETURN INT=-VECT 2+ ! ;
CODE INT-ON (enable mode 1 interrupts)
IM1 EI NEXT JP END-CODE
CODE INT-OFF (disable interrupts)
DI NEXT JP END-CODE
Screen # 9
(interrupt service DBB 860529
FORTH
ZINTSRV HERE - (move to beginning of interrupt routine)
HERE SWAP DUP ALLOT FF FILL ¢ fill space with FF)
ASSEMBLER
L: INTSRV
DI AF PUSH BC PUSH (disable interrupts)
DE PUSH HL PUSH (save registers)

FORTH

IX PUSH IY PUSH EXX
BC PUSH DE PUSH HL PUSH

1Y, UR® LD (initialize user return stack)
BC, # INT-VECT LD (load IP with array addr)
NEXT JP

A Stand-Alone Forth System

403

Screen # 10
(warm variables, freeze, thaw, forget DBB 860204)
VARIABLE WARM-DP (dict pointer for warm start)
VARIABLE WARM-CONTEXT (context for warm start)
: FREEZE (==) (save state, erect fence)

HERE WARM-DP | CONTEXT @ WARM-CONTEXT ! ;

: THAW (--) (restore cold values)

INIT-DP @ WARM-DP ! INIT-FORTH @ WARM-CONTEXT ! ;

: FORGET (FORGET <name>, forget back to <name>)

' DUP >NAME DUP WARM-DP @ U<
ABORT" frozen, can't FORGET"
DP 1 >LINK @ CONTEXT ! ;

Screen # 11

((cold Cwarm DBB 860529)
: (coLD (cold boot of nonvolatile variables)
INIT-DP @ DUP DP ! WARM-DP ! (set cold pointers)
INIT-FORTH & DUP CONTEXT ! WARM-CONTEXT !
['] NOOP INT-VECT ! (init interrupt array)
['] RETURN INT-VECT 2+ ! (to do nothing)
" Cold boot ' CR ;
(WARM) (warm boot of nonvolatile variables)
INT-OFF (disable interrupts)
WARM-DP @ DP ! (set warm pointers)

WARM-CONTEXT @ CONTEXT !
"' Warm boot " CR ;

Screen # 12
(boot DB 860529)

: BOOT ¢ initialize system, words executed after every reset)
EMPTY-BUFFERS FIRST PREV ! FIRST USE !
INIT-S® @ SO ! INIT-R® @ R !
INIT-UR® @ URO !
INIT-TIB @ <TIB> !
BLK OFF SCR OFF SPAN OFF NO_SKIP OFF
STATE OFF >IN OFF DPL OFF OUT OFF
SER-INIT (initialize serial ports)
CONSOLE DECIMAL CLS ; (clear screen)

404 The Journal of Forth Application and Research Volume 4 Number 3

Screen # 13

(cold DBB 860528)
: COLD (executed at power=-on or reset)
BOOT (initialize pointers)

7WARM (check switch position)

IF (WARM) (execute warm or)

ELSE (COLD) (cold boot, depending on)

THEN (the switch position)

IDENT (display sign-on message)
SET-#SCR (set number of screens in screen memory)
SCR-BOOT (load boot screen if one is designated)

ABORT ; (start interpreter)

