Compiling and Analyzing Forth in Prolog

R. D. Dixon
David Hemmendinger

Department of Computer Science
Wright State University
Dayton, Ohio 45435

Abstract

A parser, a code generator, a semantic evaluator and an interpreter for Forth are written in
Prolog. This is an investigative tool only and the semantic model includes a stack, input and output
streams and segmented memory. The structure follows the usual Forth models but the somewhat more
concise description emphasizes the exact manner in which Forth words control their environment.
Compilers of this type together with Prolog compilers that generate Forth code make an interesting
package that might be used to port both languages to a new machine, particularly a Forth machine.
The abstraction of the Forth process in this manner may also make the environment more
understandable to people inside and outside the Forth user community and thus allow both the wider
acceptance of Forth and the generalization of Forth techniques to new languages.

Introduction

This paper contains the description of an abstraction of the Forth environment that is
independent of Forth or any specific machine. Prolog has been chosen as the description language
because it is concise, well understood, machine independent and executable.

The sections of the paper are independent and so may be read individually or in any order. The
actual model is described in the last section. In the second section we discuss why a formal
specification for Forth is useful and what the nature of a specification should be. In the third section
we discuss why Prolog was chosen in this case. The fourth section contains the relationship of this
paper to Forth standards.

Language Specifications

Syntax diagrams for Forth were presented at the 1982 Rochester Forth Conference by K.
Moerman [MOES82]. Syntax diagrams and BNF grammars are useful because they give a short
specification of the syntax that is allowable in the language. Many compilers are derived directly
from the BNF grammar.

Any context-free syntactical specification of a programming language will accept or generate
some strings or programs that have no reasonable interpretation by either a programmer or a
compiler. Normally, the semantics of the language limits what is a valid program just as syntax does.
Forth, because it uses a parameter stack to pass arguments, has a very loose syntax. Arguments may
be generated a very long way, syntactically, from their use. Thus, the standard Forth compiler has
no way at compile time to know if the proper arguments for a function will be available when it is
called. Even under the assumption that “integer” is the only data type, Forth compilers still cannot
determine the number of input and output arguments necessary for the proper operation of a colon
definition.

Journal of Forth Application and Research Volume 4, Number 4
535

536 The Journal of Forth Application and Research Volume 4 Number 4

A second deficiency of a BNF specification for Forth is that compiler implementations derived
from BNF grammars usually contain the specification of the language syntax in their structure or
in a processed table. A Forth compiler has most of its syntactic information distributed in the
dictionary. It is this distributed nature of the compiler that permits the extensibility of the Forth
language.

If the computer science community and management in general are to commit resources to
projects involving Forth, then they must be convinced that there is a sound conceptual basis for the
Forth environment. Although extensibility is generally viewed as a desirable characteristic,
languages such as ALGOL 68 that have included it have not been commercially successful. Syntactic
and semantic extensibility give the programmer the power to create new language features with
unknown capabilities and perhaps bugs. One of the aims of the management of large computing
projects is to restrict usage to certain well-known and understood constructs. Syntactic restrictions
are used effectively but semantic restrictions are not practical. Every time a new layer of subroutines
is introduced in a system, users of the higher layers are dealing with new semantic constructs whose
meaning must be learned and whose reliability must be tested.

One of the things that makes Forth popular with its users is its syntactic extensibility; so it is
desirable to specifically address reliability concerns in a manner other than restricting the use of
extensibility. There are several ways in which that can be done:

. Make the compilation and extension process better understood.

- Have the user declare both the syntactic and semantic meaning of extensions.

. Do a machine check of these declarations to verify consistency.

. Eventually specify Forth in a way that is machine independent and precise and that can
be tested as a specification.

LR

Categorial grammars [ADJ35] are a much older method of syntax specification than the phrase
structure grammars [CHOS56] from which BNFs are derived. In categorial grammars each word has
one or more categories to which it belongs. A category may be primitive (indivisible) or complex.
Complex categories relate the word to the categories of adjacent words. Just as with phrase structure
grammars, different category schemes yield different classes of languages. A simple category
scheme leads to the class of context-free languages, the class into which most programming
languages fall [BARG0].

A categorial grammar has a set of primitive categories, including a distinguished category, s,
for accepted strings. The complex categories are of the form C1/C2, where C1 and C2 are
categories. Categories combine according to a cancellation rule that is intended to suggest the
cancellation of fractions:

C1/C2 combines with C2 to yield C1 (C1/C2C2 - C1).

(Categorial grammars may also have other cancellation rules but we do not need them here.) As a
simple example, the following category assignment permits the parsing of a fragment of Forth:

Forth Word Category
: (s/sc)/sym
; sc
dup sc/sc
+ sc/sc

(any token) sym

Compiling and Analyzing Forth in Prolog 537

The following steps yield the parse of the colon definition:

: dog dup + ;
step l *
0 (s/sc)/sym sym
1 s/sc sc/sc sc/sc sC
2 s/sc sc/sc sc
3 s/sc sc
4 s

In an earlier paper [DIX86], the authors made a preliminary study of the application of
categorial grammars to Forth. BNF grammars may be applied in different ways to obtain different
styles of parsers and the same is true of categorial grammars. Both techniques lead to parsing
automata. In the case of Forth, the compilers are usually written directly in terms of stack automata.
We have chosen to use that model directly with categories, rather than numbers, on the stack. One
should keep in mind that, using the techniques of [BAR60], there is a constructive procedure for the
factorization of any context-free grammar onto the words of the language. This factorization can be
used to form a word expert parser [RIE79]. In this system each word knows the syntactic roles it
can play. Forth syntax alone is quite simple; however, the semantic interactions of words are quite
complex. The nature of word expert parsers allows us to model the semantics as we parse. The
semantic model provides a second stack that can be used in the definition of acceptable sentences.
An automaton with two stacks can determine languages that are not context free [HOP69]. Semantic
restrictions on a Forth-like language with typed data, reverse Polish operators and nested if-else-
then structures produce a language which is not context free. The reason is that the image of the run-
time stack and the nesting of the structures cannot be handled with a single stack.

Given this inherent complexity, even without extensibility, it is clearly a difficult job to describe
Forth precisely. On the other hand, this complexity makes it all the more important that the
description be done.

Prolog as the Specification Language

The pleasure of embedding other languages in Forth has a complementary delight: embedding
Forth in other languages. Threaded languages have been embedded in other languages since their
inception. The fig-FORTHs were embedded in assemblers or at least cross-compiled with
assemblers. The ease of generating or transporting Forth with an assembler or with a cross-compiler
written in Forth or another high-level language has been partly responsible for its wide use. This
process is simple enough to be understood by users as well as by systems programmers.

C has been implemented on many machines under Unix and other similar operating systems
which yield a uniform I/O structure. This has made popular the use of Forths written in C. The
question of the efficiency of such techniques can be raised. Because most Forth programs are written
at least one layer of subroutine above the kernel, the difference in the execution speeds of these
implementations and the ordinary assembled implementation is not as great as one might expect,
particularly if one optimizes the implementation of a few important operations.

This research has not been concerned with questions of efficiency or even with obtaining a
complete implementation. The research had its roots in the 1985 Rochester Forth Conference.
Discussions in the working groups suggested that some Forth products and, in particular, Forth
machines might suffer because the Forth market, enthusiastic though it might be, is not large enough
to support large capital investments. The goal here is to produce a workbench where present and
future langnage features can be studied.

538 The Journal of Forth Application and Research Volume 4 Number 4

Prolog is a language that allows the user to state facts. In describing a language, it is convenient
to be free of the yoke of specifying detailed flow. Prolog has a sophisticated pattern-matching facility
that handles much of what constitutes a language description. Prolog also has list structures that,
together with the first two features, allow the specification of the actions of the words in the
dictionary in picture-book form.

The semantics of the Forth language subset given here are operational in the sense that they are
described in terms of an implicit abstract stack machine, the actions of which are derived from the
semantics of Prolog. As a result, this Prolog description of a subset of Forth, while nonprocedural,
is also executable and so allows the confirmation of the designer’s understanding of the specification.
Finally, Prolog is concise: the total description with a small sample dictionary is only a few pages.
This allows the designer to play and experiment without great effort or expense.

Forth Standards

At the 1986 Rochester Forth Conference, Hans Nieuwenhuyzen raised questions about the
process by which Forth standards are determined and suggested that a machine-independent and
highly transportable core should be developed and that other words should be gathered into groups
that would be available for different users. Solntseff has taken steps toward the definition of a Forth
abstract machine in [SOL82,83,84]. The authors have not been a part of the Forth standards efforts
but those suggestions have guided this work, which we hope will support that movement. It is clear
that standards that do not gain the acceptance of the Forth community cannot be of much help in
gaining wider application of Forth tools.

Details of the Forth Model

The model presented here has several functions. First, an interpreter is modeled that provides
for direct user interaction. A facility for compiling new definitions that are entered by the user is
modeled. These compiled words are analyzed by the system and the analysis is displayed. The
compiled words may also be executed. The model is based on several explicit structures:

1. The standard input stream IStr (Forth word tokens).

2. The argument stack S (typed values such as integers, addresses, categories).
3. Code strings C (references to Forth instructions).

4. A segmented memory model.

5. The standard output stream.

6. A flat dictionary for words.

The return stack is implicit and not available for manipulation. Values in the stack and memory
all have type designations. The input/output streams and the code strings contain symbols. Forth
words manipulate these structures in four states:

1. Interpret state.
2. Compile state.
3. Docol state.

4. Analyze state.

Dictionary Entries

The action of each word is defined by its dictionary entry. The dictionary entry consists of a
run predicate which specifies the word’s behavior in interpret, docol and analyze states. The comp
predicate specifies the word’s action in compile state. The state is determined by which of four
predicate loops is controlling the processing: interpret, compile, docol or analyze. These predicates
are defined in tail recursive fashion, which is the Prolog representation of a loop.

The run and compile predicates in the dictionary each have the following arguments:

Compiling and Analyzing Forth in Prolog 539

1. The word name (e.g., ‘+’).

2. The input stream action (e.g., Istr=>Istr).

3. The argument stack action (e.g., [n(A),n(B) | S]=>[n(D) |SD.
4. The code string action (e.g., C=>C).

Side effects and some semantic actions are represented to the right of the :- (e.g.,
n(A) +n@B)=>n()). Thus, the run statement for + in the dictionary is:

run(-+, Istr=>Istr,[n(A),n(B) | S]=>[n(D) | S],C=>C) :- n(A)+n(B)=>n(D) .

The meaning of this statement is that + does not manipulate the input stream or the code string. It
does have an effect on the argument stack which is to replace the top two numeric elements of the
stack by a single element (n indicates numeric type). The symbol => is used to denote the before
and after states of structures in arguments. As a predicate, as in n{A) +n(B)=>n(D), it is read as
“reduces to.” This predicate is defined to implement the combinational semantics of Forth in terms
of Prolog. The comp dictionary entry for + has similar structure but an additional argument for the
name of the definition being compiled:

comp(‘+’,Istr=>Istr,S=>S,[*+’ | C]=>C,Name).

In compile state + does not affect the input string or the argument stack but does issue the code for
+. C is the unbound tail of the code string. The analog of this in an ordinary compiler is a pointer
to the end of the issued code.

The structure of the dictionary implemented here is very limited. It is flat in the sense that no
redefinition is permitted. Redefinition is an error that is not checked and violation can lead to
surprising results. We did not work on this aspect of Forth because we feel that current
implementations are not satisfactory and that this is a topic which requires a major effort by itself.
Further, we only included a sample of Forth words so we could examine various facets of Forth
without making the program unwieldy.

State Loops
The state loops have similar form to the interpret loop:

interpret([H | T],S=>82) :-
run(H,T=>T1,S=>81, _),!,
interpret(T1,S1=>82).

The arguments for interpret are the input stream action and the argument-stack action.

Each state loop predicate has some additional clauses for special cases but most of the actions,
even the means to change state, reside with the dictionary words. The run clause for : contains the
interpret-to-compile state change:

run(?’,[Name | Istr]=>R,8=>§,C=>C) :-
compile(Istr=>R,[sc | S]=>S,Name).

Thus, if the interpret loop is running and run is called with first argument *’, then the compile loop
will be entered. Actually, the compile loop runs as a subloop of interpret and control will not be
returned until the entire definition is compiled.

Some other interesting concepts are introduced in this clause. The Name of the subroutine is
removed from the input stream and remembered. The compilation symbol sc is placed on the
argument stack. This stack will be used to check for the proper nesting of structures. The sc means
we are looking for a ; to close the definition. The ; removes the sc from the stack and compile
terminates when the stack returns to its original condition.

The interpretation of a word defined by a colon changes the state to “docol.” The difference
between interpret and docol mode is that interpret takes words to execute from the input stream

540 The Journal of Forth Application and Research Volume 4 Number 4

whereas docol takes them from a code string. Each entry to docol simulates the stacking of a return
address and the exit from docol unstacks it.

Immediate words are implemented and they temporarily change the state from compile to docol
when they are encountered in a definition. This gives the user access to the compile-time stack but
it does not have quite the same effect as immediate words in Forth where the immediate word has
more power. One of the limitations of this model is that immediate words do not have access to the
code string.

Memory Models

This paper strictly distinguishes between program and data memory areas. Programs or
executable code are kept in named code strings. One can deal with references to this code
symbolically or by using the type “cfa.” xxx is the symbol that will appear in a compiled reference
to the executable word xxx. If a literal reference to xxx is to be placed in the stack, then that
reference is cfa(xxx). No modification of these references is allowed. They are created by ' and
executed by execute.

Data segments are created by the variable and create words and attached to dictionary
entries. The current model does not require allocation of segment space but allows the user to define
the space by writing in it. Elements in this space are addressed using type “pfa.” Thus, the first
element of segment yyy has value V where pfa(yyy,0,V) is an entry in the Prolog data base and
YYY is a data word in the Forth dictionary. Each element in a segment contains one typed data entry.
The entry pfa(yyy,1,n(8)) in the data base means the second entry in the yyy segment is the integer
eight. The word index is used to modify an address. The mention of a data segment name
generates a “pfa” type reference to the first element of the segment on the stack. The line 5 yyy
index leaves pfa(yyy,5,__) on the stack. Following this line by an @ gets the value of the sixth
element of the yyy segment and puts it on the stack.

Words with both code strings and data segments can be generated, as in Forth, by using the
create...does> construct to make defining words which then can be used to create such words.
A word here is defined which is set to the first element of any newly defined segment. This allows
for the definition of , and, in general, helps with the initialization of data structures. The method
of defining typed storage evades such things as byte addressing and word size. Those issues must
be faced, of course, but we have chosen not to do it here.

Flow Control

One of the difficulties of producing machine-independent descriptions of run-time environments
is the problem of local or relative branches. They simply know too much about the memory
mapping. There is good reason to believe that as new computer architectures evolve, fast alternatives
to this type of branch will become available. The solution we have chosen is to allow only branches
to named routines. Thus, the definition

: xxx 0= if swap dup else + then * :

L}
is compiled as three routines as indicated by the following “code” predicate that expresses the name
and a list of the code:

code(xxx0,[swap,dup,;S]).
code(xxx1,[+,;S]).
code(xxx,[0=,if__r,xxx0,xxx1,%*,;S]).

The run-time behavior of the if__r word is given by the following two clauses:

run(f__r,IStr=>IStr,[b(true) | S]=>S,[Th,El | C]1=>[Th | C]).
run(if__r,IStr=>IStr,[b(false) | S]=>S,[Th,El | C]=>[El | C)).

Compiling and Analyzing Forth in Prolog 541

The expression [b(true) | S]=>S means that the first rule applies provided there is a Boolean value
of “true” on the top of the argument stack. In that case it will be removed and the true alternative
(e.g., xxx0) will be executed with the return adjusted to skip the execution of the false alternative
(e.g., xxx1). The second rule applies if a “false” is on the stack.

Such flow control structures have a purely local context and thus simplify the design of a
machine to execute them. The burden of the nonlocal action is all placed on the jump-to-subroutine
instruction. As programming environments become more sophisticated, more of the executed code
consists of subroutine calls and consequently there is a focus on the optimization of that instruction.
In addition, cross-compiled code is easier to use in this format.

The loop structure implemented is the begin-while-do construct:

: yyy @ begin aaa index @ dup B= while drop 1 + repeat . ;
This word compiles as:

code(yyy0,[aaa,index,d,dup,0=;S]).
code(yyyl,[drop,n(1), +,yyy0,;SD.
code(yyy,[n(0),yyy0,repeat__r,yyyl,.,;SD.

The interesting structure is repeat__r,yyyl whose execution is determined by the rules:

run(repeat__r,IStr=>IStr,[b(false) | S]=>S,[Body | C]=>C).
run(repeat__r,IStr=>IStr,[b(true) | S]=>§,
[Body | C]=>[Body,repeat__r,Body | C]) :-
not analyzing.

The first rule skips over the loop body and the included test if there is a “false” on the stack. The
second states that if a “true” is on the stack, then the body is executed that includes the test. Next
control is returned to the repeat__r instruction so that the result of the test can be evaluated. Again
we have avoided any reference to addresses other than named routines. The not analyzing part of
the second clause is there to prevent the analyze routine from looping, possibly forever, if there is
insufficient data to force termination during the analysis.

Vectored execution to named routines is possible by placing a cfa on the stack and using
execute.

Defining Words

The create-does> structure is modeled closely on the Forth construct. The part following
the does> is compiled as a separate word so that an easy reference can be constructed in any
instance of the defining word. Consider the definition:

: array create @ , @ does> index ;
This compiles as:

code(arrayl,[index,;S]).
code(array,[create__r(array1),n(0),’,’,n(0),’,",;S]).

The statement array zzz creates the code
code(zzz,[dovar(zzz),arrayl,;S]).

This code will be executed each time zzz is executed. In addition, the execution of array on the
name 222 initializes the first two values of the pfa of zzz to 0. This was done through ,. After a
variable qqq is created, we find that pfa(here,0,pfa(qqq,0,_)) is in the Prolog data base. The
system defines a variable here that will have access to this data and then defines , in terms of that
variable.

542 The Journal of Forth Application and Research Volume 4 Number 4

The dictionary statements needed to implement defining words are:

comp(create,IStr=>1IStr,[sc | S]=>[c(Dname),sc | S1,
[create__r(Dname) | C]=>C,N) :- gensym(N,Dname).
comp(‘does>’,IStr=>[‘;’ | Rem],[c(Dname) | S]=>S,C=>C,N) :-
compile(IStr=>Rem,[sc | S]=>8,[1=>__,Dname).
run(create__r(Does),[Sym | IStr]=>IStr,S=>8,C=>C) :-
effect((store(pfa(here,0,pfa(Sym,0,__))),
add__def(Sym,[*;S’,Does,dovar(Sym)],comp))).
run(dovar(Sym),IStr=>IStr,S=>[pfa(Sym,0,_) |S],C=>C).

In these clauses gensym generates a new symbol as a name for the the does> part of a definition.
The predicate effect is used to encapsulate those parts of run statements that have side effects. These
side effects are disabled during analysis of definitions.

Semantic Analysis

Semantic analysis takes place during the compilation of definitions. A word-by-word analysis
takes place as the compilation proceeds. A simulated stack is kept by the compile loop and if the
stack contents can be matched to the input requirements of a word’s compilation statement, then
compilation can proceed. A more global analysis is done at the end of the definition and this analysis
is used to display all the alternative meanings of a word. The Prolog predicates necessary to do that
are:

actions(Name,S,S1,Code) :-
assert(analyzing),assert(trying),
nl,write(Name),write(*:’),
analyze(Code,S=>81,85).

actions(__,__,__,_) :- retract(analyzing),nl.

analyze([*;8’],Stk=>Stk,S) :- nl,show(S=>Stk),retract(trying),fail.
analyze([H | T1,Stk=>Stk2,8) :-
run(H,__,Stk=>Stk1,T=>T1),
analyze(T1,Stk1=>Stk2,S).
analyze((H | T1,Stk=>__,) :-
retract(trying),
nl,write(‘semantic error trying ’),
write(H),nl,show(Stk),nl,fail.

act((1, - L.

act([H | T],AS=>AS1) :-
assert(analyzing),
docol([H | T],AS=>AS1,IStr=>IStr1),
retract(analyzing).

actions works at the end of a definition and calls analyze, which is a simulated form of decol. Note
that the analyzing flag is used to shut off any side effects that the code being analyzed might have.
Planned failure and Prolog backup are used to generate alternatives for if statements. Repeat
statements are bypassed. act is the analysis done word-by-word so that overloaded operators can be
selected at compile time. For called routines, the first acceptable alternative meaning is used. This
was done to avoid the explosion of meanings for very high-level words.

Compiling and Analyzing Forth in Prolog 543

Semantic Context Specifications

The first word in the definition of a colon word or any structure that results in a named definition
such as an “if” alternative may be a comment containing a description of the stack inputs and outputs
of that structure:

ttttnn--b) +0=;

Such a comment has no effect at run time but it can affect the compilation and analysis and thus the
results if the definition contains overloaded operators. A small subcompiler was written that parses
these comments:

extract(R=>R,S$=>§,C=>C,D=>D) :- l.

extract((H | T]=>R,S$=>82,C=>C2,D=>D2) :-
lcomp(H,S=>S1,C=>C1,D=>D1),!,
extract(T=>R,81=>82,C1=>C2,D1=>D2).

lcomp(‘—’,[dd | S]=>[rp | S1,C=>C,D=>D).

lcomp(%)’,[rp | S]=>S,C=>C,D=>D).

lcomp(H,[dd | S]=>[dd | S],C=>[X | C],D=>D) :- type(H,X).
lcomp(H, [rp | S}=>[rp | S],C=>C,D=>[X | D) :- type(H,X).
lcomp(__,__,__,__) :-nl,write(error in context spec!),fail.
type(n,n(_)).

type(b,b(_)).

type(pfa,pfa(__,__,).

type(cfa,cfa(_)).

The arguments of extract are the input string action, the stack action, the input stack specification
and the output stack specification.

Overloading of Operators

Many languages allow operators to be used for different things depending on the context.
Smalltalk is one such language where this provision is a fundamental part of the language model.
When the meaning must be identified at run time, then efficiency can suffer. In this model we allow
compile-time overloading by explicit declaration. The statement overload index onto + means that
if + is applied in a context where the arguments cannot be integers, then instead of reporting an
error, the compiler will try to substitute index. index takes as arguments an integer and a pfa so
that

variable uuu
: ppp uuu + ;

would cause the code statement
code(ppp,[uuu,index,;S]).
to be entered in the data base. The definitions

T mmm +
:nnn (npfa--pfa) +;

would result in the following code:

code(mmm,[+,;S}).
code(nnn,[index,;S]).

Only the input part of the context specification is actually used in this process.

544 The Journal of Forth Application and Research Volume 4 Number 4

Overloading of operators is only recognized at compile time. When using the interpreter, the
actual operator must be named. The reason this was done was that the present system, with a few
exceptions, makes no real use of types at run time. Thus, the actual implementation could be built
with routines that treated everything as integers.

The Reduction of Arithmetic Operators

The left-hand side of the “run” entries for arithmetic operators in the dictionary instantiate a
variable to the result. The right-hand side of the clause is a => predicate that is the reduction
operator, for example, A+B=>D. There are entries in the data base to define the behavior of this
predicate:

X+Y=>Z :- integer(X),integer(Y),!,Z is X+Y.
Z+X=>X:-Z == 0,..

X+Z=>X:-Z == 0,1,

X+Y=>X+Y.

At run time the first suffices. During analysis the other clauses give the analyzer the ability to make
conclusions when all of the arguments are not instantiated.

A Session with the Interpreter

The session begins by loading a Prolog interpreter and consulting the Forth file. The command
startforth causes the interpreter to run. First, the system is programmed to define here and , as
user words since they are not in the predefined dictonary. Note that the analysis of , is printed.
What is printed out is the before and after images of the stack in as much detail as the analyzer
knows. They are printed in the Prolog list form, with the top of the stack to the left. Input and output
lines are in different typefaces in the example which follows.

:-startforth.

[A|B]=>B
OK

Next we define not which is not in the predefined dictionary:
:not if b false else b true then ;

notl:
A => [b(false) |A]

not2:
A => [b(true) [A]

not:
[b(true) | Al => [b(false) | A]
[b(false) | A] => [b(true) | Al
OK

Here the analyzer prints out the two alternatives that it finds for the semantics of the word. We can
then use not:

5 0= not .stack

stack: [b(true)]
OK

Compiling and Analyzing Forth in Prolog 545

The defining word array, which defines a one-dimensional array with the first two elements 0, is:
: array create @, @ , does> index ;

array3:
[pfa(A,B,C),n(D) |E] => [pfa(A,B + D,F) |E]

array:

A=>A
OK

Using this to define an instance aa, we examine some uses:

array aa
OK

decompile aa
[dovar(aa),array3,;S]
OK

Baad.
0 OK

1aa@d.
0 OK

2aaad.
run-time error: restarting

OK

2 aa 4 swap |
OK

2aad.
4 OK

A little more work with the “if” statement yields:
: bb@= if + then index ;

bb4:
[n(A),n(B) |C] => [n(A + B)|C]

bbs:
A=>A

compile error here: [index,;]
stack found: [n(A + B)|C]

OK

:bb@=1if + else index then ;

546 The Journal of Forth Application and Research Volume 4 Number 4

bb6:
[n(A),n(B) [C] => [n(A + B)|C]

bb7:
[pfa(A,B,C),n(D) |E] => [pfa(A,B + D,F) |E]

bb:
[n(A),n(®B),n(C) |D] => [n(B + C)|D]

[n(A),pfa(B,C,D),n(E) |F] => [pfaB,C + E,G) |F]
OK

We use the context declaration to detect an error:
tee{nnn=--n)B=if + else index then ;

ee8:
[n(A),n(B) |C] => [n(A + B)|C]

ee9:
[pfa(A,B,C),n(D) |E] => [pfa(A,B + D,F)|E]

ee:

[n(A),n(B),n(C)] => [n(B + C)]

semantic error trying ee9

[n(A),n(B)]

OK

An extended session with this Prolog implementation may lead to garbage collection problems so
it is best to experiment in short batches.

References
[ADJ35] Adjukiewicz, K. 1936. Ueber die syntaktische konnexitaet. Studia Philosophica 1:1-27.

[BAR60] Bar-Hillel, Y.; Gaifman, C.; and Shamir, E. 1960. On categorial and phrase structure
grammars. Bulletin of the research council of Israel 9f, pp. 1-16.

[CHO56] Chomsky, N. 1956. Three models for the description of language. IRE Transactions on
Information Theory IT-2, pp. 113-24.

[DIX86] Dixon, R., and Hemmendinger, D. 1986. A more thorough syntax checker for FORTH.
J. Forth Appl. and Res. 4(2):245-48.

[HOP69]} Hopcroft, J., and Ullman, J. 1969. Formal languages and their relation to automata.
Reading, MA: Addison-Wesley.

IMOES82] Moerman, K. 1982. FORTH syntax diagrams. In 1982 Rochester Forth conference on
data bases and process control, pp. 263-66. Rochester, NY: Institute for Applied Forth
Research.

Compiling and Analyzing Forth in Prolog 547

[REI79] Rieger, C., and Small, S. 1979. Word expert parsing. Proceedings of the sixth
international joint conference on artificial intelligence, pp. 723-28.

[SOLR2] Solntseff, N. 1982. An abstract machine for the Forth system. In 1982 Rochester Forth
conference on data bases and process control, pp. 145-55. Rochester, NY: Institute for
Applied Forth Research.

[SOL83] -—--- . 1983. An instruction-set architecture for abstract Forth machines. In 1983 Rochester
Forth applications conference, pp. 175-83. Rochester, NY: Institute for Applied Forth
Research.

[SOL84] Solntseff, N., and Russell, J. W. 1984. An approach to a machine-independent Forth

model. In 1984 Rochester Forth conference, pp. 121-39. Rochester, NY: Institute for
Applied Forth Research.

Manuscript received November 1986.

Robert D. Dixon received his doctorate from Ohio State University in 1962. He is currently a
professor of computer science at Wright State University. His interests include real-time systems and
hardware and software support systems for natural language interfaces.

David Hemmendinger received his Ph.D. in philosophy from Yale University in 1973. He has
been in the Wright State Computer Science Department since 1982, and works on logic pro-
gramming, concurrency, and the use of formal tools to produce executable specifications of
programming language semantics.

548 The Journal of Forth Application and Research Volume 4

Number 4

Appendix
% Forth interpreter
% Version 1.1 6 February 1987

% Runtime interpreter: Arity Prolog v 4.0, on IBM PC
% Note: The Arity-specific routines are:

% system calls (dir, cd, shell, ed, edit)

% abolish/1 (other prologs have abolish/2)
% ctr__set/2, ctr__inc/2 (global counters)
% read.. line, list__text (string predicates)
% ge(full) (garbage collector)

% All but "abolish' and 'gc' appear only in the utilities section

% The code is in three parts: dictionary, execution states, utilities
% To execute: invoke 'startforth' from the top level of Prolog.
% To terminate: enter 'bye' to the Forth interpreter. Note that

% the intepreter is case-sensitive and that predefined
% words follow the Prolog lower-case convention.
% To restart: invoke 'forth’ from the top level of Prolog.

% Forth dictionary: 'run' and 'comp' actions for each word.

- op(900,xfx, '=>").
:- op(700,fx,ed).
:- op(700,fx,cd).

word(drop). word(dup). word('. "). word(* +"). word("*").
word('-"). word('0="). word('!"). word('a"). word(swap).
word(n(__)). word(':"). word(here). word(index). word('" '").

word(':i'). word(constant). word(execute). word(variable). word(create).

type(n,n(_.)).
type(b,b(_)).
type(pfa,pfa(—,—,)).
type(cfa,cfa(__)).

run(drop,IStr=>IStr,[X | $]=>8,C=>C).

run(dup,IStr=>IStr,[X | S]=>[X,X | §],C=>C).

run(swap,IStr=>1Str, [X,Y | S]=>[Y,X | §1,C=>C).

run('. ', IStr=>IStr,[n(A) | S]=>S,C=>C) :-
effect((write(A),write(' '))).!.

run('. ' IStr=>IStr,[A |S]=>8,C=>C) :-
type(.,A),effect((write(A),write(' *))).

run(' + ', IStr=>IStr,[n(A),n(B) | S]=>[n(D)]S],C=>C) - A+B=>D.
run('-',IStr=>1IStr, [n(A),n(B) |S]=>[n(D) IS],C=>C) - B-A=>D.
run(** ' IStr=>1Str, [n(A),n(B) | S}=>[n(D) | S],C=>C) :- A*B=>D.
run('0=",IStr=>IStr,[n(A) | S]=>[b(B) | S],C=>C) :- (A==0)=>B.
run('' 'Y, [Sym [IStr]=>IStr,S=>[cfa(Sym) | S],C=>C) :-
(word(Sym) ; code(Sym,__)).
run{execute,IStr=>IStr1,[cfa(Sym) | $]=>81,C=>C) :-
effect(run(Sym,IStr=>IStr1,5=>81,C=>C)).

run(':',[Name |IStr}=>Rem,$=>S,C=>C) :-
compile(IStr=>Rem,[sc | S]=>S,Name,comp),!.

Compiling and Analyzing Forth in Prolog 549

run(':',IStr=>[],8=>5,C=>C). % recover after compile error

run(':i',[Name |IStr]=>Rem,S=>8,C=>C) :-
compile(IStr=>Rem,[sc__i|S]=>S,Name,immed),!.

run(':i',IStr=>[1,8=>S,C=>C).

run(if__r,IStr=>IStr,[b(true) | S]=>S,[Th,El | C]=>[Th | C]).
run(if__r,IStr=>IStr,{b(false) | S]=>S,[Th,El | C]=>[El | C]).

run(repeat__r,IStr=>IStr, [b(false) | $]=>S,[Body | C]=>C).
run(repeat__r,IStr=>1Str, [b(true) | S]=>S,[Body | C]=>[Body,repeat__r,Body | C]) :-
not analyzing.

run(variable,[Sym |IStr]=>IStr,$=>8,C=>C) :-
store(pfathere,0,pfa(Sym,0,__))),
add__def(Sym,[dovar(Sym), ;S '],comp).

run(', IStr=>1Str, [pfa(N,D,__),V |8]=>S,C=>C) :- effect(store(pfa(N,D,V))).
run(' @' ,IStr=>1Str,[pfa(N,D, V) | S]=>[V | §],C=>C) :- effect(pfa(N,D,V)).
run(index,IStr=>IStr,[pfa(N,A,__),n(B) | S]=>[pfa(N,D,__} | S],C=>C) :- A+B=>D.
run(constant,[Sym | IStr]=>IStr,[A | S]=>S,C=>C) :- add__const(Sym,A).
run(create,[Sym | IStr]=>IStr,S=>5,C=>C) :-
run(variable,[Sym [IStr]>IStr,$=>8,C=>C).
run(create__r(Does),[Sym | IStr]=>I8tr,$=>8,C=>C) :-
effect((store(pfa(here,0,pfa(Sym,0,__))),
add__def(Sym,[dovar(Sym),Does, *;S'],comp))).
run(dovar(Sym),IStr=>IStr,S=>[pfa(Sym,0,__) | $],C=>C).
run(overload,[N1,onto,N2 | IStr]=>IStr,S=>§,C=>C) :-
assertz((comp(N2,A,B,D,E) :- comp(N1,A,B,D,E))).
run(Type,[Sym | IStr]=>IStr,S=>[Tval | §],C=>C) :-
type(Type,Tval),Tval =.. [Type,Sym].
run(Type,IStr=>1Str,S=>[Type | $],C=>C) :- type(__, Type).

% debugging and system calls:
run('.stack ', IStr=>IStr,S=>8,C=>C) :- % show stack
effect((nl,write('stack: '),write(S),nl)).
% !! goal argl . .arg_n executes the prolog call: goal(argl,.,.,arg__n)
run(! IStr=>{],§=>S,C=>C) :- Goal =.. IStr,call(Goal).
run(stat,IStr=>IStr,§=>§,C=>C) :- statistics.
run{ed,[Name]=>[]1,5=>§,C=>C) :- ed Name.
run(decompile, [Name |I1Str]=>1Str,§=>S,C=>C):~
code(Name,Code),nl, write(Code),nl.

% comp part of the dictionary
comp(drop,IStr=>IStr,S=>8,[drop | C]=>C,N).
comp(dup,IStr=>1Str,$=>8,[dup | C]=>C,N).
comp(swap,IStr=>IStr,S=>S,[swap | C]=>C,N).
comp(' + ', IStr=>I8tr,S=>8,[' + ' |C]=>C,N).
comp('-',IStr=>1Str,$=>§,['-' | C]=>C,N).
comp(' *',IStr=>IStr,$=>§,['#' |C]=>C,N).
comp('. ', IStr=>I8tr,§=>8,['. ' |C]=>C,N).

550 The Journal of Forth Application and Research Volume 4 Number 4

comp('!',IStr=>IStr,S=>S,['! ' |C]=>C,N).
comp('a’,IStr=>IStr,S=>S,['a"' |C]=>C,N).
comp(index,IStr=>IStr,S=>§,{index | C]=>C,N).
comp('0=",IStr=>1Str,S=>5,['0=" |C]=>C,N).
comp(" ",[Sym |IStr]=>IStr,$=>8, [cfa(Sym) | C]=>C,N).
comp(n(V),IStr=>I8tr,5=>§,[n(V) | C]=>C,N).

comp(*; ', IStr=>1IStr,[sc | S]=>S,[';S '1=>[IL.N).
comp(';i',IStr=>1IStr,[sc__i]S]=>§8,[;S '1=>[,N).
comp(execute,IStr=>1Str,$=>8, [execute | C]=>C,N).

comp(if IStr=>Rem,S=>S,[if _r,N__then,N__else |C]=>C,N) :-
gensym(N,N__then),gensym(N,N__else),
compile(IStr=>IStr1,[t | S]=>[t1 | S],N__then,comp),
compile(IStr1=>Rem,[t1 | S]=>S,N__else,comp).
comp(else,IStr=>18tr, [t | S]=>{t1{8],[*;S '1=>[1.N).
comp(then,IStr=>1Str,[t1 | S]=>S,[;S '1=>] 1,N).
comp(then,IStr=>[then | IStr], [t | S]=>[t1 | S],[*;S '1=>[1,N).

comp(begin,IStr=>Rem,S=>S,[Test,repeat__r,Body | C]=>C,N) :-
gensym(N, Test),gensym(N,Body),
compile(IStr=>1Str1,[w | S]=>[w1(Test) | $], Test,comp),
compile(IStr1 =>Rem,[w1(Test) | S]=>S,Body,comp).
comp(while,IStr=>1Str,{w | S]=>[wi(_) |SL,[;S '1=>[1.N).
comp(repeat,IStr=>]Str,[w1(Test) | S]=>S,[Test, ';S '1=>[I,N).

comp(create,IStr=>IStr, [sc | S]=>[c(Dname),sc | S1,[create__r(Dname) | C]=>C,N) :-
gensym(N,Dname).

comp('does> ', IStr=>{"; ' |Rem],[c(Dname) | S]=>S,C=>C,N) :-
compile(IStr=>Rem,[sc | S]=>S,Dname,comp).

comp(Type,[Sym |1Str]=>IStr,S=>S,[Tval |C]=>C,N) :-
type(Type,Tval), Tval =.. [Type,Sym].

% Execution states: interpret, compile, analyze, docol

forth :- interpret([I,[).
forth :- ge(full), write(' ran-time error: restarting '),nl,!,forth.

startforth :- forth__init(L),interpret(L.,{]),forth.

forth__init([variable,here, ':",*, ' here, '2','!",
n(1),here, '?',index,here, '!',"; " bye]).

interpret([],Stk) :- ge(full),write(' OK '),nl,getline(L),!,interpret(L,Stk).
interpret([bye],..) :- |
interpret([H | T1,S) :-

run(H, T=>T1,8=>81,_),!,

interpret(T1,S1).

Compiling and Analyzing Forth in Prolog

551

interpret([H | T],Stk) :-
not word(H),not code(H,__),
write('unknown word here: *),write([H | T1),nl,!,
interpret([1,Stk).

docol([1,8=>§,IStr=>IStr) :- L. % for use by 'act’ only

docol(] ;S '1,S=>S,IStr=>1IStr) :- !,

docol([H | T1,8=>82,IStr=>1Str2) :-
run(H,IStr=>IStr1,S=>81,T=>T1),!,
docol(T1,S1=>82,IStr1 =>1Str2).

add__const(Sym, V) :- asserta(run(Sym,IStr=>IStr,S=>[V |S],C=>C)),
asserta(comp(Sym,IStr=>IStr,5=>8,C=>[Sym |C],N)).

store(pfa(N,D,V)) :- retract(pfa(N,D,__)),!,asserta(pfa(N,D, V)).
store(pfa(N,D,V)) :- asserta(pfa(N,D,V)).

effect(__Effect) :- analyzing,!.
effect(Effect) :- call(Effect).

compile(['(' | T]=>Rem,Ss,Name, Type) :- !,
extract(T=>R,[dd]=>[1,[1=>AS__before,[]=>AS__after),
compilel(R=>Rem,Ss,Code,AS__before=>AS__after,AS__before,Name),
add__def(Name,Code, Type),
actions(Name,AS__before,AS__after,Code).
compile(IStrs,Ss,Name, Type) :-
compile1(IStrs,Ss,Code,___,AS,Name),!,
add__def(Name,Code, Type),
actions(Name,AS,___,Code).
compilel(Rem=>Rem,S=>S,__, .,).
compilel(]]=>Rem,Stacks,Code,AStks,AS,Name) :- getline(L),!,
compilel(L=>Rem,Stacks,Code,AStks,AS,Name).
compilel(J[H | T]=>Rem,S=>82,C,AS=>AS52,A83,Name) :-
comp(H,T=>T1,S=>81,C=>C1,Name),
closed(C,Code),
act(Code,AS=>AS1),!,
compilel(T1=>Rem,S1=>82,C1,AS1=>AS82,AS3,Name).
compilel([H | T]=>[] AS=>) -
nl,write(' compile error here: *),write({H | T]),nl,
write('stack found: '),show(AS),nl,fail.

closed(C,[D) :- var(O),!.
closed([1, D).
closed([H | T],[H | Code]) :- closed(T,Code).

add__def(Name,Code,comp) :-
add__run__code(Name,Code),
asserta(comp(Name, IStr=>IStr,§=>S,[Name | C]=>C,_)).

552 The Journal of Forth Application and Research Volume 4

Number 4

add__def(Name,Code,immed) :-
add__run__code(Name,Code),
asserta((comp(Name,IStr=>1Str1,$=>81,C=>C,_):-
run(Name,IStr=>18tr1,8=>81,C=>C1))).

add__run__code(Name,Code) :-

asserta(code(Name,Code)),
asserta((run(Name,IStr=>IStr1,S=>81,C=>C) :-
docol(Code,S=>S81,IStr=>1Strl))).

actions(Name,S,S1,Code) :-
assert(analyzing),
nl,write(Name),write(': '),
analyze(Code,S=>81,85).

actions(__,__,__,_) :- retract(analyzing),nl.

analyze([';S '],Stk=>Stk,S) :- nl,show(S=>Stk),fail.
analyze((if__r|T].[b(B) | Stk]=>Stk2,S) :- !,
run(if__r,...,[b(B) | Stk]=>Stk1,T=>T1),
analyze(T1,Stk1=>Stk2,S).
analyze([H | T],Stk=>Stk2,S) - H \== if__r,
run(H,__,Stk=>Stk1,T=>T1),!,
analyze(T1,Stk1=>Stk2,S).
analyze([H,H1|T],Stk=>__,) :-
nl, write(' semantic error trying '),
write(H),nl,show(Stk),nl, fail.

act([1,—) - L.

act([if __r,Th,__],[b(true) | AS]=>AS1) :- act([Th],AS=>AS1).

act([if__r,___,El],[b(false) | AS]=>AS1) :- act([El],AS=>AS1).

act([H|T1,AS=>AS1) :- H \== if__r,assert(analyzing),
docol([H | T],AS=>AS1,IStr=>IStrl),
retract(analyzing).

act(__,_) :- retract(analyzing),fail.

% Reduction operations

X+Y=>Z :- integer(X),integer(Y),!,Z is X+Y.
Z+X=>X -7 == 0,

X+Z=>X - Z == 0,5

X+Y=>X+Y.

X*Y=>Z :- integer(X),integer(Y),!,Z is X*Y.
725 _X=>0:-Z == 0,

_X*Z=>0:-Z == 0,

UsX=>X - U == 1,1

X*U=>X :-U == 1,L.

X*Y=>X*Y.

X-Y=>Z :- integer(X),integer(Y),!,Z is X-Y.
X-Z=>X :-Z == 0,).

X-Y=>0:-X ==Y,

X-Y=>X-Y.

Compiling and Analyzing Forth in Prolog

553

X==0)=>true :- X == 0,.
(X = =0)=>false :- integer(X),X \== 0,
(_X==0)=>__B :- analyzing.

% subcompiler for context declarations: (tl .. tn—rl .. rm)
% where t's and r's are type names, and spaces are essential.
extract(R=>R,5=>S Before=>Before,After=>After) :- !.
extract((H | T]=>R,8=>S2, Bef=>Bef2, Aft=>Aft2) :-
lcomp(H,S=>S1,Bef=>Befl,Aft=>Aftl),!,
extract(T=>R,81=>52,Befl =>Bef2,Aft]1 =>Aft2).

lcomp('--',[dd |S]=>[rp|S],C=>C,D=>D).
lcomp(")',[rp|S]=>S,C=>C,D=>D).

lcomp(H,[dd | S]=>[dd | §],C=>[X | C],D=>D) :- type(H,X).
lcomp(H, [rp | S]=>[rp | S],C=>C,D=>[X | D]) :- type(H,X).
lcomp(..,__,__,__) :-nl,write("error in context spec! '), fail.

% utilities.

dir :- shell(dir).
cd(Dir) :- chdir(Dir).
ed(File) :- edit(File),cls.

apnd([1,X,X).
apnd((H | T1,X,[H|Y]) :- apnd(T,X,Y).

getln(Line) :- read__line(0,L),list__text(Line,L).

skipbl([32 | T],Result) :- !,skipbl(T,Result).
skipbl({9 | T},Result) :- !,skipbl(T,Result).
skipbl(Result,Result).

getword([L,[I,L D) :- 1.

getword([32{T1,[1,T) :- I.

getword([9|T1,[1,T) :- I

getword([C | T],[C | Ws],Rest) :- getword(T,Ws,Rest).

getwords([1,[]) :- L.
getwords([N1 |More],L) :- getword(L,W,Rest),name(N,W),

skipbl(Rest,R1),wrap(N,N1),getwords(More,R1).

wrap(N,n(N)) :- integer(N),!.
wrap(N,N).

getline(Ws) :- getln(L),skipbl(L,L1),getwords(Ws,L1),!.

abolish(C,n(Arity)) :- abolish(C/Arity).

gensym(Name,N1) :- name(Name,L1),ctr__inc(0,N),name(N,L2),

apnd(L1,1.2,1.3),name(N1,L3).

- ctr_set(0,1). % initialize counter #0, for gensym

554 The Journal of Forth Application and Research Volume 4 Number 4

% for writing a term with variables temporarily named A, B,...G.

bindvars(X,[I,[D) :- I

bindvars(VH,[VH|VTLVT).

bindvars(Atom,VL,VL) :- atomic(Atom),!.

bindvars([H [T],VL,VL2) :- !, bindvars(H,VL,VL1),bindvars(T,VL1,VL2).
bindvars(Term,VL,VL1) :- Term =.. [F|Args],bindvars(Args,VL,VL1).

show(Term) :-
not not (bindvars(Term,['A"','B','C",'D'",'E','F','G"],.),
write(Term),nl).

