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Abstract

In this article we outline the design of a Prolog interpreter embedded in Forth. The interpreter
is the basis of the expert system component of an astronaut interface for a series of Spacelab
experiments. The expert system is described in Part I of this article [PAL87]. Here we describe our
approach to the representational issues in designing the programming machinery needed to interpret
Prolog programs: (1) the internal representation of Prolog objects and (2) the representation of the
state of a Prolog computation. We also describe the Forth-Prolog interface we use to support the
mixed language programming that is necessary to handle the real-time data acquisition and control
tasks involved in the application.

Our goal is to combine the advantages of Forth for real-time programming and the advantages
of Prolog for symbolic reasoning. To take advantage of the large body of Prolog code we have
developed for previous applications, we implemented the “core” Prolog system described in {CLO81]
that is compatible with the widely available implementations.

Introduction

The text that follows briefly describes the implementation of the Prolog interpreter used in our
application [PAL87]. The interpreter is fully Clocksin and Mellish compatible, using the standard
Edinburgh syntax and providing the majority of the built-in predicates described in [CL.O81] (some
file I/0 predicates are not implemented); however, it’s a “tiny” Prolog in that it can fit in the 64K
of the small model Forth. It is particularly suitable for Prolog applications that can leverage off the
underlying Forth system, such as the knowledge-based control system described in [PAL87]. The
full source code for the interpreter (about 100 screens) is available from the Forth Interest Group
as volume 5 of the Forth Model Library.

The intent here is to cover briefly the main issues involved in implementing a Prolog interpreter
in the context of one particular implementation in Forth. For this reason familiarity with Prolog is
assumed. The first section describes the Forth data structures used to represent Prolog terms. The
next three sections address memory allocation, how variables are bound and how Prolog procedures
are invoked. The fourth section describes the implementation of built-in predicates and the interface
between Prolog and Forth. The final section is a list of the built-in predicates that have been
implemented.
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Representation of Terms

Syntactically, there are two types of objects in Prolog—simple and complex objects. Constants
and variables have no syntactic structure and are examples of simple (unstructured) objects. On the
other hand, lists and predications have structure, and these are complex objects. Semantically,
constants and variables are quite different from each other, and they need to have different internal
representations. Moreover, for the sake of efficiency, internal representations of Prolog objects may
incorporate other type distinctions (e.g., names and numbers may have separate internal
representations even though they are both of “constant” type).

The Prolog interpreter needs to be able to identify the type of a Prolog object. Common schemes
for typing include using separate memory areas for different object types or incorporating a type
(tag) field into an object pointer. The former is probably not a good choice for a straightforward
Forth implementation where it is natural to have the names of objects and the objects themselves
intermingle in the dictionary. The latter was not compatible with the use of 16-bit pointers in this
implementation. Instead, the typing scheme used here has the interpreter get the type of an object
not from the value of the pointer or the pointer itself, but from the object pointed to. The following
text describes this scheme in detail.

Primitive Terms: Constants, Variables and Numbers

Constants and variables have name and link fields combined to form a header just like any Forth
word, and these are the only Prolog objects with name fields (referred to as named objects).
Immediately following the header are an additional 5 fields comprising 3 vectors and 2 data fields.
In order of increasing memory address the fields are:

Name Contents Use (object pointer/goal)
variable-code field 0 object = variable/(not used).
constant-code field The cfa of the Forth object = constant/

word RESOLVE.SINGLE. call function (no args).
function-code field The cfa of the Forth object = functor/

word RESOLVE. FUN. call function.
assertion field A pointer to the list of

assertions for this functor.
functor data field Functor data on precedence,

position, associativity.

For example, the representation of the constant term mary looks like:

MARY

AmMmOT3»mI

“VAR-CODE
"CON-CODE
“FUN-CODE

"ASSERT'NS
OP-DATA

The vector fields of a named object have a dual use: they are used to transfer control at run time
when a named object is to be executed as a goal or is the main functor of a goal, and they also are
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used by the unifier to identify the type of an object. Typing works as follows. If a pointer to a named
object points to the variable-code field, then the object is treated as a logical variable. If the pointer
points to the constant-code field, the object is treated as a constant. If the first element of a complex
term points to the function-code field of some named object, then the complex term is interpreted
as a function (predication or procedure) whose functor is the first element and whose arguments are
the remaining elements of the complex term.

Numbers are the one exception to the typing scheme. The fact that an object is a number is
determined either directly from the pointer to it or from the memory location the pointer references.
In the first case, if an object pointer points to an address less than 256, then the pointer is interpreted
as the object, that is, a number. This approach allows a more compact representation of small
numbers at the expense of run-time checking. In the second case, if the first memory word of the
object points to the next memory word, then the contents of the next word is interpreted as the
number.

Complex Terms

Complex terms are represented as chains of word (memory location) pairs. The first word of
a pair points to an object; the second word of a pair points to the rest of the chain (for LISPers: all
complex terms are lists—the word pairs constitute a CONS cell). A chain is terminated when the
second word of a pair points to an object that is not an object chain. For example, lists are terminated
with a pointer to the special object NIL, which is both a constant and the representation of the empty
list. The list of terms [likes,marry,bill] is represented internally as:

OP-DATA

[ "OBJECT = LIKES
MARY
b [0BJECT =V AR-CODE St
' ' ~V AR-CODE
» ["CON-CODE | F=
[ 0BUECT ASSERTNS| =eec=—m [FVAR-CODE
“CHAIN oP-DATA |l ——
- Nt

A more concise representation of the structure of complex terms is a tree diagram whose nodes
represent word pairs. Each right subtree of a node is a representation of the object pointed to by the
first word of the pair. Each left subtree of a node is a representation of the object pointed to by the
second word of the pair (i.e., the rest of the chain). In this notation, the tree representation of the
list [likes,mary,bill] is:

LIKES
MARY

BILL
NIL
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More general complex terms such as predicates (logical functions) are represented as chains in
which the first object pointer points to the function-code field of a named object. Thus, the predicate
likes(mary,bill) is represented internally as:

“OBJECT oo LIKES
“CHAIN
MARY
| “OBJECT - "V AR-CODE
“CHAIN CON-CODE | = R-ConE BILL
“FUN-CODE
» | "CON-CODE =
"[ "OBJECT }—1 “ASSERT'NS YV AR-CODE
~CHAIN OP-DATA |k =T LLCON-CODE
OP-DATA “FUN-CODE
-  RIL “ASSERT'NS
OP-DATA
The tree representation of the predicate likes(mary,bill) is:
LIKES ()
MARY
BILL

HIL

where the pair of parentheses denotes that the object pointer points to the function-code field of the
named object.

Clauses

First some terminology: for the clause A :- B,C,D., A is the head of the clause, :- is the neck,
and B,C,D is the body of the clause. Clauses are represented internally as lists of terms, either
simple or complex, where the first term in the list denotes the head of the clause. The remainder of
the list is the body of the clause. Thus, the clause likes(mary,bill) :- likes(bill,mary). may be
represented by the tree:

LIKES ()
MARY
BILL

KIL

LIKES ()
BILL

MARY
NIL NIL
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The main functor of a clause is the functor (function name) of the head of the clause. A list of all
clauses with the same main functor is an assertions list (e.g., a list of all the clauses whose functor
is likes). The assertions field of the main functor points to this list. Thus (using a mixed
representation), the list of clauses

[(ikes(bill,mary) ), (likes(mary,bill) :- likes(bill,mary) )]

is stored as:

LIKES
“Y AR-CODE
LIKES ()
[*ASSERT'NS| =——r MARY o HKES @)
BILL
NIL MARY
NIL
LIKES ()
BILL
MARY

NIL NIL

Memory Usage

This implementation intermingles the object-name and program spaces in the Forth dictionary
and provides for no garbage collection of either names or program. A heap might be used to handle
de-allocation of program space following the retraction of a clause, although this procedure would
need to be handled with care because the retracted clause may still have a reference —as an untried
alternative that may be required to resatisfy an earlier goal.

In addition to the name and program spaces and the space allocated to the usual Forth return
and data stacks, there are a stack that holds variable bindings (binding stack) and a separate stack
for control information (goal stack). These stacks are made as large as possible because this is where
the action is in a Prolog computation. In the version used in our application [PAL87] 32K bytes are
allocated for each stack.

The goal stack is used for saving goal frames during a computation (it corresponds to the return
stack in Forth). Each goal frame has 6 fields (2 bytes each) that will be described later. One of these
fields points into the binding stack and indicates the top of the binding stack relative to that goal
frame (i.e., the set of bindings in effect when that goal frame was entered). In this way variable
bindings can be redone, if backtracking is necessary, simply by resetting the binding stack pointer.
A new goal frame is allocated on successful resolution of a goal with the head of an assertion by
advancing the goal stack pointer, copying the contents of the last goal frame and updating the fields.

Variable Bindings

Variables are bound as a result of unification during the resolution step. Each use of a variable
name must be associated somehow with the call to the procedure that the variable appears in. We
use goal frame indices for this purpose. Prior to unification, a pointer to the goal is associated with
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the value of the current index (INDEX.C) and a pointer to the head of the first clause in the
assertions list is associated with the value of the next index (INDEX.N).

During unification, all substructures of the goal and all substructures of the clause head are
associated with the indices of their parent structures. Saving a variable binding consists of saving
both the pointers and indices of the variable and the object it is bound to. The binding stack is where
these variable bindings are stored, and each element of the stack is thus an 8-byte data structure
(“var var.index “obj obj.index).

Variables are de-referenced by the Forth word 8BINDING, which just searches the binding
stack for a given variable name-index pair and recurses if the variable is bound to yet another
variable.

Control

A Prolog computation needs to keep track of both the clause it is executing and any alternative
clauses (in case backtracking is necessary), of which subgoal to execute next on a successful exit
from the current subgoal, and of all variable bindings in effect when the clause was called. This
information constitutes the state of the computation. We represent the state of a computation by a
6-word structure (called a goal frame). Each such state corresponds to a goal in the computation.
The fields of the goal frame are:

Name Contents

INDEX.N next index

<ENV> environment pointer
ASSERTIONS assertions list pointer
GOALS goal list pointer
INDEX.C current index
REST.GOALS indirect goal list pointer

The indices INDEX.N and INDEX. C (next index and current index respectively) are used in
associating variables with the frame they were bound in, as described in the previous section on
variable bindings. The environment pointer <ENV> points into the binding stack and indicates the
binding environment on entry into the frame so the environment can be restored on backtracking.
The GOALS pointer points to the goals list, a subset of the subgoals of the parent goal frame of the
current goal frame. The GOALS list is used to determine the next goal if the current one is
successful. The REST.GOALS pointer points into the goal frame of the parent; specifically, it points
at the GOALS field of the parent frame. REST.GOALS is used to determine the next goal on
exhausting the GOALS list in the current frame. The ASSERTIONS pointer points to the assertions
list at the clause that was most recently resolved successfully with the first goal in the goals list. This
is used to keep track of the remaining alternatives.

Given a goal frame (call it the parent frame) whose GOALS pointer points to some list of goals,
the goals in the list are executed as follows. The first goal of the parent frame’s goal list is made the
current goal, and a pointer to it is stored in the variable GOAL (GOAL is a global variable, not part
of the goal frame). The assertions list for the current goal is obtained from the assertions field of
the main functor of the goal, and an attempt is made to resolve the current goal with the heads of
the clauses in the assertions list. If this attempt is successful for some assertion in the list, then a goal
frame is created (allocated on the backtrack stack), saving a pointer to the current binding
environment in <ENV> and a pointer to the GOALS field of the parent frame in the REST.GOALS
field. A pointer into the assertions list at the successfully resolved clause is saved in the
ASSERTIONS field. If the computation ever has to backtrack to this point, it can then pick up the
process of resolving the current goal with the assertions list at the point where it left off.
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Assuming the resolution step is successful, the GOALS field of the new goal frame is filled with
a pointer to the list of terms comprising the body of the clause just resolved (i.e., the body of the
clause becomes the current goals list). If the body of the clause is empty (there are no subgoals), then
the GOALS field of the current goal frame is filled with a pointer to the rest of the goals in the goals
list of the parent frame. In other words, if there are no subgoals to consider, then the current goal
(the first goal in the goal list of the parent frame) has been satisfied so the next step is to try and
satisfy the remaining goals in the goal list of the parent frame.

If the attempt to resolve the current goal with the head of a clause in the assertions list fails for
all clauses in the list, then the computation backtracks to the most recent goal frame that has
remaining alternative ways to satisfy its goal. The computation proceeds until all the goals in the
initial list have been satisfied (success) or until all the ways to satisfy the first goal in the initial list
have been exhausted (failure).

The resolution and backtracking steps described are incorporated in the Forth words
RESOLVE.FUN and RESOLVE.SINGLE. These words are the Prolog interpreter.
RESOLVE.SINGLE is a special version of RESOLVE.FUN used to handle goals that have no
arguments. The code addresses of these words are stored in the function-code and constant-code
fields respectively of each named object (constants or variables). A Prolog procedure is called by
placing a pointer to the appropriate field of a Prolog constant on the refurn stack and then exiting.
The Forth inner interpreter then takes this return address as a pointer into the parameter field of some
Forth word and so proceeds to execute either RESOLVE.FUN or RESOLVE.SINGLE, with the
return stack containing a pointer that can be used to retrieve the assertions list.

Forth Interface

Built-in predicates are implemented in Forth, and use the predicate builtin as the interface
between Prolog and Forth. builtin takes the name of a Forth word as its single argument and is
distinguished from other predicates in that the function-code field of builtin does not contain the cfa
of the word RESOLVE. FUN. Instead, control transfers directly to the Forth word that is the
argument of the builtin call. This predicate is available for the user to access any of the underlying
Forth system.

The only discipline required for user-defined built-ins is that the Forth word called drops the
top of the return stack on entry and then exits by calling either $TRUE or $FALSE, which indicate,
respectively, success or failure of the Prolog goal. Several Forth words are provided for parameter
passing between Forth and Prolog. These words either retrieve the bindings of variables in the clause
head or unify terms with variables in the head.

Invoking Prolog from Forth

Starting Up

Prolog is invoked by the Forth word PROLOG. The backtrack and binding stacks are initialized,
and the Prolog interpreter is given the goal prolog, which implements a top-level read-execute-print
loop:

prolog :- ‘repeat ?-’,read(X),execute(X).

execute(X) :-
(call(X),‘print answer’,tab(1),get0(Y),Y \ =59,
nl,display(yes) ;
nl,display(no) ),
!, fail,
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The procedure ‘repeat ?-’ is just a Prolog repeat which prints the ?- prompt. The procedure execute
takes the input goal and calls it. If the goal fails, no is output, execute fails and the prompt is
repeated. If the goal succeeds, ‘print answer’ prints the variable bindings and then waits for a single
character input. If the character is ; , we backtrack to call and try to satisfy the goal in another way.
Otherwise yes is output, execute fails and the prompt is repeated.

A read-assert loop is entered by calling user:

user :- repeat,read(X),(X =stop;assertz(X),fail).

For example, the input text block that follows adds three clauses to the data base between user and
stop. Following stop the user is back in the read-execute-print loop.

?- user.

likes(bob,mary).
likes(mary,X) :- is__funny(X).
is__funny(bob).

stop.
9.

In contrast to most Prolog implementations, variables retain their names in the internal
representation of clauses. The negative aspect of this feature is that variable names take up space
in the dictionary. One interesting experiment would be to implement predicates that create and switch
Forth vocabularies. This would permit different Prolog data bases to exist in different vocabularies.
Because of Forth we can get “hierarchical multiple worlds” for free.

Size, Speed and All That

The entire interpreter, including the parser but exclusive of the stacks, takes up on the order of
10K bytes. Running entirely in Forth (MicroMotion MasterForth on the Apple Macintosh), the
interpreter will do about 22 LIPS (Logical Inferences Per Second, which effectively measure the
procedure call rate) as timed with naive reverse. By recoding just the word @BINDING in assembler,
there is a threefold increase in speed, and more efficiency can be gained by recoding other words
in the inner loop of the Prolog interpreter. There is, thus, every indication that, with tuning, this
implementation could be made competitive in speed with other Macintosh implementations of Prolog
(see [PIE87] for a comparison of four Macintosh Prolog products). The version used in our
application [PAL87] is written in polyFORTH running on a PC. No performance measurements
have been made on the PC version.

One of the inefficiencies in the space usage of this implementation comes from not reclaiming
goal frames. This means that the backtrack stack contains a goal frame for every inference that has
been made, thereby saving more than is absolutely necessary for backtracking. A goal frame could
be reclaimed on return (i.e., when GOALS list has only one element) if its ASSERTIONS list has
only one element (no more alternatives).

Other Implementations

Several other implementations of Prolog in Forth have been mentioned in the literature. Harris
has described a Prolog interpreter that has been used in space-related work [HARS6]; however, few
details of this implementation have been published. The most extensive treatment is by Townsend
and Feucht [TOW86] who present a very good discussion of the Prolog interpreter mechanism.
Their implementation of binding environments is similar to that described here, and both are derived
from the simple schemes used in the primitive LISP implementations of Prolog [NIL84].

It should be noted that the Prolog syntax used in [TOWS86] is nonstandard, and no mention is
made of the implementation of the standard Prolog built-in predicates; however, note that writing
the Prolog parser is a major effort, as is writing a complete set of built-ins. In our implementation
there are an equal number of screens (approximately 30) devoted to the interpreter, the parser and
the built-in predicates.
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Summary of Evaluable Predicates

The following is a list of the built-in predicates provided in this implementation, each with a
brief description of its semantics. The majority of the Clocksin and Mellish predicates are included.
Greater detail can be found in [CLO81].

arg(N,T,A)
asserta(C)
assertz(C)
atom(T)
atomic(T)
call(P)
builtin(W)
clause(P,Q)
consult(NO,N1)
display(T)
fail
functor(T,F,N)
get(C)
get0(C)
halt
integer(T)
YisX
listing(P)
name(A,L)
nl
nonvar(T)
not(P)
op(P,T,A)
put(C)
read(T)
repeat
retract(C)
skip(C)
tab(N)
trace

true
untrace
var(T)
write(T)

1

X<Y

X =<Y
X>Y
X>=Y
X=Y
X\=Y
T=.L

X ==

X \==

The Nth argument of term T is A.

Assert C as first clause,

Assert C as last clause.

Term T is an atom.

Term T is an atom on an integer.

Execute the Prolog procedure call P.

Execute the Forth word W.

There is a clause with head P and body Q.
Extend program with clauses from screen NO thru N1.
Display term T on terminal.

Backtrack immediately.

The top functor of term T has name F, arity N.
The next non-blank character input is C.

The next character input is C.

Halt Prolog, exit to Forth.

Term T is an integer.

Y is the value of the arithmetic expression X.
List the procedure(s) P.

The name of the atom A is string L.

Output a new line.

The term T is a non-variable.

Goal P is not provable.

Make atom A an operator of type T, precedence P.
The next character output is C.

Read term T.

Succeed repeatedly.

Erase the first clause of form C.

Skip input characters until after character C.
Output N spaces.

Start tracing.

Succeed.

End tracing.

Term T is a variable.

Write the term T.

Cut any choices taken in the current procedure.
As numbers, X is less than Y.

As numbers, X is less than or equal to Y.

As numbers, X is greater than Y.

As numbers, X is greater than or equal to Y.
Terms X and Y are unified.

Terms X and Y are not unified.

The functor and args of term T comprise the list L.
The terms X and Y are strictly identical.

The terms X and Y are not strictly identical.
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The following is a list of the Clocksin and Mellish predicates that have not been implemented,
each with a brief description of its semantics.

debugging List all current spy points.

nodebug Remove all current spy points.
nospy P Remove spy point from predicate P.
see(X) Open file X for input.

seeing(X) File X is open for input.

seen Close file X for input.

spy P Set a spy point on predicate P.
tell(X) Open file X for output.

telling(X) File X is open for output.

told Close file X for output.
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