
Proceedings of the 1987. Rochester Forth Conference 131

EXTENDED MEMORY OPERATIONS FOR F83

ABSTRACT

A set of extended memory operators based on a 32 bit address or
pointer is added to the F83 virtual FORTH machine. This permits
accessing all memory in the host microcomputer while still
retaining the basic 16 bit model. As an application of using the
additional accessable memory, a simple technique for storing
FORTH Word definition bodies in extended memory (outside
dictionary segment) and dynamically retrieving them is described.
When executed. a copy of the dePinition body is created on an
'execution stack' and execution proceeds as wit'h any other word.
For longer definitions or especially 'or those with significant
looping. the runtime retrieval overhead is a relatively minor
price to pay to conserve limited dictionary space.

EXTENDED MEMORY OPERATORS

The F83 FORTH model by Laxen and Perry supports only 16 bit
add~essing 0' a 64 kilobyte memory space. When a larger memory
space is available on the underlying hardware, as with the Intel
8086 series microcomp~ters, some sort of extended addressing mode
is needed. The approach described herein adds a set of extended
memory operators based on a 32 bit address or pointer to the F83
virtual machine. These operators. which are designated by
prefixing an 'X' to the 16 bit add,.,css memory operators (X(~, X!,
etc.). permit access to .311 memory in the host computer. These
operators expect a 32 bit address where the normal ~ and
expect a 16 bit address. Additional operators XMOVE and XFILL
are defined as analogs to CMOVE and FILL except that the extended
memory versions have 16 bit instead of byte arguments as well as
32 bit add res sin 9 .

The 32 bit address is defined as a pOinter, not a FORTH
double number, and may therefore be implementation dependent in
format. For the Jntel machines it is convenient to define a
pointer as a segmented address compatible with the hardware.
This dictates that the offset is on top of the segment on the
s t a c k . For t his i'.e a son i t i s des i T' a b let 0 i n c I u d e an 0 per a tor

IXAD for incrementing a pointer by a specified number of bytes.

When F83 is ruTl under 1'1S'-DOSnM) , the remainder of available
memory from the end of the COM File on is allocated by the
system to the F83 task. This area is considered to be a memory
resource named HEAP and is alloted in a manner similar to the
Dictionary by the word HEAPALLOT.

132 The Journal of Forth Application and Research Volume 5 Number I

HEAP COI'PILER

In addition to the obvious use of HEAP memory for large data
structures. some additional program space can be obtained by
storing the executable lists of lai'ger FORTH words in HEAP. The
approach presented here de.ines a mode flag HPMODE which
determines whether the body o' a new definition is to reside in
the dictionary or in HEAP. The compiler is modi.ied to test the
HP/'10DE flag. and if enabled, to allocate space in HEAP, move the
executable body to HEAP and set up 'or dynamic retrieval of the
body at execution time. Since the body must be within the
Dictionary segment at runtime to execute properly, the runtime
action of all HEAP resident words is to copy the body o' the word
on t 0 an' e x e cut ion' s t a c k be' or e beg inn in 9 nor ma i ex e cut ion 0 f
the word. For small, simple definitions this overhead would be
severe, so the HEAP compilation mode should only be enabled for
longer definitions aild/or for those with extensive looping.

lhe parameter field of a HEAP based colon definition
contains a pointer to a 'counted' list in HEAP. The counted list
consists of a 1~ bit word count followed by the executable body
oft h e d e fin i t ion. The cod e fir 1 d 0 f the HEAP b a sed wo r d i L
modified to execute a procedure which fetches the pointer,
obtains the word count, transfers the body to the execution
stack, and finally executes the body.

lhe obvious benefit of storing the executable list of a new
definition in HEAP is the savings in Dictionary space for systems
with limited Dictionary resources. However. the fact that a
w~rd's definition is not intimately attached to its header allows
d y n a mic red e fin i t ion by me reI y rep lac in g the HEAP po i n t er wit h a
pointer to a different execution list. Unfortunately. since the
executable body of the definition must be preceeded by a word
count, the current implementation ~oes not permit redirection of
a HEAP based word to an existing Dirtionary word body.

L HIlT f\ IONS

One limitation is that the approach does not work on the F83
kernel as normally distributed. lhe only complication is that
the creators of F88 chose to use absolute addresses for branch
arguments, and thus F83 bodies will not execute properly if
moved. Fortunately it is trivial to modify the KERNEL86. BLK and
ME1A86. BLK source and regenerate a kernel with relative branch
arguments. My own opinion is that relocatability is of
suf'icient value to be worthwhile over and above its application
to this package.

There is a moderately constraining practical limit on the
depth of nesting permissible on the execution stack since it
requires some o' th~ very Dictionary space salvaged by storing
word bodies in HEAP. lhe problem only becomes critical, however.
when recursion is used, since the retrieval algorithm blindly
adds a new copy to the execution stack for each level oP
r~cursion. Simple solution: don't store recursive words in HEAP.

Proceedings of the i 987 Rochester Forth Conference 133

Finally. no mechanism is included in the current package to
save the contents of HEAP .when SAVE is invoked. Since part of
the executable cod~ is in HEAP if the HEAP compiler has been
enab led, SAVE shoul d be augmented to save and reload the
allocated portion of the HEAP memory. On my own FORTH system I
have saved HEAP data as a separate (from th e . CaM f i 1 e) d i s k f i le
which is automatically loaded when the. CaM image is loaded. An
alternate possibility would be to create an . EXE image with both
the Dictionary and HEAP areas included.

SOURCE CODE

lhe source code for the extended memory primitives and the HEAP
compiler are availabl~ on the East Coast Forth Board (telephone #
703-442-8695) in f i le ROHDAF83. ELK.

i

, \ ElTNDED "E"ORY PWI1VES
1 ONLY FORTH ALSO DEFINI1ONS HE!

2 CODE U (5 ptr) n I

3 ax POP ES POP ES: 0 (axi PUSH NEl EN-COOE

4 COOE X i (S n ptr) I

ax POP ES POP ES: 0 (aii POP NEl END-COOE

Ó CODE 12~ (S ptr) d I

7 ax POP ES POP ES: 2 (BX PUSH ES: 0 (81 PUSH NEl END-ODE

B COOE X2' (S d ptr) I ax POP ES POP

9 E5: 0 (8l POP ES: 2 (aii POP NEX END-OOE

U COOE XC (S ptr) b I ax POP ES POP

11 ES: i (8) AL ~OV AH AH XOR AX PUSH NEX END-OOE

12 CODE IC' (S b ptr) I SX POP ES POP

13 AX POP AL ES: 0 (aii "OV NEX END-ODE

14 CODE CSf (S) sg I CS PUSH NEl END-ODE

15 DECIML

33

11 DEC8óRHD \ EXENDED ~E~DRY PRim IVES 14JAN87RHD

The extended ieiory operators are based on a 32 bi t inory

address (pointer). For the lntel 808ó series coiputers. the

pointer is stored Nith the ION order (offset) preceeding the

high order (segientl in ieiory. This provides coipatibility

Nith the hardNare. Since a pointer is NDT a double nuiber.

there is no conflict Nith FORTH conventions.

The Xf and X! oper ators fetch and store lóbi t data.
The X2f and X2! operators /etch and store 32bit data.

The XCf and XC r operators fetch and store abi t data.

The CSt operator provides access to the dictionary segient.

ø \ EXTNOED ~E~ORY PRi~ITIVES

1 HEX

2 CODE I~OVE (S ptr 1 ptr2 Net) I
3 SI AX ~OV DS DX ~OV CX POP DI POP Es PDP SI PDP Ds POP

4 CLD REP ~OVS AX SI ~OV DX DS ~OV NEl END-OOE

5 CODE XflLL (5 ptr Net n))

ó AX POP CX POP D i POP Es POP

7 CLD REP AXsTDs NEX EN-CODE
8 CODE IPTR IS ptr n) ptr')

9 AX POP DX POP AX sHL

IØ U(IF SX POP FU0 I BX ADD BX PUSH THEN AX DI ADD

i I U(IF ax POP 100 I ax ADD ax PUSH THEN

12 DX PUSH NEl EN-CODE
13 CREATE DOHP (5) ad I (runtiie I (S). ptr I AsSE"8LER

14 CSDXMV 2mAX"OV 4mDXADO 101DHADO
i 5 2PUsH END-COOE DEC I MAL

34

14JAN87RHD \ ElENOED ~E~ORY PRlmlVES i9FEa87RHD
X"OVE and XFILL are siiilar to C"OVE and FILL except that

they utiliie 32bit inory pointers and lóbit Nord argUlents.

¡PTR increients a 32bit fointer by n Nords. OverlloN froi

the ION-order coiputation is used to appropriately increase

the high-order part of th¡ 'iointer. but no seglent realignient
is perforied. With care, . R iay be used to incrnent

dictionary l1óbitl addresses by n Nords.

DOHP is a variable header for the runtiie entrypoint for an

extended ieiory referencing Nord.

134 The Journal of Forth Application and Research Volume 5 Number I

3

8 \ ROHDA-FORTH HEAP ALLOCATION

I 2VARIABLE FREEHEAP WARNING DFF

2 : LITERAL (S n) I STATE 8 IF DUP 1.1 OVER 1- C! 1- FIND

3 IF SNAP ELSE COMPILE (L1T1 THEN DROP, THEN i IMMEDATE

4 : ?IMMED (cfa) f))NAME 8 64 AND

5 : IAOI I IPTR i

6 : SESALlSN IS ptr) ptr' I 16 IMDD SWAP IF 1+ THEN + 9

7 : HEAPALLOT (n) rptr I)R

B FREEHEAP 28 DUP 16 - R8 21 + 8) IF SESALlSN THEN

9 2DUP R) IPTR FREEHEAP 2! i HEX
18 : HREL CS8 m8 + 8 D+ j
11 : C/X (S cfa) I STATE 8 IF , ELSE EXECUTE THEN i

12 DE mAL : BUSFRDM (BUS)' HERE (DEBUS)

13 4 5 THRU (HEAP COII ILER I
14

15 WARNING ON

4

, \ RDHDA-FORTH HEAP CDMPILER

1 \ Thi s techni que cannot ~ork unless F83 branches are
2 \ iiplnented in a relocatable ianner!'!!

3 DNLY FORTH ALSO HIDDEN ALSO FORTH DEFINITONS WARNINS OFF

4 VARIA8LE HPMODE VARIA8LE XOS

5 HEX DIU XOS !

6

7 : HEAP HPMODE ON i

8 : D IC HPMODE OFF i

9:EX (ad)))Ri
IØ : LST8 (ptr) ptr' ~dct I 2DUP 1 IPTR 2SWAP X8 i

II : EVAL (ptr ~dct) ? I DUP NE SATE XOS i DUP)R SWAP IPTR

12 DUP XOS! CS SWAP ROT XMOVE IOS. EXE R) XOS i i

13 : 8EVAL (ad)) 28 HR EL LST8 EVAL i
14 OECIMAL

15

35

89FEB87RHO \ ROHOA-FORTH HEAP ALLOCATION 89FE887RHD
LITERAL is redefined to use constants if they have been defined

?INMED tests the ~ord represented by cfa for iiiediate

precedence.

IADI advances a pointer or an address (if no ~rap) by I celL.

SESALISN iodifies a pointer to point to the next inory

location that can be specified ~ith a zero offset.
HEAPALLOT allocates n words of extended ieiory and returns

a relative pointer (froi the beginning of allocatabh ieiory)

to the allocated area. A iore sophisticated allocation and

recovery schne could easily be substituted.

HREL provides high-level relocation of an offset pointer.

C/X coipile or execute depending on coipilation state.

36

14JAN87RHD \ ROHDA-FORTH HEAP COMPIER 89FE887RHO
The HEAP coipiler stores the body of the definition in HEAP

leÆory. The dictionary entry contains the relati ve heap pointer

at which the body is stored. At runtiie the body is copied onto

an 'execution stack' (in the dictionary segient at present) and

executed.
HPMODE is a flag deteriining ~hether to store in OICT or HEAP

XOS is the stack pointer for the 'execution stack'

HEAP or DICT select HEAP or DICTionary coipilation, respectively

5

8 \ ROHDA-FORTH HEAP COMPILER

i ALSO H !DDEN DEF N IT ONS

2 : Xi (h) I LAST 8 NAME))BODY

3 HERE OVER - 1 + 21 DUP)R (en 1+ HEAP ALLOT

4 20UP HREL 2DUP Ri -ROT X! 2+

5 CS 5 PICK 2SNAP R) XMOVE

6 ROT DUP 2 IPTR DP! 2! i

7

8 FORTH DEFINITONS

9 : (COMPILE): HPMODE 8 IF DOES 8EVAL THEN

18 INMEDIATE

11 : ICOMPILE) i HPMODE 8 IF Xi THEN;

12 IMMEDATE

13

14 ONLY FORTH ALSO OEFINITONS DECIMAL

15 WARNINS ON

EXE sets up execution of a colon definition body.

8EVAL, EVAL and LST8 proYide tools for the retrival and

execution of LISTS I: def bodies) stored in HEAP as a ~ord

count follo~ed by the list of words (analogous to byte count

fol!o~ed by character sequence for strings!.

37

14JAN87RHD \ ROHDA-FORTH HEAP COMPILER 89FEB87RHD

Xj sets up the word count, allocates space in HEAP, and ioves

the body of the definition to HEAP. The HEAP offset to the

list is stored in the paraieter field of the dictionary entry

and the rnainder of the dictionary space is reclaiied.

The fact that the interpret loop is buried INSIOE of : in F83

necessitates the redefinition of both: and i. Noriallv

only redefinition of j is required.

HPMODE is

checked in both cases and appropriate additional action is

taken if HEAP coipilation is enabled.

Forth 83 Model

