Use of a Forth-Based Prolog for
Real-Time Expert Systems
I. Spacelab Life Sciences Experiment Application

William H. Paloski, Louis L. Odette,*
Alfred J. Krever,T and Allison K. West

KRUG International
Technology Life Sciences Division
17625 El Camino Real, Suite 311

Houston, TX 77058

Abstract

A real-time expert system is being developed to serve as the astronaut interface for a series of
Spacelab vestibular experiments. This expert system is written in a version of Prolog that is itself
written in Forth. The Prolog contains a predicate that can be used to execute Forth definitions; thus,
the Forth becomes an embedded real-time operating system within the Prolog programming
environment. The expert system consists of a data base containing detailed operational instructions
for each experiment, a rule base containing Prolog clauses used to determine the next step in an
experiment sequence, and a procedure base containing Prolog goals formed from real-time routines
coded in Forth. In this paper, we demonstrate and describe the techniques and considerations used
to develop this real-time expert system, and we conclude that Forth-based Prolog provides a viable
implementation vehicle for this and similar applications.

Introduction

The recent flurry of activity in commercial expert system development has all but bypassed the
real-time computing community. Although it may be desirable to incorporate expert systems in
certain real-time computing problems, the amount of computing over symbols (reasoning) required
by an expert system is difficult to implement in real time. Indeed, it is often difficult to implement
the amount of computing over numbers required by real-time applications. The commercial artificial
intelligence (AI) industry is moving slowly toward providing fully formed products for real-time
expert system development (cf. [WOLS7], [LEI87]); however, general real-time symbolic
processing remains an Al research problem. It may be several years before Al languages and
development/delivery environments can play a significant role in real-time applications.

Owing to this lack of suitable, commercially available real-time expert system development
vehicles and to its interest in developing expert systems for data acquisition and control applications,
the Forth community has recently become active in developing real-time expert systems [PAR86].
Some of the contributions of this community in this area include a diesel electric locomotive repair
expert system [JOHS83], an orbiting spacecraft command and control expert system [HARS6], a
spacecraft trajectory processing data error detection expert system (TRAPS) [RAS86], a real-time
polysomnographer expert system (FORTES) [RED87], a sleep disorder diagnosis system [TRE87],

*Applied Expert Systems, 5 Cambridge Center, Cambridge, MA 02142
+FORTH, Inc., 111 N. Sepulveda, Manhattan Beach, CA 90266

Journal of Forth Application and Research Volume 4, Number 4
463

464 The Journal of Forth Application and Research Volume 4 Number 4

some general real-time expert system development packages (EXPERT-2 [PARS84], FORPS
[MATRT]), and a real-time version of the common expert system development language OPS5
(REAL-OPS) [DRER6]. In each of these applications, a set of high-level (AI) programming tools
(i.e., inference engine, language parser, etc.) is built from Forth primitives to take advantage of the
high run-time execution speed offered by Forth.

In the current paper, we describe a new Forth-based real-time expert system. This application
is being developed using a unique implementation of the logic programming language Prolog, in
which the Prolog interpreter is embedded in a Forth environment [ODE87]. This Prolog is fully
compatible with the de facto standard described by Clocksin and Mellish [CLO81] and provides a
simple and direct interface to the underlying Forth. This interface allows creation of Prolog goals
from Forth words and provides the basis for rapid development and integration of the real-time
routines into an expert system knowledge base. Real-time algorithms stored in the knowledge base
through this mechanism can subsequently be executed on a logic-driven basis by the expert system.

The real-time expert system presented here will be used to assist astronauts in performing a
series of life sciences experiments aboard the First International Microgravity Laboratory (IML-1)
Spacelab mission. It will serve as the operator interface to the experiment data acquisition and
control system. The series of experiments to be controlled by the expert system is known as the
Microgravity Vestibular Investigations (MVT) and is designed to study the role of the inner ear in
space motion sickness. An expert system was considered for the MVI experiments because of the
complexity of the experimental procedures, the suboptimal experiment environment provided by
Spacelab, and the high cost of failure. Highlights of this application are presented to demonstrate
our general approach to building real-time expert systems using the Forth-based Prolog.

Instrumentation

The MVI experiments comprise six separate scientific functional objectives, each of which is
addressed by performing 3 to 24 related experiments. These experiments will be performed during
the IML-1 mission by teams of two astronauts. One astronaut will serve as the experiment subject.
He will be strapped into a rotating chair mounted in the Spacelab center aisle and will don a helmet
supporting various physical and physiological sensors. Throughout the experiments, he will be
presented with inertial, auditory, and/or visual stimuli, and his physiological responses to those
stimuli will be monitored, graphically displayed, and transmitted to Earth. The other astronaut will
serve as the experiment operator. He will be responsible for setting up and calibrating each of the
sensors and for performing each step of the 65 experiments. During each experiment, he will also
monitor the response, safety, and well-being of the subject and communicate with ground-based
scientific investigators.

The experiments will be controlled by the astronaut/operator using a rack-mounted console
known as the Experiment Control and Data Interface (ECDI; Figure 1). The heart of this console
is an IBM PC-compatible, 8086-based, laptop microcomputer (Grid Case III, Grid Systems
Corporation, Mountain View, California). Within the ECDI, the PC bus is extended to a 9-slot
expansion chassis (IBUS Systems Corporation, San Diego, California) which houses all the data
acquisition, control, and Spacelab system interface hardware. Data acquisition and control
capabilities are provided by two analog interface boards (DT2801, Data Translation, Marlborough,
Massachusetts) containing a total of sixteen 12-bit differential channels of analog-to-digital (A/D)
conversion, four 12-bit channels of digital-to-analog (D/A) conversion, and 32 bits of digital
input/output (I/O) lines. Analog data from electro-oculogram (EOG), head acceleration, and head
position sensors attached to the subject and helmet will be sampled at either 128 Hz (5 channels) or
32 Hz (10 channels) and digitized using the A/D converters. Command signals, issued through the
D/A converters and digital I/O ports, will control an optokinetic device, a light emitting diode (LED)
array, ear phones, and other experiment stimulus-producing devices.

465

Use of a Forth-Based Prolog for Real-Time Expert Systems I: Application

SHQ4L 0L

X

‘arempiey [AN Jo weidelp yoolg

SIW3LSAS 8V130VdS

XNW =

MNIINMOG
aNvg N

= 3Lvd HOMH

HOLIMS

907YNY «
030QIA

SINOHJHVY 3

3IINCOW G371

3DIAZC DILININ-0LdO

YY3IWV3 330

(G) $3004812373 903

(2) SHILIWOILNILO

(9) S43L3IN0H3T300Y

13WT3IH /L03r8NS

PO -

Xo8

3OVIHILNI d
L3IWT3H

1 a1ng1g
1303
QUVOBAD AVIdS1a
YWSYTd SYO
1
3181LVdWOD - 018
dd-WE
1808 /9808
C
/
SISSYHD NOISNVAX3
!!!!!! sng od
e]
|
NV 8
2vin
|
|||||||| 4 on 910
| sue 2
wsa | WO MO v T
spsg | QW WO @
1

SONIY diTS
HIVHD ONILViOY

466 The Journal of Forth Application and Research Volume 4 Number 4

Following digitization, two channels of experiment sensor data will be graphically displayed in
real time on the ECDI computer screen. In addition, all acquired data, as well as all command and
experiment condition data, will be serially transmitted at 25.6 Kbits/sec to Spacelab downlink
systems. Spacelab system interfaces are provided by two custom boards containing I/O-mapped,
8742 Universal Peripheral Interface processors. These boards will control data transfer between the
experiment computer and either the Spacelab high rate multiplexer (HRM) or the Spacelab video
analog switch (VAS) using pairs of memory-mapped RAM ping-pong buffers and Universal
Asynchronous Receiver/Transmitters. The HRM and VAS provide interfaces for digital and video
data telemetry to ground-based scientific and mission control observers.

Expert System

Although Spacelab provides a unique facility for studying the effects of microgravity on various
physical and physiological processes, its environment is less than optimal for performing complex
scientific experiments. Crew time and training are limited, communication between
astronaut/operators and ground-based scientific investigators is limited, and crew members are likely
to experience some degree of motion sickness during the first few days of a mission. The MVI expert
system is designed to reduce the impact of these factors on the quality of the MVI data collection.
This expert system should enhance the ability of the astronaut/operator to collect high quality data
in the Spacelab environment by managing the complexity of the experimental procedures and by
offering guidance through the experiment operations.

The heart of the expert system is its knowledge base, which is made up of a data base containing
facts about experiment procedures and protocols, a rule base containing general rules for carrying
out the experiments under normal and abnormal conditions, and a procedure base containing real-
time routines coded in Forth. The rule base is used to step the operator through each experimental
protocol, as specified in the data base, while simultaneously activating appropriate Forth tasks stored
in the procedure base. The knowledge base is primarily declarative, relying on the Prolog inference
engine for control; however, the Prolog builtin predicate, used to incorporate Forth routines into
the knowledge base, allows procedures to be invoked from Prolog (a complete description of the
Forth-based Prolog is provided in a companion paper in this issue [ODE87]).

A knowledge base structure was selected for representing the experiment procedure data rules
in order to provide a flexible system that could be easily modified. This format allows separation
of the data from the inference rules and real-time routines and thereby permits restructuring of rules
without changing the data organization or real-time behavior. The structure of a knowledge base also
greatly reduces the distance between the program and the user; both data and rules are stored in
blocks of text that can be read as paragraphs by natural language processing routines as well as by
the programmer and the expert Principal Investigators. This feature will aid in the development of
user-friendly I/O routines and explanation facilities.

There is a top-level query language through which the experiment operator has access to the rule
base. Upon being queried, the rule base extracts appropriate data from the data base and provides
that data as input to real-time algorithms in the procedure base. The real-time algorithms then use
this data in setup and execution of machine control tasks. At the present time, the data and procedure
base development is essentially complete. The rule base remains under development; however, all
of its essential components, including those described below, have been developed and tested. A
detailed description of the knowledge base and execution process follows.

Data Base

The MVI expert system data base consists of six records, each of which encodes all of the
operational requirements for a single functional objective. Each record has a tree structure (Figure
2). The primary node in each record is the functional objective identifier. Each of the n secondary
nodes branching from the primary node identifies the location of all the information required to

467

ion

icat

Appl

Use of a Forth-Based Prolog for Real-Time Expert Systems 1

-oseq Biep wolsAs adxo oY) JO IMONIS 9013 Y} JO opdurexy
7 9In31

‘23S p2=NO1LviNna

3INGOW a3 ANIWGIND3 TVID3dS
NS olanv SATAWILS
g3 NO 3LvXid NOILIONOD TYNSIA

L]

035466 =1dWY

23S v2=N011vyNa

[anon}———— inawginos wioads|

ZH | ="D3Y3

NIS ¥OLVL0Y SNINWILS

N3dO S3A3* yuvd NOILIONOD TVNSIA

14 3AILO3r8O
IVNOLLONNG

‘035 /4SS F1dWVY

MV A NOILISOd QV3H

'03s 2e=NOLLYHNa 1N3WJIND3 WID3dS

ZHG2 0 ='D3¥4 NiS HOLVviOH SAINNLLS

035 456 = IdWY N3dO0 S3A3*MYVa NOILIGNOD TVASIA

MYA NOILISOd QV3H

468 The Journal of Forth Application and Research Volume 4 Number 4

perform a single experimental protocol (test) within the functional objective. Four tertiary nodes
branching from each secondary node identify the location of the head position, visual condition,
experimental stimulus, and special equipment information required by the particular protocol. The
set of nodes branching from the tertiary nodes contains the actual data pointed to by the identifiers.
All nodes further to the right add clarification and refinement to this data. As an example, Figure
2 shows that the experimental protocol Test #1 of Functional Objective #1 requires that an inertial
stimulus be provided by the rotating chair and that this stimulus have a sinusoidal velocity profile
with an amplitude of 55°/sec, a frequency of 0.25 Hz, and a duration of 32 seconds.

The Prolog clause required to encode a data tree similar to that diagrammed in Figure 2 is
presented in Figure 3. Each branch node is represented by a predicate having an arity equal to the
number of parenthetical objects following it and separated by commas. The arity of a predicate is
fixed. For example, the arity of the predicate functional__objective is 3: the object 1 (the functional
objective number); the object vor__suppression (the functional objective name); and a list, delimited
by square brackets, which contains objects, predicates, and other lists that identify the remainder
of the data required for Functional Objective #1. In Prolog, records can be organized into pseudo-
English paragraph structures like that in Figure 3. This helps to bring the source code much closer
to both the programmer and the domain expert. Prolog unification is the mechanism used by the
expert system to access data fields within the data base.

146 LIST

@ /* expert system development area */

1 functiona[_objective(1,von_suppression,

2 [test(1,head _position(yaw),

3 visuaL_condition(d,[dark,eyeg~open,straight_ahead]),
4 stimulus(rotator(sin(ampl(55),freq(25),dur(32)))),

5 special_equipment (none),

6 test(2,head position(yaw),

7 visual_condition(d,[dark,eyes_open,straight_ahead]),
8 stimutus(rotator(sin(ampL(SS),freq(1),dur(24)))),

9 special_equipment(none)),
10 test(3,head position(pitch),
1 visual_condition(f1,[fixate_on_LED modu le_targetl),
12 stimutus(audio(sin(ampt(55),freq(1),dur(24)))),
13 special_equipment (LED_module))1).
14
15
Figure 3

Prolog clause required to encode a data base record similar to the example presented in Figure 2.

Rule Base

The rule base will contain approximately 50 Prolog clauses, which the operator accesses via the
user query language and the expert system accesses through unification. The primary execution rules
have been developed, and some of them appear in Figure 4. Lines 2-3 in Block 147 present the
general rule for executing a functional objective. The operator can execute a functional objective
using the query fo(X). If X is instantiated (equivalenced) to a functional objective number for which
a data record exists within the expert system data base, then that particular functional objective will
be executed. If X is instantiated to a functional objective number for which no data record exists,
the second fo(X) clause (Block 147, Line 5) will be invoked to report the error. If X is not
instantiated, the first functional objective record in the data base will be found and used for
execution. Thereafter, successive functional objectives could be executed by forcing Prolog
backtracking at the conclusion of each functional objective execution. This could be accomplished
by requesting more solutions to the top-level query.

Use of a Forth-Based Prolog for Real-Time Expert Systems I: Application 469

147 LIST

@ [/* expert system development cont */

1

2 fo(X) :- functional_objective(X,Y,L),!,

3 execute_fo(L).

4

5 folX) :- nl,nl,writeCinvalid_fo_number),nl.

6

7

8 execute fo(L) :- member(test(N,HP,VC,ST,SE),L),
9 perform_test(N,HP,VC,ST,SE).
10

11

12 execute fo(L) :- nl,nl,uwrite(fo_complete),nl.
13

14

15

148 LIST

@ /* expert system development cont */

1

2 perform_test(N, head_position(Pos), visual_condition(Eyes,),
3 stimulus(Input_Device), special_equipment(Device)) :-
4

5 set_up(Device),

6 restrain_head(Pos),

7 command subject(Eyes),

8 data_on,

9 start(Input_Device),

10 stop(Input_Device),

1 data_off,

12 command_subject(relax).

13

14

15

Figure 4
Prolog source code implementation of a portion of the MVI expert system rule base.

Procedure Base

The procedure base is a set of Forth colon and code definitions used to control all the MVI
experiment hardware and to execute real-time data acquisition, display, and transmission tasks.
Sample code demonstrating the mechanism used for building the procedure base is presented in
Figure 5. Block 141 is a Forth block, compiled using the Forth LOAD command. Block 145 is a
Prolog block (as are all blocks in Figures 3 and 4) and is compiled using the Forth word
CONSULTING (see Block 141, Line 11), which has an action similar to that of the Prolog predicate
consult [CLO81].

In Block 141, a small polyFORTH terminal task, SIMUL, is constructed in Line 1 [VANS3].
A simple function is assigned to that task: the Forth word SEE (Line 4) causes the contents of the
variable EVENTS to be displayed on the user’s terminal and increments the displayed value twice
per second; the Forth word DONE (Line 5) deactivates the background task. In Lines 7 and 8, two

470

The Journal of Forth Application and Research Volume 4 Number 4

new Forth words, $DATA_ON and $DATA_OFF, are defined. These words are formatted to become
Prolog built-in predicates; they include the R> DROP necessary for execution in the Prolog
environment [ODE87] and a $TRUE word following all other execution, which indicates to Prolog
that the word succeeds (is true). $DATA_ON starts the terminal task and $DATA_OFF stops the
terminal task. The Forth words $DATA_ON and $DATA_OFF are defined as Prolog objects
data__on and data__off in Block 145 (Lines 4 and 5). These objects can be used as Prolog goals,
as can any other Prolog predicate; however, the process of testing one of these goals results in
execution of its Forth procedure. Forth CODE definitions can be made Prolog objects using the same
technique.

141

.
SV ~NOWVMPENNN 2SS

P T QS N SN
v~ N

-_—

VOO ~NOWVM PN - &
w

—- A a
MmN 2SS

LIST

(Simple multitasking example)

500 64 B TERMINAL SIMUL GILD SIMUL CONSTRUCT
VARIABLE EVENTS

: SEE SIMUL ACTIVATE BEGIN 1 EVENTS +! 580 MS AGAIN :
: DONE SIMUL ACTIVATE STOP ;

: $DATA_ON R> DROP .'" Start'" CR SEE $TRUE ;

: $DATA_OFF R> DROP ." STOP" CR DONE S$TRUE ;

145 148 CONSULTING (application rule base follows)

LIST

/* test screens for prolog -- needs SIMUL task */
member (X, [X, 1).

member(X,[_,Y1) :- member(X,Y).

data_on :- builtin($DATA_ON)
data_off :- builtin(3DATA_OFF)

Figure 5
Forth and Prolog source code used to create an example procedure base entry.

Use of a Forth-Based Prolog for Real-Time Expert Systems I: Application 471

Logic-Driven Real-Time Procedures

The main advantage of this real-time expert system is its ability to perform real-time data
acquisition and control tasks on a logic-driven basis. To perform Functional Objective #1 of the MVI
experiments, for example, the operator could type in fo(1) at the ECDI keyboard. This would cause
Prolog to locate the first fo(X) rule (Figure 4, Block 147, Line 2), instantiate the X to 1, and
attempt to prove the rule true by satisfying all the goals on its right-hand side. To satisfy the final
goal execute__fo(L), Prolog would locate the first execute__fo(L) rule (Block 147, Line 8) and
attempt to satisfy each of the goals on its right-hand side. The first of these goals, member(test(N,
HP, VC, ST, SE), L), identifies the parameters of the first test in the data base record associated
with Functional Objective #1 (Figure 3) using the member rules given in Block 145, Figure 5. The
second of these goals, perform__test(N, HP, VC, ST, SE), causes Prolog to perform that test using
the perform__test rule in Block 148. Prolog performs the test as a side effect of trying to prove the
perform__test goal true. Unification is used to pass parameters found in the data base record into
the procedure base.

The goals in the body of the perform__test clause sequentially perform a generic vestibular
experiment. For example, using the Prolog execution logic (cf. [CLO81]) and the data base record
presented in Figure 3, the variable Device would be instantiated to none in the perform__test rule.
The first goal in the body of that rule would then become set__up(none), indicating that no special
equipment is required to perform this particular test. The operator would be informed of this fact
when Prolog attempted to satisfy that goal (code not shown). As the Prolog execution continued, the
operator would next be instructed to restrain the subject’s head in the yaw position, then to be sure
that the subject’s eyes are in the dark, and finally to command the subject to keep his eyes open and
look straight ahead (code not shown).

Next, having completed the setup phase of the test, the expert system would begin performing
the test. To do this, Prolog would attempt to satisfy the goal data__on, which is a built-in Forth
definition (described previously). The Forth definition $DATA_ON would be executed as Prolog
attempted to determine whether the goal data__on is true (the last Forth word in the $DATA_ON
definition is $TRUE which indicates to Prolog that the goal has succeeded). Thus, in satisfying the
data__on goal, Prolog indirectly executes the Forth definition SEE. In the current example, SEE
activates the background task SIMUL (see Procedure Base). In the MVI expert system, however,
the data__on goal activates a Forth background task that acquires analog data from the subject,
graphically displays selected data channels on the computer screen, and transmits the acquired data
into the Spacelab downlink systems. Once the data acquisition, display, and transmission systems
had been activated, the expert system would initiate the experiment stimulus. This would occur as
Prolog attempted to satisfy the next goal in the body (start(Input_Device)) and indirectly
activated, in the MVI expert system, another Forth background task, which would control that
device according to parameters passed to the task from the data base. Once the stimulus provided
by the input device was complete, the start(Input__Device) goal would succeed. The expert system
would then turn off the device control background task as Prolog satisfied the stop(Input__Device)
goal and the data acquisition task as Prolog satisfied the data__off goal. Finally, the operator would
be notified that the test was complete and would be instructed to allow the subject to relax as Prolog
satisfied the command__subject(relax) goal.

At this point, the expert system would have completed performing the experiment. Prolog
would have satisfied perform__test, which, in turn, would satisfy execute__fo, which is the last
goal of fo(1). Prolog would therefore notify the operator that fo(1) was complete and would await
further instruction. The operator would then have the option of accepting this solution (thereby
concluding the experiment) or of asking Prolog to find a new solution, should one exist. The latter
option would cause Prolog to backtrack (see [CLO81]) to attempt to resatisfy the initial goal. The
Figure 4 rule base is set up so that backtracking would result in an attempted resatisfaction of the
execute__fo(L) goal. Prolog would successfully resatisfy this goal if it found another test (one not

472 The Journal of Forth Application and Research Volume 4 Number 4

previously found) on the list of tests associated with Functional Objective #1. If such a test were
found, it would be executed using the logic presented above (only the parameter values would
change). Thus, following each test in the functional objective, the operator would be given the option
of proceeding with the next test or aborting the study. By this mechanism, a single set of Prolog rules
(Figure 4) can be used to carry out every test under all functional objectives. If the operator chooses
to backtrack to the next test after all tests for a particular functional objective have been performed,
the execute__fo(L) goal would fail. This failure would cause the fo(1) goal to fail and Prolog to
await a new input goal from the operator.

Real-Time Operation

The MVI expert system provides real-time experiment control by activating and deactivating
polyFORTH background and terminal tasks [VANS83] on a logic-driven basis. A portion of the MVI
round robin multitasking loop is presented in Figure 6. Prolog (and the expert system) reside in the
OPERATOR task, which is the primary terminal task in the round robin loop; all keyboard entries
are handled through this task. When the MVI computer is turned on, the only active task is
OPERATOR. The expert system controls the graphics display terminal task and the device driver
background tasks as side effects of responding to operator queries (see the previous section). Only
those tasks that need to be active at any point in the experiment protocol are activated. Once a task
has completed its required action it is deactivated.

To maintain accurate, high rate (128 Hz) data sampling intervals, data acquisition is controlled
by an interrupt service routine (ISR) triggered by a Spacelab clock signal. The data transmission
background task is controlled by the ISR to assure synchronization between the MVI data stream
and the Spacelab downlink system. The expert system can control data acquisition and transmission
by masking and unmasking the Spacelab clock interrupt signal and by changing the ISR in use by
altering its vector address. Either of these techniques can be employed on a logic-driven basis. By
using this multitasking technique, various real-time processes can be executed concurrently with the
expert system. This reduces the required logical inference processing rate of the Prolog.

Discussion

Forth is one of several possible development languages for implementing real-time data
acquisition and control processes. We chose it because of its speed, small size, and ability to support
rapid prototyping. Prolog is one of several languages for symbolic computation. We chose to use
it for several reasons. One significant factor was our familiarity with it. We have several years
experience building significant expert systemn shells and applications (cf. [BAR85]); by implementing
Prolog we could reuse a good portion of this software. Another important factor was that Prolog has
a small standard kernel; thus, its implementation could be made small and could be accomplished
quickly. In our estimation, this compactness is in contrast to LISP; few have braved attempts at a
full implementation of the Common LISP standard. Another selection factor was that there is a large
community of Prolog users and programmers as well as a sizable body of literature describing Prolog
solutions to problems in symbolic computation. The availability of this Prolog literature will allow
us to avoid both the reinvention of the wheel and the problems inherent in translating programs. The
popular production rule language, OPSS5, shares some of these features. Indeed, Dress has developed
a real-time version of OPS35 using Forth [DRE86]. Unfortunately, the data-directed style of OPS5
was not a good fit with the goal-directed applications we had in mind. Other Forth-based expert
system development tools, such as Expert-2 [PAR84], FORPS [MAT87], and FORTES [REDS87],
offer smaller kernels and higher execution speeds than our Prolog interpreter but suffer from’ limited
usage, nonstandard syntax, and lack of tested problem-solution paradigms.

We feel that our integration of Prolog and Forth has been successful in addressing a number of
important design issues. As the controller for the series of vestibular investigations aboard the IML-1
Spacelab mission, our system must observe close tolerances on the timeline and remain well

473

Use of a Forth-Based Prolog for Real-Time Expert Systems I: Application

-dooy Supsein|nu UIqoI punol WAsAs 1odxa JAIN 943 Jo uonIod
9 23]

H3AIEd
NMO

ISENN. ¢
aan

d3AlEa
olanv

IHVM O

'Y
) o
\ d331s

\

AVdSId

$9IHAVYEO 4sl

(50704d)

£ &7 O

/NOILISINDDV}= =~

d33ns

d337s

a4
a

H01vYH3dO

474 The Journal of Forth Application and Research Volume 4 Number 4

integrated with the other systems of people and machines on the shuttle. It is therefore imperative
that the system provide clear and understandable information to the operator and attempt to reduce
operator fatigue and error when on-line. Our approach has been to provide the system with the
knowledge it needs to manage these tasks in a variety of situations while simultaneously providing
a flexible user interface that allows the operator to exert greater control if conditions warrant.
Prolog, being goal-directed and largely declarative, is well suited to this approach and has allowed
us to design and implement rapidly.

Another advantage of our Forth-based Prolog is that the data acquisition, control, display, and
transmission procedures are readily coded in Forth, permitting us to satisfy speed constraints. By
using a multitasking Forth, we were able to implement an architecture that allowed us to avoid
having to queue data or delay responding to changes until reasoning stops—in effect permitting
asynchronous reasoning where needed. Indeed, the most unique feature of the MVI expert system
knowledge base is its procedure base, which comprises all the Prolog objects formed from Forth
colon and code definitions using the builtin predicate. By constructing this procedure base, all real-
time routines could be developed using Forth and yet controlled by the inference mechanism
provided by Prolog. This not only separated software development requirements, but also separated
execution speed requirements. Consequently, our real-time expert system could be developed for
a small computer with a relatively slow version of Prolog.

The procedure base allows the expert system to manage the real-time computing tasks and
thereby reduces the complexity of the procedures that the operator needs to perform. Given the
suboptimal environment that Spacelab provides for complex scientific experiments and the high cost
of losing data from these experiments, this feature is extremely important. The data and rule bases
also contribute to reducing the complexity of the operator’s task by “knowing” the experimental
protocols, equipment setup requirements, and calibration procedures, and by being able to guide the
operator through these.

Every real-time computing task does not require an expert system; in fact, few do. As the
complexity of the user interface requirements or software logic increases, however, expert system
tools should be considered. We feel that our decision to build an expert system to control the MVI
experiments reduced the software development effort. Although many of the features provided by
the expert system could have been developed using traditional engineering languages such as Forth,
Assembler, or Fortran, the initial program development time would have been much longer, and the
software modification and maintenance tasks would have become very difficult. Prolog, by its
declarative nature, substantially reduced the distance between the programmer (and expert) and the
code. This feature allowed rapid prototyping and simplified software maintenance. Modifications
to Prolog source code can often be made by life scientists with no computer training!

Successful space-based computing applications often test the engineering skills of their
developers. In many cases, a careful consideration of a host of software/hardware performance
issues has led to the choice of Forth as the language for development and delivery ([HARS83],
[RAS86], [HARS6]). We have shown that the technology exists today to provide viable knowledge
system solutions to such applications as an adjunct to the underlying Forth. Furthermore, we believe
that our Forth-based Prolog can be used to provide Al solutions to many well-chosen real-time
problems.

Acknowledgement
The authors wish to thank Martin Tracy of FORTH, Inc., for his assistance in implementing

a polyFORTH version of Prolog, and Carol Verrett for preparing the manuscript. W. H. Paloski,
A.J. Krever, and A. K. West were supported by NASA Contract NAS9-17200.

Use of a Forth-Based Prolog for Real-Time Expert Systems I: Application 475

References

[BARSS]

[CLO81]

[DRES6]

[HARSS5]

[HARS6]

[JOHS3]

[LEIS87]
[MATS6]

[ODES87]

[PARB4]

[PARS6)
[RAS86]

[REDS6]

[TRE86]

[VANS3]

[WOLS87]

Bartoletti, D. C., Lewis, C. S., Paloski, W. H., Odette, L. L. and Yestin, N. S. 1985.
Design of a cardiovascular drug knowledge-base for use in critical care monitoring.
Proc. 11th Ann. NorthEast Bioengineering Conference. Silver Spring, MD: IEEE.

Clocksin, W. F., and Mellish, C. S. 1981. Programming in Prolog. Berlin:
Springer-Verlag.

Dress, W. B. 1986. REAL-OPS: A real-time engineering applications language for
writing expert systems. J. Forth Appl. and Res. 4(2):113-24.

Harris, H. M. 1985. Forth as the basis for an integrated operations environment for a
space shuttle scientific experiment. J. Forth Appl. and Res. 3(2):23-34.

Harris, H. M. The development of an expert system for the command and control of an
orbiting spacecraft. J. Forth Appl. and Res. 4(2):305.

Johnson, H. E., and Bonissone, P. B. 1983. Expert system for diesel electric locomotive
repair. J. Forth Appl. and Res. 1(1):7-16.

Leinweber, D. 1987. Expert systems in space. [EEE Expert 2(1):26-36.

Matheus, C. J. 1986. The internals of FORPS: A Forth-based production system. J.
Forth Appl. and Res. 4(1):7-28.

Odette, L. L., and Paloski, W. H. 1987. Use of a Forth-based Prolog for real-time
expert systems. II. A full Prolog interpreter embedded in Forth. J. Forth Appl. and Res.,
this issue.

Park, J. 1984. Forth expert system. Mountain View, CA: Mountain View Press.
Park, J. 1986. Expert systems in Forth. J. Forth Appl. and Res. 4(1):3-6.

Rash, J. 1986. Prototype expert system in OPS5 for data error detection. J. Forth Appl.
and Res. 4(2):297-300.

Redington, D. 1986. A Forth oriented real-time expert system: A FORTES
polysomnographer. J. Forth Appl. and Res. 4(1):47-56.

Trelease, R. B. 1986. Implementation of an experimental microcomputer-based medical
diagnosis system. J. Forth Appl. and Res. 4(1):57-66.

Van DeWalker, R., and Rather, E. D. 1983. polyFORTH II reference manual. 4th ed.
Hermosa Beach, CA: FORTH, Inc.

Wolfe, A. 1987. An easier way to build a real-time expert system. Electronics
60(5):71-3.

Manuscript received August 1986.

476 The Journal of Forth Application and Research Volume 4 Number 4

Bill Paloski has been building data acquisition and patient monitoring systems since 1977.
Before completing his doctorate in biomedical engineering at Rensselaer Polytechnic Institute in
1982, he spent one year at the Oak Ridge National Laboratory and four years at the S. R. Powers
Trauma Research Center in Albany, New York. After that he spent three years as an assistant
professor at Boston University and then moved to his current position with KRUG International at
the Johnson Space Center. In addition to real-time computing, his research interests are in
pulmonary physiology, critical care monitoring, and physiological adaptation to weightlessness.

Dr. Oderte is international technology marketing manager at Applied Expert Systems, Inc. While
at Applied Expert Systems, Dr. Odette has played a major role in designing and implementing the
Apex development environment. His work has concentrated on computer language and compiler
design. He has also worked on a wide range of technology marketing and delivery issues. Prior to
Joining Apex, Dr. Odette was a principal of Telphi Systems, Inc., a manufacturer of communications
equipment. He was responsible for the design and implementation of data base management systems.
Before founding Telphi, Dr. Odette did research at the Massachuseits Institute of Technology where
he received a Ph.D. in electrical engineering. He did early work in neural network modeling, where
he developed advanced circuit models of neurons. His thesis work focused on perception in the visual
system.

Al Krever majored in theater at Emerson College, Boston, Massachusetts, in the mid-1960s but
then became interested in special purpose programming. After spending time with DEC and
Honeywell in the late 1960s and throughout the 1970s, he joined FORTH, Inc., in 1980. Since then
he has been designing custom applications and developing an international reputation as a Forth
educator. His current interests are in applying Al to real-time monitoring and process control.

Allison West received a B.S. in biomedical engineering from the University of Iowa in 1981 and
an M.S. in electrical science from the University of Michigan in 1984. She currently works for KRUG
International, a NASA contractor, in Houston, Texas. Her interests include real-time control, data
acquisition systems, and expert systems.

