REPTIL —Bridging the Gap between Education
and Application

Israel Urieli

Ohio University
Athens, Ohio 45701

Background

REPTIL (a REcursive Postfix Threaded Interpretive Language) is a Forth-like language which
has been designed with the specific motive of being a viable alternative language to bridge the gap
between education and application. It has been developed over the past few years (1,2,3) mainly
because of a dissatisfaction with the current de facto educational environment, in which one is
expected to learn at least three languages before reaching an application maturity.

Many people have stated that the various aspects of REPTIL could be written in Forth, that there
is a plethora of languages proliferating the universe and that we do not need an extra language to
add to the Tower of Babel. They have completely missed the point. Whereas it is true that one high
level language can be written in terms of another — Forth has been written in Ada (4), Pascal has been
written in BASIC (5), Logo has been written in LISP (6), and so on—there are fundamental purposes
of computer language that should not be forgotten:

Purpose 1—A computer language should enable meaningful communication between
humans and computers.

Purpose 2—A computer language should enable meaningful communication between
humans.

The word ‘communication’ is meant here in a deeper ‘Buberian’ sense of dialogue and inner
understanding, rather than that of debate, or a master-slave command language (7). Over the past
two decades there has been a serious effort to promote Purpose 2, i.e. communication between
humans. This has been done mainly by introducing the concept of structure, as epitomised in Pascal.
Unfortunately all this is at the expense of Purpose 1; thus the user of a UCSD Pascal system may
never even be aware of the fact that the language is compiled into a stack-oriented P-code interpreter
(that is until one day she is confronted with a ‘stack overflow’ error). One of the reasons for a
preference of C over the more readable Pascal (apart from being fashionable) is because it promotes
a somewhat more direct contact with the computer. With this in mind I wish to propose two
hypotheses:

Hypothesis 1 —Traditional languages have been designed to form an ‘Orwellian’ barrier
between human and computer (8).

In this sense the computer is presented as the language, and the richness or limitations of that
language will inspire or limit the human cognitive processes in using the computer. As an example,
FORTRAN is the current mainstay of the engineering world; however because parameter passing
is by reference only, recursion is not allowed in FORTRAN. Thus FORTRAN promotes the

Journal of Forth Application and Research Volume 4, Number 3
405

406 The Journal of Forth Application and Research Volume 4 Number 3

traditional problem solving approach which is to explicitly isolate the unknowns in terms of some
(often nebulous) function of the knowns, and thus divorce the problem space from the solution space.
Those engineers who have been exposed only to FORTRAN will never even consider a recursive,
or goal directed approach to problem solving

The current delight of the education world is Logo, which presents the computer as a simple
turtle. However this simplicity belies the cumbersome complexity required to contort the computer
to this image. It does allow rich concepts such as extensibility and recursion, however the user is
barred from understanding or experimenting beyond the language. The current microcomputer
implementations of Logo are slow, and trying to redefine or even examine primitives is considered
taboo. Because of these limitations one soon outgrows Logo into something more general and useful
such as BASIC which does not have the richness of Logo but is concise, accessible, and will even
allow the masochist to ‘PEEK’ and ‘POKE’ around in memory. Unfortunately, for the enlightened
world BASIC is a ‘no-no’, the Advanced Placement Test requires Pascal, and by the time our
budding youth has reached the mature adult world of FORTRAN, C, Forth, Ada, Modula-2, Pascal,
LISP, PL/1, Cobol (not to mention the omnipresent OS—JCL, VMS, UNIX, CP/M, MS-DOS), she
has understandably reached a state of utter confusion.

BASIC

Pascal

FORTRAN ?
Forth ?
c?

Youth Maturity

Figure 1. The de facto ‘ideal’ educational environment

What is the underlying reason for this confusion? I believe that it is because the math education
system (which has been inherited over generations) has not yet accepted the fact that understanding
computers requires a different approach to math. We are not yet ready to accept the fact that our
sages misinterpreted the thumb for a finger, and thus gave us the decimal system, when in fact our
creator meant each hand to be a hexadecimal digit, with the thumb being used as a carry (or
overflow) bit. That when, as infants, we build with blocks, we are in fact developing an appreciation
for stack manipulation—with the Top Of Parameter stack (TOP) allowing orderly access of
parameters, and attempting to access the bottom of stack causing chaos (usually gleeful —especially
in a supermarket!).

The conventional computer languages (such as BASIC) attempt to cover up this fundamental
aspect of math by emulating our questionable infix and decimal heritage. Furthermore, this
emulation is not complete. Thus we create confusion when we say that N = N + 1 is an acceptable
statement in BASIC (is this not the way we were taught the concept of proof by contradiction?),

whereas 2 + X = Y is unacceptable, since in our zeal we have distorted the meaning of the equal
sign.

REPTIL — Bridging the Gap Between Application and Education 407

Hypothesis 2 —Forth is the first language designed to break the ‘Orwellian’ barrier.

In Forth, for the first time, we have a small, simple but powerful system in which the computer
is not only presented as the language, but it is the language. Nothing is hidden—every verb can be
examined, molded, extended, and even forgotten. We can truly state that Purpose 1 has been
satisfied — with Forth, there are no communication barriers between human and computer. Why
then, has Forth not become the language to break the confusion and replace all other languages?
Forth and Pascal have much in common: both were developed by one person at about the same time,
and both out of a dissatisfaction with existing languages. Pascal, designed for education, succeeded
admirably in fulfilling Purpose 2 (at the expense of Purpose 1) and was thus accepted by the
multitudes, whereas Forth, designed for application, succeeded admirably in fulfilling Purpose 1 (at
the expense of Purpose 2) and was thus accepted by the enlightened few. Because Forth programs
do not attempt to emulate the human environment, they are generally considered unreadable by
humans. They demand a strict self discipline (which is seldom apparent) on the part of the
programmer concerning documentation and style. However even with that, since Forth is an evolved
(rather than defined) language, written mainly by one person for one person, it suffers from a
number of inconsistencies which make it pedagogically unsound. REPTIL is an attempt to overcome
these limitations—not only with cosmetic changes such as a more meaningful symbology, but with
some restructuring as well.

The creation of REPTIL has the advantage of hindsight, and its specification and development
have been influenced by many different languages, suggestions, and language approaches. The token
threaded infrastructure, decompiler and editor is based on RTL (9,10); many of the ideas of the
defining verbs, prompts and basic structures are based on PISTOL (11); the conditional branch
structure is based on FORTRAN 77; the conditional loop with multiple exits is based on Ada;
various other factors have been influenced by C, Logo and of course Forth. Putting it together has
resulted in a unique combination of these various influences, and it is hoped that REPTIL can bridge
the gap between Purpose 1 and Purpose 2, and thus between education and application.

The various advantages of REPTIL can be summarized as follows:

1. The postfix and stack notation is made more readable and palatable.

2. The prefixed quote notation enables a more consistent and context-free postfix

syntax.

3. There is a minimal (four) but nevertheless complete and powerful set of structured

constructs, all of which can be invoked in the interpretive mode.

4. Recursion is intrinsically available.

. There is no source code stored in any form in the system; if required, source code is
recreated in a structured format from the list of tokens.

6. The entire language, including the system verbs, is defined in terms of REPTIL

algorithms and mainly coded in REPTIL.

In the following we discuss advantages 1 through 4 in depth, as well as describe the inner
interpreter and token threaded infrastructure of REPTIL. Advantage 5 concerns the structured
decompiler UNDO: and line editor REDO:. Since there is no source code stored the concept of
source code screens and the associated virtual memory (which is fundamental to Forth) is irrelevant
in REPTIL. Saving a current version of REPTIL on secondary storage is accomplished by saving
a memory image of the compiled code. There are 30 system verbs making up the decompiler/editor;
however they will not be described in this paper.

Advantage 6 concerns the various system verbs associated with the Outer Interpreter. The entire
language (about 215 verbs) is defined in terms of REPTIL algorithms, and, apart from 47 primitives,
is coded in REPTIL. In the current implementation on the Apple II computer, REPTIL is being used
as a self-referential research tool; thus execution speed is knowingly compromised. All of the system
verbs are visible, so as to enable meaningful decompilation, and comments are compiled as literal

wh

408 The Journal of Forth Application and Research Volume 4 Number 3

strings in the code. Thus for example the operating system verb RUN (equivalent of Forth’s
INTERPRET) can be decompiled and examined with the verb UNDO: as follows:

<16> 'RUN UNDO:
'RUN DO:
LOOPI
RARESET \ Reset the R-stack pointer.
READ-LINE
DO-LINE
JENDLOOP
:END
<16>_

The system verbs making up the Outer Interpreter will not be described in this paper.

The Prompt and Stack Notation

In the interpretive mode, the input line begins with a highly informative prompt showing the
system status, as follows:

n<b s>

where n is the number of elements on the Parameter stack (P-stack).
b is the current radix base (displayed in decimal).
s are various symbols indicating that structured constructs have been opened
and that the system is therefore in the compile mode. These symbols are
used for nesting syntax checking.

Thus for example in a typical session:

<16> (12+ ,34+,56+)

316> STACK? \ display the three P-stack items in base 16
3 7 B TOP

3<16> DEC = \ convert to decimal and pop-and-display TOP
11

2<10> =? \ are they equal? \ =

]

<10>

The first line includes special grouping verbs, being the deferred execution parentheses (,)
(described in detail below) and a no-op (,), used mainly for enhanced readability. Three items are
pushed to the stack, as shown in the following prompt. The nondestructive stack display verb
STACK? causes the three items to be displayed on the next line, with an indicator TOP showing the
position of the Top of Parameter stack. The verb DEC converts the radix to decimal base and the
verb = (equivalent to the Forth verb ‘.") pops the TOP. There is no confusion between = and the
relational operator =? which checks for equality, since all relational operators in REPTIL have an
appended question mark. Notice that (unlike Forth) the response of the computer is always on the
following line. Thus there is no ambiguity as to which items were output by the computer, and which
input by the user. Notice also the backslashes ‘\’ which enclose comments.

There are three stacks in REPTIL, the Parameter (P-stack), Return (R-stack) and Symbol (S-
stack). The Parameter and Return stacks are equivalent to those used in Forth. The Symbol stack
contains the various symbols § shown in the prompt, and is used for both nesting syntax checking
and determining whether or not the system is in the compile mode. This is described in detail in the
sections following.

REPTIL — Bridging the Gap Between Application and Education 409

Quote —the Token Notation

Prefixing a name with a quote is used in some Forth-like languages, notably STOIC (12),
PISTOL (11), and SPHERE (13). REPTIL is fundamentally a token threaded language, and has
adopted the token threaded infrastructure of RTL (9). The prefixed quote is used as the token
notation. Referring to figure 2, REPTIL is divided into five major entities, being a NAMES block
containing all the names, a NAMES” table pointing to the various names, a CODES block containing
all the codes, a CODES” table pointing to the various codes, and a CELLS block (not shown—
including variables, buffers and stacks). Variable EON (End Of Names block) holds the first
available memory space at the end of the names block, and similarly variable EQC (End Of Codes
block) holds the first available memory space at the end of the codes block. The tokens consist of
even numbered offset pointers varying from ¢ to EOT (End Of Tokens), which link the names with
their respective codes.

NAMES CODES
Code for
< NAMESA Token CODESA ‘END%
3RUN 0 >
Code for
4 D
COLD ig RUN
5:END% [
B Code for
COLD
v
6FORGET[® Code for
—1 FORGET
EON EOT -——J EOC

Figure 2. Token Threaded Infrastructure

A unique aspect of REPTIL is the association of the prefixed quote with the verb token. This
gives the quote a fundamental significance similar to that of LISP, or Logo, as follows:

1. The quoted name is appended at EON.

2. If on searching through the list of names the name at EON is found to be a
predefined verb, then its token is pushed to TOP and its execution is suppressed.

3. If it is not a verb, then it is a candidate for becoming a verb. The value —1 is
pushed to TOP.

Consider the following example session:

410 The Journal of Forth Application and Research Volume 4 Number 3

<16> 'RUN = \ pop the token of RUN

6

<16> 'VALUE = \ not a predefined verb

-1

<16> EON $= \ display the string at EON
VALUE

16>

With this quote prefix notation, variables and constants are created and handled in a unique,
readable manner. The defining verb :IS creates a constant (it IS a value, and always will be)
whereas : HAS creates a variable (it HAS a value cell which can contain a value, if so assigned).

In REPTIL, the content of a variable value cell (or the value of a constant) is accessed simply
by invoking it. There have been many arguments as to the improved readability that this approach
provides (14,15). Unfortunately, the associated extensions to Forth, including the TO or QUAN
verbs, introduce a further undesirable context dependency of Forth verbs. This is avoided in
REPTIL by using the quote notation. It could be argued that the prefixed quote also introduces a
context dependency —that of suppressing the normal verb action. However the quote is more
universally acceptable—it is used in the same context as in LISP, is applicable to any verb or name
(not only variables) and adjoins the name, rather than being itself a separate verb. Thus the
assignment of a value to a variable is achieved by supressing its action by means of a prefixed quote
and using the assignment verbs <~ (into) or <+ (addto). Similarly the address of the variable’s value
cell is obtained by using the verb CELL. All of this is shown in the following example session:

<16> '"VALUE :HAS \ create the variable VALUE
<16> 5 'WALUE <~ \ assign 5 to VALUE
<16> 42 'THE-ANSWER :IS \ create the constant
<16> \ THE-ANSWER

<16> THE-ANSWER '"WALUE <+ \ add 42 to the content
<16> \ of VALUE

<16> VALUE = \ pop the content of VALUE

47

<16> 'VALUE CELL = \ pop the cell address
<16> \ of VALUE

4QEC

<16> 2 'BASE <- \ change the radix base to binary
<2> THE-ANSWER \ to life and everything (in binary) \ =
1000010

<2> VALUE 'THE-ANSWER <= \ simply experimenting...
THE-ANSWER HAS NO VALUE CELL
1<2> DROP HEX

We notice in particular that attempting to assign a value to the constant THE-AN SWER results
in a polite but firm rejection. Values can only be assigned to variables. Any doubt as to what type
the verb is can be resolved by the UNDO: verb as follows:

<16> 'THE~ANSWER UNDO:
IS 42

<16> 'VALUE UNDO:

HAS 47

<1 6>__

REPTIL — Bridging the Gap Between Application and Education 411

The use of the quote in the compile mode is shown in the following example of the definition
of a new verb BIN to change the radix base to binary:

16> 'BIN DO: \ binary radix
1<16:> 2 'BASE <-

1<16:> :END

<16>

The DO: :END verbs form the defining verb pair in REPTIL (somewhat equivalent to Forth’s
;) and are described in detail below. The name BIN is first treated as a candidate for a verb and
is appended at EON. If 'BASE were invoked in the interpretive mode, then the token of the
predefined system variable BASE would be pushed to the P-stack. However, since 'BASE is being
invoked in the compile mode (notice the defining mode symbol : in the prompt), the runtime token
literal handler TOKENZ is first compiled followed by the token of BASE. During runtime the token
handler will push the following inline token to TOP for subsequent assignment by the verb <~ (into).
It is important to note that all this is transparent to the user, who is using the assignment statement
in the compile mode in the same manner that she would in the interpretive mode. The complete
action of the prefixed quote is shown in the Glossary. The dictionary search for the token of BASE
is done during compilation rather than during execution, enabling a readable postfix notation
combined with runtime efficiency.

The basic structured construct—deferred execution ()

The use of parentheses to define a structure is fundamental to many languages, such as LISP,
Pascal (begin end) and C ({ 1}). Stack oriented languages such as Forth do not require a
parenthesis-like structure for their operation. Recently, however, there has been a growing
awareness that for all its power, Forth is simply not readable (or writeable) enough for widespread
acceptance. Glass (16) proposed introducing parentheses and the comma into Forth as simple
unstructured grouping no-ops for enhanced readability. Bergmann (17) presented a convincing
argument for introducing parentheses as structured constructs in Forth-like languages, with full
nesting syntax checking, and this approach has been adopted in REPTIL. Consider the following
interactive example:

<16> (1 2 + , 3 + , 4 + ,
<16¢> 5 + , 6 +) 2 % =
2A

<16> « <

16¢C>)))

NEEDS (

<165

Whenever a structure is opened, an appropriate symbol (in this case the open parenthesis) is
placed on the S-stack and indicated in the prompt. The system is placed in the compile mode and
the nesting level is increased by one. All the following verbs entered are included at EOC. Note that
the comma ,” is simply a no-op for enhanced readability as proposed by Glass (16). The parentheses
can be nested to any depth, and the nesting level is indicated by the number of symbols in the
prompt. Symbols are removed from the S-stack only if the appropriate closing structure verb is
entered (in this case the close parenthesis). When the nesting level reduces to zero then execution
is invoked, the system returning to the interpretive mode. Thus the parenthesis structure is referred
to as the ‘deferred execution’ structure. The system verb COMPILE? simply checks for any symbols
on the S-stack, as follows:

412 The Journal of Forth Application and Research Volume 4 Number 3

'COMPILE? DO:

sA \ TOS (Top Of S-stack) pointer
$*® \ BOS (Bottom Of S-stack) pointer
>7? \ Iftrue, then there is at least one symbol
\ on the S-stack
:END \ T/F |P

The main purpose of the parentheses structure is enhanced readability. It makes pedagogic sense
that one should not be forced to execute a partially complete structure simply because the end of line
has been reached. It is also the simplest of all the structures and the easiest to understand, allowing
one to develop and study the underlying processes of structures without being encumbered with the
relative branching requirements of other structured forms. In isolated cases the ‘deferring’ of
execution would make a difference in the outcome, as in the following example:

<16> o4 v, v BYE " \ save two strings (maybe!)
2<16> 3= %= \ string-pop both strings...
BYE BYE

<16> Whatever happened to 'HI'?
Whatever ?

Thus even though 2 addresses are indicated on the P-stack, both refer to EON (End Of Names),
where ‘BYE’ has overwritten ‘HI'. This can be prevented by using parentheses to force the system
to temporarily compile the two strings sequentially at EOC, as follows:

<16> ¢ "™ HL " , " BYE ")
2<16> 3= 3=

BYE HI

<165

The deferred execution verb set includes the four verbs (,), (% and)%, as follows:

'(DO: NOW
COMPILE? \ if not yet in the compile mode, then...
?IFFALSE \ save EOC as a subsequent execution pointer
EOC 'EOC-SAVE <~
?7ENDIF
28 >S \ '(' to the S-stack, increasing nesting

\ level by 1

COMPILE: (% \ for meaningful future decompilation.
:END

The verb EOC-SAVE saves the start of compilation address. Thus when compilation is complete
then the value of EQC before compilation will be restored and execution will begin at this address.
Notice the verb NOW which converts the (verb to the immediate mode. This is more readable than
the Forth equivalent IMMEDIATE which is only invoked after the verb has been defined. The
COMPILE: verb is only effective in the compile mode. It is one of the very few verbs which
introduce a context dependency in REPTIL, in that the inline verb following is not invoked, but
included at EOC. This is done by popping the following token address from the R-stack (the one we
wish to compile), including the token, and incrementing past it before returning it to the R-stack,
as follows:

REPTIL — Bridging the Gap Between Application and Education 413

'COMPILE: DO: #VERB

R> DUP \ addr addr |P (of the following
\ inline token)
2 + >R \ addr |P (increment past the address
\ of the token)
FETCH \ token |P
INCLUDE \ token at EOC rather than invoke it
:END

The immediate verb #VERB is a decompiler structure directive indicating that UNDO : should
output the verb following COMPILE: on the same line. The default action of UNDO: is that the
various verbs are decompiled onto different lines.

The verb) reduces the nesting level by popping a ‘ (’ symbol from the S-stack (if one exists).
If it finds that the S-stack is now empty, then it invokes execution with the verb GO-EOC. If the TOS
(Top Of S-stack) did not contain a ‘(" symbol, then a warning message is displayed. This is done
without prejudice, however, and execution continues normally with the unmatched) verb being
ignored.

') DO: NOW
S 28 =? A\ '(' on TOS? (Nesting syntax check)
?IFTRUE
$> DROP \ drop one level of nesting, and check if...
COMPILE? \ ...still in the compile mode?
?1FTRUE
COMPILE: Y% \ for meaningful future
\ decompilation.
7ELSE \ no longer in the compile mode, so...
GO~EOC \ execute compiled code at EOC-SAVE
7ENDIF
?ELSE \ incorrect nesting
" NEEDS (" $=
NULINE \ scroll the terminal screen and...
COL-RESET \ reset the screen column to left margin
7ENDIF
:END

The verb GO-EOC first completes compilation by compiling the verb : END% (every threaded
verb must end with : END%), and then restores EOC so as not to permanently save this temporarily
compiled verb. (Only the DO: :END structure is allowed to permanently compile a verb).
Execution is invoked simply by pushing the start address at EOC~SAVE on the R-stack.

'GO-EOC DO:
COMPILE: :END% \ complete the compilation
EOC-SAVE 'EOC <- \ restore EOC
EQC-SAVE >R \ and prepare for execution
:END

The verbs (% and) % are no-ops, and are used exclusively by the decompiler UNDO: in order
to correctly indent the structure according to the decompiler directives ZVERB, RIGHT> and
<LEFT.

414 The Journal of Forth Application and Research Volume 4 Number 3

‘(% DO: #VERB RIGHT>
:END

Y% DO: ZVERB <LEFT
tEND

For example, assuming we wish to determine the value of 7 in terms of the rational fraction
approximation 355/113. We may define a verb PI as follows:

16> DEC \ change to decimal base
<10> 'PI DO:
1<19:> (10000 355 113
1<18: :END \ simply testing the nesting syntax checker...
NEEDS DO:
1<10: &) %/ \ complete the definiton
1<10:> tEND
<10> PI =
31415
19> 'PI UNDO:
'PI DO:
(
10000
355
113
)
*/
:END
<10>_

Notice that when we tried to complete the definition before closing the parenthesis, the computer
politely rejected the attempt and allowed us to complete the definition without prejudice. The verb
P1I is decompiled in a structured manner showing clearly the grouping of the three numbers by the
parentheses.

The Conditional Branch structure

Logical relations are always associated with a question. Is A greater than B? Is X less than zero
(negative)? and so on. We therefore naturally append a question mark to all REPTIL relational
operators. The conditional branch structure checks the condition on TOP (whether TRUE or
FALSE) to determine the subsequent action to be taken. The conditional branch structure in REPTIL
is more powerful and readable than the standard IF ELSE THEN of Forth, and is similar to that
available in FORTRAN 77. Consider for example a simple verb defined in Forth which incorporates
two IF structures, one nested inside the other. When invoked, the verb will print one of three
grades, ‘Fail’, Pass’, or ‘Distinction’ depending on a score on top of stack (18).

: GRADE DUP 49 < IF

M Failm (Less than 40)
DROP
ELSE
76 < IF
M Pass" (40-69)
ELSE
.M Distinction' (Greater than 79)
THEN

THEN ;

REPTIL - Bridging the Gap Between Application and Education 415

Intuitively, this structure should not have more than one nesting level, since there should be no
structural difference between the three grades. In REPTIL the verb GRADE would be defined as
follows:

"GRADE DO: \ n |P

DUP 40 <?
7IFTRUE

"oOFAIL" 8=
7ELSEIF
pup 79 <?
?7IFTRUE

" PASS" 3=

7ELSE \ must be >= 7¢
" DISTINCTION" $=
7ENDIF
DROP
:END

We note the following:

1. The general form of the conditional branch structure includes the verb ?IFFALSE.
The verbs? IFTRUE and ?IFFALSE are structurally interchangeable.

2. The single 7ELSE clause is optional.

3. As many ?ELSEIF-?IFTRUE clauses as are needed can be optionally used.

4. Full nesting syntax checking is done, the symbol for ?IFTRUE and ?IFFALSE
being a ‘?’, for ?ELSE an ‘E’ and for 27ELSEIF a ‘F’. The 7ENDIF pops all the
relevant symbols from the S-stack, reducing the nesting level by one.

5. Other conditional branch structures (or any other structures) can be wholly nested
within any of the clauses of the basic structure. The conditional branch structure is
not restricted to the defining verb and can be used in the interactive mode, similarly
to the deferred execution parentheses. When the level of nesting is reduced to zero
then execution will begin.

REPTIL is a fully recursive language, and the conditional branch structure enables full
advantage to be taken of its recursive nature. Consider for example the recursive definition of the
factorial verb ‘1™

16> I DO: \ n |P

1<16:> DUP 1 <=7 \ the stopping rule

1<16:> ?IFTRUE

2<16:7> DROP 1

2<16: 7> 7ELSE

2<16:7E> puP 1 - \ n, (-1 |P

2<16:7E> ! \ n, (n=11 [P (the recursive step)
2<16:7E> * \ nx{n=1)1 |P (recursive definition
2<16:7E> \ of n!)

2<16:7E> 7ENDIF

1<16:> :END

<16> DEC

19> 7 t =

5040

<1 0>_

416 The Journal of Forth Application and Research Volume 4 Number 3

The eleven verbs making up the conditional branch structure are ?IFTRUE, ?IFFALSE,
7ELSE, ?ELSEIF, ?ENDIF, ?END%, ?ENDIF%, ?IFTRUE%, ?IFFALSE%, ?ELSEX and
?2ELSEIFY%. The first five verbs are the user verbs. The verb ?END% is invoked by ?ENDIF to
resolve branch addresses. The verb ?ENDIFY% is a runtime no-op and is used as a decompiler
directive and the last four verbs are runtime primitives which execute the various branches. Figure
3 shows the relationship between the five user verbs and the various system runtime verbs which

they compile.

Verbs

?ENDIF

Source structure Symbol Runtime structure
input by user stack resolved by computer
:

?IFTRUE%
?IFTRUE 7>

{ ?branch l

?2ELSEIF%
?2ELSEIF ?2F> -

IFTRUE%
2IFTRUE ?2F?>

?2ELSEIF%
?2ELSEIF ?2F?F> .

?IFFALSE%
?2IFFALSE ?2F?2F?>

{ ?branch I

?ELSE%
2ELSE ?F?F?E>

2ENDIF% <@

Figure 3. Conditional Branch Structure

REPTIL — Bridging the Gap Between Application and Education 417

The coding of the seven threaded secondary verbs is given in the Appendix for reference.

In the following we present a simple application example to illustrate the goal directed approach
to programming that REPTIL promotes (3). Euclid (who was born at about 325 b.c.) devised the
following recursive algorithm for finding the Greatest Common Factor (GCF) between two positive
integers m and n:

GCF(m,n) is m if n = 0 (stopping rule)
otherwise it is GCF(n, m mod n)

Thus for example GCF(8,12) — GCF(12,8) — GCF(8,4) — GCF4,0) — 4

The REPTIL equivalent verb could be defined as follows:

<16> 'GCF DO: \ m n |P

1<16:> DUP =07 \ m n T/F |P
1<16:> ?IFTRUE \ stopping rule
2<16:7> DROP \ m |P (the required result)
2<16:7E> 7ELSE \ recursive step
2<16:7E> SWAP \ n m |P

2<16:7E> OVER \ n m n |P
2<16:7E> MoD \ n (m MOD n) |P
2<16:7E> GCF and try again...
2<16:7E> 7ENDIF

1<16:> :END

<16> DEC

<1e> 357 629 GCF =

17

<19>_

Thus as long as full stack commenting is included in the definitions, programming in REPTIL
becomes intuitively obvious. It has been argued that stack manipulations can never become intuitive
(particularly when there are more than two parameters involved), and REPTIL has been criticised
for not including local variables. My response is that REPTIL is a fundamental core, and that if it
becomes necessary to enhance that core in the future then that should be done by extending the core
with various application shells of verbs. Throughout the development of REPTIL I have not found
it necessary to specify local variables.

The loop structure - LOOP[1ENDLOOP

One of the peculiarities of Forth is the large number of loop forms available. In an interesting
empirical study Soloway et al (19) showed that a single loop form with an arbitrary exit condition
most closely links the programming strategy with a preferred cognitive strategy. Thus REPTIL
provides only one loop construct having optional multiple exit conditions, similar to the conditional
loop form of Ada. There is no directly equivalent loop form available in Forth (due to the capability
of an arbitrary number of conditional exits), however all of the Forth conditional loop forms can be
simulated. When no exit verbs are used then the resulting loop form is an infinite loop, an example
of which in REPTIL is the outer interpreter verb RUN. A strong case can still be made for the Forth
indexed DO-LOOP form, and this may be provided as a future REPTIL extension.

As with all the REPTIL structured forms, the loop structure can also be used interactively (and
not only within a definition), as is shown in the following example session using the factorial verb
‘1’ defined above:

418 The Journal of Forth Application and Research Volume 4 Number 3

<10> 8 LOOPI
2<10> DUP = o= on $=
210> pup I U=
2<100> 1 - DUP <02
2<190> 7EXIT

3<100%> NEWLINE

3<100%> JENDLOOP

81= 40320

71= 5040

61= 720

51= 120

hi= 24

31= 6

21= 2

1= 1

oi= 1

1<10>_

The seven verbs which make up the loop structure set are LOOPL[, ?EXIT, JENDLOOP,
EXITS%, LOOPLY, ?EXIT% and JENDLOOPY%. The first three verbs are user verbs. The verb
EXITSZ is invoked by JENDLOOP to resolve the exit branch addresses. The verb LOOP[% is a
runtime no-op and is used as a decompiler directive, and the last two verbs ?EXITY% and
JENDLOOPY are runtime primitives which execute the various branches. Figure 4 shows the
relationship between the three user verbs and the various system runtime verbs which they compile.

Source structure Symbol Runtime structure
input by user stack resolved by computer
LOOP[[> _& LOOP[%
EXIT%
2EXIT [X>

%branch

?2EXIT%

-

JENDLOOP > JENDLOOP%

,

2EXIT [XX>

Figure 4. Conditional Loop Structure

REPTIL — Bridging the Gap Between Application and Education 419

The coding of the five threaded secondary verbs is included in the Appendix for reference. In
the following we present the Outer Interpreter verb DO-LINE as a good example of the usage of the
conditional loop and branch structures.

'DO-LINE DO:
LOOPI[
SKIP-BLANKS
EOL? \ End-0f-Line ?

7EXIT
NAME? \ prefixed quote?
?IFTRUE
DO~NAME
?7ELSE
BLANK WORDA® SCAN \ Lexical scan to the
\ Word buffer
WORDA® VERB? \ is it a predefined
\ verb?
71IFTRUE
DO-VERB
?ELSEIF
WORD”A® NUMBER? \ a number maybe?
?IFTRUE
DO-NUMBER
7ELSE
WORDAD UNKNOWN
RUN \ ignore it and back to the Outer
\ Interpreter
7ENDIF
7ENDIF
JENDLOOP
:END

This definition uses many Outer Interpreter system verbs which are not defined in this paper,
however they should be intuitively obvious within the context of interpreting an input line. Thus we
find that the conditional structures enable development of extremely readable verbs. All of the
system verbs have headers and are accessible; and when the student becomes interested in what
makes the whole system come together then she will find that it was developed using the same
pedagogic principles that it teaches.

The defining verb pair — DO: :END

The defining verb set used in Forth, including : ; <BUILDS DOES> CONSTANT VARIABLE,
can be extremely confusing because of the strange syntax and context dependency of the verbs (20).
The concept of improving the defining verb syntax by means of ‘deferred nested definitions’ was
proposed by Frank and Johnson (21) in which two new building words could be nested within the
colon definition to replace <BUILDS and DOES>. Bergmann (11) subsequently showed that one
could extend the scope of the basic defining verb pair : ; to include deferred nested definitions, and
thus limit the entire range of defining verbs to : and ; alone. This approach was used as the basis
for the DO: :END defining verb pair in REPTIL and all other required defining verbs and data
structures are derived from suitable nesting of DO: :END sets.

Consider for example the definition and use of a defining verb CONSTANT:

420 The Journal of Forth Application and Research Volume 4 Number 3

<16> 'CONSTANT DO: \ value 'name |P

1<16:> DO:

2<16::> 42 \ the answer to life, the universe, and
2<16::> \ everything...

2<16::> :END

1<16:> ARGPATCH \ the 42 with the value on TOP
1<16:> :END

<16>

<16> 5 '"WEEKDAYS CONSTANT

<16>

<16> WEEKDAYS =

5

<16>

When CONSTANT is invoked, the internal DO: :END pair converts the name (i.e. WEEKDAYS
in the example shown) to a verb, and assigns it a value 42. The verb ARGPATCH then patches the
first argument of the newly created verb by replacing it with the value at TOP (Top Of P-stack).

The nesting of DO: :END gives a more consistent, flexible and readable form than that of the
Forth equivalent <BUILDS DOES>. Nesting can be done to any required level and the concept of
‘deferred definition’ is easier to understand.

There are 6 system verbs making up the defining verb set, being DO:, DO:%, DO:MOVEZ,
CREATE, :END and :ENDY%, as follows:

'DO: DO: NOW \ 'name
COMPILE?
?IFFALSE
CREATE
7ELSE
COMPILE: DO:%
7ENDIF
EOC \ addr |P (start of definition)
¢ INCLUDE \ space for status word
30 >S \ ':' to Symbol-stack
:END

Thus the DO: verb will only CREATE a verb if it is in the outer nesting shell (not in the compile
mode), otherwise it will defer creation to when DO:% is invoked.

'DO:% DO: #VERB RIGHT>
CREATE
DO:MOVEX

tEND

The verb DO :MOVEZ increments the interpretive pointer past the inline deferred definition, and
moves the entire definition to EOC. Note that REPTIL threaded secondaries can only access the
interpretive pointer indirectly through the R-stack, which holds the address of the following inline
token to be popped to the interpretive pointer by :ENDZ.

REPTIL — Bridging the Gap Between Application and Education 421

'DO:MOVE%Z DO: \ invoked only by DO:%
R> DROP \ drop the return to :ENDZ in DO:%
R \ source |P (start address of deferred definition)
EOC \ source, dest |P
OVER 1 + CFETCH \ source, dest, length |P
2 % \ source, dest, H#bytes |P
DUP R> + >R \ increment R-stack by #bytes
pUP 'EOC <+ \ increment EOC by #bytes
CMOVE \ move #bytes from source to dest
:END

The verb CREATE does not do any creation as such, but only takes the name which exists in
limbo at EON, and gives it the permanence of a verb. This is done by incrementing EOT (End Of
Tokens), associating EON and EOC (End Of Code) with EOT, and incrementing EON past the name,
as follows (refer Figure 1):

'CREATE DO: \ 'name

-1 =? \ check for no existing verb of same name
7IFFALSE \ output a warning message
EON $=
SPACE ' ALREADY EXISTS'' 3=
NULINE
COL-RESET
7ENDIF
2 'EOT <+ \ increment EOT
EON
NAMESA EOT +
STORE \ jnclude EON in the names pointers
EON CFETCH 1 + \ #bytes |P (length of name)
'EON <+ \ increment EON past the current name
EQC
CODESA EQOT +
STORE \ include EOC in the codes pointers

<END

Once the verb has been opened with the DO verb, then any further verbs are simply included
at EOC, ultimately being closed with the : END verb. The :END verb compiles the verb : ENDZ (the
last verb in every definition), and pulls it down a level of nesting by popping a ‘3’ symbol from the
S-stack. The length of the verb is evaluated and saved in the status word (high byte). Once the S-
stack is empty, then compilation is complete and the system returns to the interpretive mode. Note
that the : END verb can only be used to correctly close a DO: verb nest, and a careful check is made
of the symbol on TOS (Top Of S-stack).

422 The Journal of Forth Application and Research Volume 4 Number 3
":END DO: NOW \ addr® |P (start of definition)

S 3A =2 \ a2

?IFTRUE \ correct nesting syntax
S> DROP \ reduce one level of nesting
COMPILE: :END%
EOC \ addr®, addrt [P (end of definition)
OVER /2 \ addr®, #words |P
SWAP 1 + \ #words, addrg+1 |P (addr of length byte)
CSTORE
COMPILE?
?IFFALSE

FALSE REDO? <= \ out of redo (edit) mode

7ENDIF

7ELSE \ incorrect nesting - warning message and exit
" NEEDS DO:'* $=
NULINE
COL-RESET

7ENDIF

tEND

The verb :ENDZ is always coded as a primitive and links the verb with the inner interpreter.
It is described in the section on the inner interpreter below.

Execution 60, the inner interpreter NEXT and the threaded return ENDY
The inner interpreter for a token threaded language is similar to that of an indirect threaded
language, the distinction being that a program consists of a list of tokens rather than a list of

addresses. The REPTIL

inner interpreter is adapted from that of RTL (9) and uses the sign bit of

the status word (which heads every verb) to determine if that verb is a primitive or a threaded
secondary. The inner interpreter NEXT is always coded as a headerless primitive; however it is
convenient to present it in terms of REPTIL algorithms in order to describe its function. We first

describe the fundamental

verb GO which executes a verb token given on the P-stack. The verb NEXT

then simply fetches a token from the address in the interpretive pointer before invoking GO. In
practice the primitive code for GO is simply repeated in the verb NEXT. In the following I#
represents the interpretive pointer, and DO~ 1T represents a routine to jump to and execute primitive

code.

'GO DO: \
Cobe~ \
DUP CFETC
<9? \
?IFTRUE
2 +
DO-IT
?ELSE \
IA
2 +
IIA
NEXT
7ENDIF
:END

token [P (coded as a primitive)

code® |P (the address pointing to the verb code)
H \ code?, status |P
status sign bit check
\ a primitive
\ code”+2 |P (increment past the status word)
\ execute primitive code
a threaded secondary
>R \ save return address on R-stack
\ code*+2 |P (the next token address)
<..
\ threaded call

REPTIL — Bridging the Gap Between Application and Education 423

'NEXT DO: \ coded as a headerless primitive
I~ \ addr |P (of current token)
FETCH \ token |P
2 "I <+ \ prepare I for the next token address
G0 \ execute the current token
:END

Every primitive ends with a jump to NEXT, and every threaded secondary ends with the verb
:ENDY%. The verb : END% is the runtime verb of : END, and it too is always coded as a primitive.
Its equivalent REPTIL algorithmic form follows:

':ENDZ DO: \ threaded return - coded as a primitive
R> '~ <~ \ pop address of next token to I”
NEXT
:END
Discussion

Since its inception in 1984, REPTIL has undergone a number of incarnations (1,2,3). It is still
being conceptually developed, and in its current implementation is lacking in many important
features such as input/output routines for interfacing with external equipment. Nevertheless it is
gradually evolving into a unique language in its own right which in some ways is more fundamental
than its predecessor Forth. The major departures of REPTIL from Forth include the prefixed quote
notation, the user interface (including the informative prompt, decompiler and editor) and the
structured constructs. This paper has mainly concentrated on the evolution and description of the
four fundamental structured constructs of REPTIL, being deferred execution, conditional branch,
conditional loop, and deferred definition. Structure is a rather nebulous concept and in the
programming language context can be considered as augmenting the linear description of a language
with a new dimension, and thus further enhancing the human visual thinking process (22). Thus
structure is not only the structured constructs, but includes the visual form that accompanies them.
In Forth the visual form is largely lost by the constraint of suitably filling the virtual screen blocks—
“If it cannot fit into three screens then its not worth programming.” Furthermore one can easily
define Forth words with improper structured constructs which will hopelessly crash the system.
REPTIL has an automatic unconstrained structured format coupled with a non-fatal intuitive syntax
checking that ensures correctly nested structures. All of the REPTIL structures place the system in
the compile mode, allowing them to be invoked and experimented with outside of a definition.

The current implementation of REPTIL is on the Apple II computer, mainly since it still
dominates the schools. This implementation includes about 215 verbs, 47 of which are primitives.
Plans for the future development of REPTIL include the following:

1. Enhance the Apple II version with a basic ‘Reptile’ graphics facility including a

plotter interface in order to promote its acceptance in the elementary school
environment.

2. Convert and port REPTIL to a 68000 based computer so as to stabilize a standard

fundamental verb set and promote its acceptance in the application environment.

3. Attempt to justify the claims that REPTIL can bridge the gap between education

and application by means of controlled experiments.

Acknowledgements

The author wishes to thank the editors and referees for their constructive comments which have
helped to improve this paper considerably.

424

The Journal of Forth Application and Research Volume 4 Number 3

References

(1]

(2]

(3]

(4]

(3]
(6l
(7]
(8]
[91

(10]
[11]

[12]

[13]

(14]
[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

I. Urieli, ‘HELLO, A REPTIL I AM’, Proceedings of the 1984 Rochester Forth Conference,
pp- 236-243.

I. Urieli, ‘REvised REcursive AND? ‘REPTIL :IS’, Proceedings of the 1985 Rochester Forth
Conference, pp. 229-231.

I. Urieli, ‘REPTIL —promoting dialog between humanoid and computer’, Proceedings of the
1986 Rochester Forth Conference, pp. 229-232.

J. C. Bender, ‘Forth implementation in a high-level language’, Proceedings of the 1985
Rochester Forth Conference, pp. 85-87.

K. M. Chung, H. Yuen, ‘A “Tiny” Pascal compiler’, BYTE, Sept., Oct., Nov. 1978.
J. R. Allen, ‘Computing, LISP and You’, Microcomputing, Feb. 1982, pp. 28-42.
M. Buber, Between Man and Man, MacMillan Publishing Co., 1965.

G. Orwell, Nineteen Eighty Four, Harcourt Brace, New York, 1949.

R. Buege, ‘Status Threaded Code’, Proceedings of the 1984 Rochester Forth Conference, pp.
103-104.

R. Buege, ‘A decompiler design’, Proceedings of the 1984 FORML Conference.

E. E. Bergmann, ‘PISTOL —a Forth-like Portably Implemented Stack Oriented Language’, Dr.
Dobb’s Journal, Number 76, Feb. 1983, pp. 12-15.

J. M. Sachs, S. K. Burns, ‘STOIC, an interactive programming system for dedicated
computing’, Software — Practice and Experience, Vol. 13, 1983, pp. 1-16.

E. L. Solley, ‘SPHERE: an in-circuit development system with a Forth heritage’, Proceedings
of the 1984 Rochester Forth Conference, pp. 25-31.

P. Bartholdi, ‘The “TQ” solution’, Forth Dimensions, Vol. 1, No. 5, Jan. 1979.

E. Rosen, ‘QUAN and VECT-High speed, low memory consumption structures’,
Proceedings, Fourth FORML Conference, October 1982.

H. Glass, ‘Towards a more writeable Forth syntax’, Proceedings of the 1983 Rochester Forth
Conference.

E. E. Bergmann, ‘Languages and Parentheses—a suggestion for Forth-like languages’, Dr.
Dobb’s Journal, July 1984, pp. 102-108.

A. F. T. Winfield, The Complete Forth, Sigma/Wiley NY, 1983, p. 33.

E. Soloway, J. Bonar, K. Ehrlich, ‘Cognitive Strategies and Looping Constructs: An
Empirical Study’, Communications of the ACM, Vol. 26, No. 11, November, 1983, pp.
853-860.

W. F. Ragsdale, ‘A new syntax for defining Defining Words’, Forth Dimensions, Vol. II, No.
S, pp. 121-128.

D. C. Frank, G. W. Johnson, ‘Generalized Building Words’, Proceedings of the 1982
Rochester Forth Conference, pp. 207-210.

P. M. van Hiele, Structure and Insight — A Theory of Mathematics Education, Academic Press,
1986.

REPTIL — Bridging the Gap Between Application and Education 425

Israel Urieli obtained a M.Sc. in Electrical Engineering from the Technion, Israel, and a Ph.D.
in Mechanical Engineering at the Witwatersrand University in South Africa. He spent about 20 years
in Israeli industry doing various research and development projects, ranging from Radar to Stirling
Engines.. He recently joined Ohio University and is responsible for developing and teaching the core
programming courses (Pascal and FORTRAN, of course) to engineering students.

Manuscript received January 1986.

426 The Journal of Forth Application and Research Volume 4 Number 3

Appendix

“ There are eleven verbs which make up the conditional branch structure. These include the verbs
21FTRUE, ?IFFALSE, ?ELSE, ?ELSEIF, ?ENDIF, ?END%, ?ENDIFZ, ?IFTRUEZ,
21FFALSEY, ?ELSE% and ?ELSEIF%. The first seven verbs are threaded secondaries and are
coded as follows:

'"?IFTRUE DO: NOW

COMPILE?
?IFFALSE
EOC 'EOC-SAVE <~
7ENDIF
3F >S \ '2' to S-stack

COMPILE: ?IFTRUEX
EOC addr1 |P
0 INCLUDE \ space at addr1 for #words to branch

:END
'?2IFFALSE DO: NOW
COMPILE?
?IFFALSE
EOC ‘'EOC-SAVE <-
7ENDIF
3F >S

COMPILE: ?IFFALSE%
EOC \ addr1 |P
0 INCLUDE

:END

Note the similarity between the ? IFTRUE and ? IFFALSE verbs. Their difference in behaviour
is due only to their respective runtime verbs ? IFTRUE% and ?IFFALSEZ.

'7ELSE DO: NOW \ addr1 |P
s 3F =2 \ '2' on S-stack? (Nesting syntax check)
?1IFTRUE
45 >§ \ 'E' to S-stack
COMPILE: 7ELSEZ
>R\ addr1 |R
EOC \ addr2 |P addrt |R
® INCLUDE \ space at addr2 for #words to branch
EOC R - /2 addr2, (addr3-addr1)/2 |P addri |R
R> \ addr2, (addr3-addr1)/2, addrt [P
STORE \ addr2 |P (store #words to branch in addr?)
7ELSE
" NEEDS ?IFTRUE OR ?IFFALSE" $=
NULINE
COL-RESET
?2ENDIF
:END

REPTIL - Bridging the Gap Between Application and Education 427

'7ELSEIF DO: NOW \ addr1 IP
S 3F =7 \ '?' on S-stack?
?IFTRUE

46 >S \ 'F' to S-stack
COMPILE: 7ELSE%
>R\ addr1 |R
EOC addr2 |P addr1 |R
® INCLUDE \ space at addr2 for #words to branch
EOC R - /2 addr2, (addr3-addr1)/2 |P addr1 |R
R> \ addr2, (addr3-addr1)/2, addr1l |P
STORE \ addr2 |P (store #words to branch in addr1)
7ELSE
" NEEDS ?IFTRUE OR ?IFFALSE" $=
NULINE
COL~RESET
7ENDIF
tEND

Note that the verbs ?ELSE and ?ELSEIF are almost identical. Their runtime behaviour is also
identical. Their only difference is in the syntax symbol which is resolved by ?ENDIF.

Y2ENDIF DO: NOW \ addr1,addr2,...,addrn |P
S 45 =? \ 'E'? (is there an ?ELSE clause?)
?IFTRUE

S> DROP
?ENDIF
S 3F =? \ 717
71IFTRUE
?7END% \ resolve all branch addresses
COMPILE: 7ENDIF%
COMPILE?
?IFFALSE
GO-EOC
7ENDIF
?ELSE
"t NEEDS ?IFTRUE, ?IFFALSE OR ?ELSE" $=
NULINE
COL-RESET
7ENDIF

:END

The verb ?END¥% resolves all the branch addresses of the various clauses. Each 7ELSEIF
clause causes a ‘F ?’ pair of symbols to be pushed to the S-stack, which is popped as each address
is resolved. Since ?END% does not know how many clauses to resolve, it uses the conditional loop
structure with exit conditions determined by the S-stack.

428 The Journal of Forth Application and Research Volume 4 Number 3

YEND% DO: \ addr1, addr2, ..., addri |P
Loor(\ until all branch addresses are resolved
S 3F =7 NOT \ exit if not a '?'
7EXIT

$> DROP \ pop the '?!
>R \ addri |P

EOC R - /2 \ (addrj=-addri)/2 |P
R> \ (addrj-addri)/2, addri [P
STORE \ #words to branch in addri
S 46 =7 NOT \ exit if not a 'F'
7EXIT
$> DROP \ pop the 'F!
JENDLOOP
:END
'2ENDIF% DO: %VERB <LEFT \ mainly for decompilation
:END

There are seven verbs which make up the conditional loop structure including LOOP[, ?EXIT,
JENDLOOP, EXITS%, LOOPL%, ?EXIT% and 1ENDLOOPY. The first five verbs are threaded
secondaries and are coded as follows:

'LOOPL DO: NOW
COMPILE?
?7I1FFALSE
EOC 'EOC-SAVE <-
7ENDIF
58 > \ '[' to S-stack
EOC \ addr1 |P (to evaluate #words to branch)
COMPILE: LOOP[%

:END
"LOOP[%Z DO: ¥%VERB RIGHT> \ for meaningful decompilation
:END
'72EXIT DO: NOW

S 5B =? \ ' [?

S 58 =7 OR \ or 'X'? (nesting syntax check)

7IFTRUE

58 >§ \ 'X' to S-stack

COMPILE: 7?EXIT%
EOC \ addr1 |P
0 INCLUDE \ space for #words to branch
?7ELSE \ incorrect nesting
" NEEDS LOOPL OR 7EXIT'" $=
NULINE
COL-RESET
7ENDIF
:END

REPTIL — Bridging the Gap Between Application and Education 429

'JENDLOOP DO: NOW \ addr1, addr2, ..., addri |P
EXITSZ \ resolve exits only (addr2, ...,addri)
S 5B =7 \ '['? (nesting syntax check)
?7IFTRUE
$> DROP \ drop a level of nesting
COMPILE: 1ENDLOOPZ \ unconditional branch to LOOP[%
EOC - /2 \ (addril-addrj)/2 |P (#words to branch back)

INCLUDE
COMPILE?
?IFFALSE \ in execution mode?...
GO-EOC \ ...then execute loop structure
7ENDIF

7ELSE \ nesting error
" NEEDS LOOP[" 3=
NULINE
COL-RESET
7ENDIF
:END

YEXITS% DO: \ addr2, addr3, ..., addri |P (resolve exit addresses)
LOOPL \ until all the exit addresses have been resolved
§ 58 =7 NOT \ not an 'X'?...then exit
7EXIT
S> DROP \ drop the "X'
>R \ addri |R

EOC R - /2 '\ (addrj-addri)/2 |P, addri |R
2 +
R> \ 2+(addrj-addri)/2, addri |P
STORE
JENDLOOP

:END

430 The Journal of Forth Application and Research Volume 4 Number 3

Glossary

The following glossary includes most of the verbs referred to in this paper, as well as some
other pertinent verbs. The various system verbs which make up the Outer Interpreter (RUN),
decompiler (UNDO:) and editor (REDO:) are not included.

The following stack notation is used:

| P denotes the top of the Parameter stack (P-stack).

| R denotes the top of the Return stack (R-stack).

| S denotes the top of the Symbol stack (S-stack).

n refers to a signed 16 bit number on a stack.

u,addr refer to an unsigned 16 bit number or address on a stack.

b refers to an unsigned byte on a stack.

T/F refers to a logical (TRUE or FALSE) value on a stack (FALSE = 0).

d refers to a signed 32 bit number on a stack (dy; is the most significant 16 bits,
and dj, the least significant 16 bits).

ud refers to an unsigned 32 bit number on a stack.

token refers to a token (even unsigned number, 0...EOT) on a stack.

'name (prefixed quote) do a lexical scan of the name (terminated by a blank) to EON.
The following action is governed by the state table as follows:

COMPILE? \ in the compile mode?
TRUE FALSE

1 Include the token literal 2 Push the verb token to
TRUE handler followed by the the P-stack

VERB? verb token at EOC

3 Include the name string |4 Candidate for a verb.
FALSE literal handler followed Push -1 to the P-stack
by the name at EOC

EOT | P — token |P (End of Tokens—most current token defined)

Parameter stack (P-stack) verbs:

pup n|{P->nni|P

DROP n|P - |P

SWAP nin2 |P - n2nl |P

OVER nin2 [P ->nln2nl |P

PICK b |P — n |P (pick the b'th element from the P-stack.

Thus DUP = 1 PICK, OVER = 2 PICK)
PARESET nl...ni [P — |P (reset the P-stack pointer)
pA |P — addr |P (push the P-stack pointer)

P~0 |P — addr |P (push the Bottom Of P-stack (BOP) pointer)

REPTIL — Bridging the Gap Between Application and Education 431

Return stack (R-stack) verbs:

>R n|P|R~- |Pn|R
R [Pn]R->n|Pn]|R
R> [Pn|R—n|P|R

RARESET nl...ni |R — |R (reset the R-stack pointer)

Note: Even though the R-stack can be used as a very convenient temporary holding stack, this
must be done with caution, since the main purpose of the R-stack is to hold the return address of
the next in-line token to be invoked. Thus if the current token is that of a threaded verb, then

the next in-line token address is pushed to the R-stack by NEXT, and subsequently popped by
1ENDZ.

:ENDZ runtime verb ending every threaded verb, removes address of following in-line
token from the R-stack and stores it in the ‘Interpretive Pointer’ before invoking

the primitive NEXT.

Memory storage and retrieval verbs:

STORE naddr |P — |P (store n at addr)
+STORE naddr |P — |P (add n to content at addr)
CSTORE baddr |P — |P (store b at addr)

+CSTORE b addr |P — |P (add b to content at addr)
FETCH addr |P — n |P (fetch n from addr)

CFETCH addr |P — b |P (fetch b from addr)

Arithmetic verbs:
* nl n2 |P — (nl*n2) | P (product)
+ nln2 |P — (nl+n2) |P (sum)

- nln2 |P — (n1—n2) |P (difference)

/ nl n2 |P — (nl/n2) | P (quotient)
/2 n |P — n/2 |P (signed divide by two)
MOD nln2 |P — (nl mod n2) |P (unsigned remainder)

*/ nl n2 n3 |P — (n1*n2/n3) |P (scaling operator—32 bit intermediate product)

432

The Journal of Forth Application and Research Volume 4 Number 3

Relational verbs:

<07
<=?

=?

n |P - T/F |P True if n is less than zero.
nln2 [P — T/F |P True if nl is less than or equal to n2.

nln2 |P - T/F |P Trueifnl is equal to n2.

Deferred Execution structure:

(

)

|S — ' C |S (open deferred execution structure)
"C |S = |S (close deferred execution structure)

a no-op.

Conditional Branch structure:

?IFTRUE

?IFFALSE

7ELSE

7ELSEIF

?7ENDIF

T/F |P |S —» T/Faddr |P '?' |S (open conditional branch structure. When
structure is subsequently executed (S-stack empty), if T/F condition is FALSE
then code will branch to pointer in addr, otherwise will continue with following
code.

T/F |P |$ — T/Faddr |P '?' |S (open conditional branch structure. When
structure is subsequently executed (S-stack empty), if T/F condition is TRUE
then code will branch to pointer in addr, otherwise will continue with following
code.

addrl |P '?' |S — addr2 |P '?E' |S (continue conditional branch
structure —resolve branch pointer in addrl, reserve addr2 for subsequent
unconditional branch pointer to be resolved by 7ENDIF)

addrl |P '?"' |S — addr2 |P '?F' |S (continue conditional branch
structure —resolve branch pointer in addrl, reserve addr2 for subsequent
unconditional branch pointer to be resolved by 7ENDIF)

addrl ... [P '?..." |S - |P |S (close conditional branch structure —resolve
all branch pointers (addrl ...))

Conditional Loop structure:

LOOPI

7EXIT

[P |S —addr [P '["' |S (open conditional loop structure —reserve addr for
subsequent unconditional branch pointer to be resolved by 1ENDLOOP)

addrl |P "[' |S — addrl addr2 |P '[X' |S (continue conditional loop
structure —reserve addr2 for subsequent conditional branch pointer to be
resolved by JENDLOOP)

REPTIL —Bridging the Gap Between Application and Education 433

JENDLOOP addrl ... [P '[..." |S — |P |S (close conditional loop structure—resolve all
branch pointers (addrl ...))

Deferred Definition structure and related verbs:

DO: "name |P |S — addr |P ':' |S (open deferred definition)

:END addr |P ':' |S = |P |S (close deferred definition—resolve length of
definition (number of tokens) and store at addr)

tHAS "name |P — |P (define a value cell without assigning it a value)

: IS n 'name |P — |P (define a constant having a value n)

UNDO: token |P — |P (decompile the verb of token)

REDO: token |P — |P (redo (edit) the verb of token)

1D= token |P — |P (display the name of token)

LIST16 token |P — |P (display the names of the previous 16 tokens)

LIST output list of verbs and their associated tokens starting from EOT

NAMEA token |P — addr | P (address of token name)

NAMES |P — addr |P (address of start of names block)

NAMESA |P — addr | P (address of start of names pointers table)

EON | P — addr |P (address of next available space in names block)

CODEA token |P — addr |P (address of token code)

CODES |P — addr |P (address of start of codes block)

CODESA | P — addr |P (address of start of codes pointers table)

EOC |P — addr |P (address of next available space in codes block)

CELLS |P — addr |P (address of start of value cells block)

CELL token |P — addr |P (cell address of token, only if verified to be that of a value
cell)

<+ ntoken |P — |P add n to the value in the cell of token.

<- ntoken |P — |P assign value n to the cell of token.

434 The Journal of Forth Application and Research Volume 4 Number 3

Strings:

" If in the compile mode then compile the string literal handler $% followed by the
following in-line string (terminated by another ' or a Return) at EOC, else
lexically scan the string to EON and push EON to the P-stack.

\ If in the compile mode then compile the comment literal handler \% followed by
the following in-line string (terminated by another \ or a Return) at EOC else
lexically scan the string to EON.

$= addr |P — |P (display the string located at addr)

Input/Output verbs:

= n |P — |P pop-and-display the value at TOP.

U= u |P — |P pop-and-display the unsigned value at TOP.

CGET [P > b |P geta character from the keyboard.

CPUT b |P — |P pop-and-display the character at TOP

