Proceedings of the 1987 Rochester Forth Conference 131

EXTENDED MEMORY OPERATIONS FOR F83

ABSTRACT

A set of extended memory operators based on a 32 bit address oar
pointer is added to the FB3 virtuval FORTH machine.. This permits
accessing all memovry in the host microcomputer while still
retaining the basic 16 bit model. As an application of using the
additional accessable memory, a simple technique for storing
FORTH Word definition bodies in extended memory (outside

dictionary segment) and dynamically retrieving them is described.
When executed, a copy of the definition body is created on an
‘execution stack’ and execution proceeds as with any other word
For longer definitions or especially for those with significant
looping., the rtuntime retrieval overhead is a relatively minom
price to pay to conserve limited dictionary space.

EXTENDED MEMORY QPERATORS

The FB83 FORTH model by Laxen and Perry supports only 16 bit
addressing of a 64 kilabyte memory space. When a larger memory
space is available on the underlying hardware, as with the Intel
80846 series microcomputers, some sort of extended addressing mode
is needed. The approach described herein adds a set of extended
memory operators based on a 32 bit address or pointer to the F83
virtual machine. These operators, which are designated by
prefixing an ‘X’ to the 1& bit address memory agperators (X, X4
etc.), permit access to all memory in the host computer. These
operators expect a 32 bit address where the normal @ and !
expect a 16 bit address. Additional aperators XMOVE and XFILL
are defined as analogs to CMOVE and FILL except that the extended
memory versions have 16 bit instead of byte arguments as well as
32 bit addressing.

The 32 bit address is defined as a pointer, not a FORTH
double number, and may therefore be implementation dependent in
format. For the Intel machines it is convenient to define a
pointer as a segmented address compatible with the hardware.
This dictates that the offset is on top of the segment on the
stack. For this reason it is desivable to include an operator
IXAD for incrementing a pointer by a specified number of bytes.

When FB83 is run under ME-DOS(TM):, the remainder of available
memovry from the end of the C(OM file on is allocated by the
system to the FB3 task. This area is considered to be a memory
resource named HEAP and is alloted in a manner similar to the
Dictionary by the word HEAPALLOT.

132 The Journal of Forth Application and Research Volume 5 Number 1

HEAP COMPIL.ER

In addition to the obvious use of HEAP memory for large data
structures, some additional program space can be obtained by
storing the executable lists of lavger FORTH words in HEAP. The
approach presented here defines a mode flag HPMODE which
determines whether the body of a new definition is to reside in
the dictionary or in HEAP. The compiler is modified to test the
HPMODE ¥lag. and if enabled, to allocate space in HEAP, move the
executable body to HEAP and set up for dynamic retrieval of the
bady at execution time. Since the body must be within the
Dictionary segment at runtime to execute properly, the runtime
action of all HEAP resident words is to copy the body of the word
onto an ‘execution’ stack before beginning normal execution of
the word. For small, simple definitions this overhead would be
severe, so the HEAP compilation mode should only be enabled for
longer definitions and/or for those with extensive looping.

The parameter field of a HEAP based colon definition
contains a pointer to a ‘counted’ list in HEAP. The counted list
consists of a 1& bit word count followed by the executable body
of the definition. The code field of the HEAP based word ie
modified to execute a procedure which fetches the pointer,
aobtains the word count, transfers the body to the execution
stack, and finally executes the body.

The obvious benefit of storing the executable list of a3 new
definition in HEAP is the savings in Dictionary space for systems
with limited Dictionary resources. However, the fact that a
word ‘s definition is not intimately attached to its header allous
dynamic redefinition by merely veplacing the HEAP pointer with a

pointer to a different execution list. Unfortunately, since the
executable body of the definition must be preceeded by a word
count, the current implementation does not permit redirection of

a HEAP based word to an existing Dirtionary word body.
LIMITATIONS

One limitation is that the approach does not work on the FB3
kernel as normally distributed. The only complication is that
the <creators of F83 chose to use absolute addresses for branch
arguments, and thus FB83 bodies will not execute properly if

moved. Fortunately it is trivial to modify the KERNEL86&. BLK and
META86. BLK saurce and regenerate a kernel with relative branch
arguments. My own opinion 1is that relocatability is of

sufficient value to be worthwhile over and above its application
to this package.

There is a moderately constraining practical limit on the
depth of nesting permissible on the execution stack since it
requires some of the very Dictionmary space salvaged by storing
word bodies in HEAP. The problem only becomes critical, however,
when recursion is used, since the retrieval algorithm blindly
adds & new copy to the execution stack for each level of
recursion. Simple solution: don‘t store recursive words in HEAP.

Proceedings of the 1987 Rochester Forth Conference 133

Finally, no mechanism is included in the current package to
save the contents of HEAP when SAVE is invoked. Since part of
the executable code is in HEAP if the HEAP compiler has been
enabled, SAVE should be augmented to save and rvreload the

allocated portion of the HEAP memorvy. On my own FORTH system I
have saved HEAP data as a separate (from the .COM file) disk file
which is automatically loaded when the .COM image is loaded. An

alternate possibility would be to create an .EXE image with both
the Dictionary and HEAP areas included. '

SOURCE CODE
The source code for the extended memory primitives and the HEAP

ctompiler are available on the East Coast Forth Board (telephone #
703-442~8693) in file RUOHDAFB3. BLK

1 33
¢ \ EATENDED NEMORY PRIMITIVES {LDECB4RAD \ EXTENDED MEMORY PRIMITIVES 14JANBTRHD
1 ONLY FORTH ALSO DEFINITIONS HEX
2 CODE X& (Sptr>n) The extended memory operators are based on a 32 bit aemory
3 BY POP ES POF ES: © [BX] PUSH NEXT END-CODE address {pointer). For the Intel 9884 series computers, the
4 CODE X' {Snptr >} pointer is stored with the low order (offset) preceeding the
] BX POP ES POP ES: 6 [BX1 POP NEXT END-CODE high order (segment} in memory. This provides cospatibility
4 CODE X208 (S ptr > d) with the hardware. Since a pointer is NOT a double nuaber,

7 BX POP ES POP ES: 2 [BX] PUSH ES: & [BX] PUSH NEXT END-CODE there is no conflict with FORTH conventions.
9 CODE 2! (5 d ptr >) BX POP ES POP

9 ES: # [BX) POP ES: .2 [BX] POP NEXT END-CODE The X@ and X! operators fetch and store 14bit data.

18 CODE XCE (S ptr > b} BY POP £S5 POP The Y28 and X2! operators fetch and store 32bit data.

11 £S: 4 [BX1 AL MOV AH AH XOR AX PUSH NEXT ERD-CODE The XC@ ang XC' operators fetch and store 8bit data,

12 CODE ¥C' (S5 b ptr >) BX POP ES POP The CS8 operater provides access to the dictionary segaent,

13 AY POP AL ES: @ (BX) MOV NEXT END-CODE
14 CODE C58 (S) sg)} CS PUSH NEXT END-CODE

15 DECIMAL
2 3
\ EXTENDED MEMORY PRIMITIVES T4JANBTRHD \ EXTENDED MEMORY PRIMITIVES B9FEBBTRHD
1 HEX XMOVE and XFILL are similar to CMOVE and FILL except that
2 CODE IMOVE (S ptrl ptr? wct >) they utilize 32bit sesory pointers and 14bit word arquments.
3 S1 AX MOV DS DX MOV CY FOP DI FOF ES POP SI POP DS POP
] CLD REP NOVS AX SI MQv DX DS MOV NEXT END-CODE IPTR increaents a 32bit rointer by n words, Overflow froea
5 CODE XFILL (S ptr wct n >) the low-order computation is'used to appropriately increase
[AX POP CX FOP DI POP ES POP the high-order part of the -ointer, but no segaent realignment
7 CLD REP AX ST0S NEXT END-CODE is performed, With care, . R may be used to incresent
8 CODE IPTR (S ptrn > ptr') dictionary {16bit) addresses by n words,
L] AX POP DX POP AX SHL
18 U< IF BX POP F@@@ # BX ADD BX PUSH THEN AX DX ADD DOHP is a variable header for the runtime entrypoint for an
i1 U¢ IF BX POP 1868 & BX RDD BX PUSH THEN extended meaory referencing word.
12 DX PUSH NEXT END-CODE
13 CREATE DOHP (S > ad)} (runtise) (5 > ptr } ASSENBLER

14 CS DX MOV 2 [W] AX MOV 4 (W] DX ADD 1 % DH ADD
15 2PUSH END-CODE DECIMAL

134 The Journal of Forth Application and Research Volume 5 Number 1

3 33
\ ROHDA-FORTH HEAP ALLOCATION BIFEBATRHD \ ROHDA-FGRTH HEAP ALLOCATION $IFEDBTRHD
1 2VARIABLE FREEHEAP WARNING OFF LITERAL is redetined to use constants if they have heen defined
20 LITERAL (S n >) STATE @ IF DUP (.) OVER 1- €' t- FIND 7IMMED tests the word represented by cfa for imsediate
3 IF GWAP ELSE COMPILE -(LIT) THEN DROP , THEN ; IMNEDIATE precedence,
&3 TIMMED (cfa > £) ONANE @ &4 AND
Sl 1 IPTR 1AD! advances a pointer or an address (if no wrap) by 1 cell.
& 1 GEGALIGN (5 ptr > ptr’ } 16 /MDD SKAP IF f+ THEN + 0 ; SEGALIGN wodifies a pointer to point to the next aesory
7 2 HEAPALLOT {n) rptr) R location that can be specified with a zero offset.
8 FREEHEAP 28 DUP 16 - R@ 2% + §> IF SEGALIGN THEN HEAPALLOT allocates n words of extended memory and returns
9 20UP R> IPTR FREEHEAP 2! HEX a relative pointer (fros the beginning of allocatable memory)
19 : HREL C5Q 1688 + 8 D+ to the allocated area. & aore sophisticated allocation and
112 C/X (Scfa>) STATE @ IF , ELSE EXECUTE THEN ; recovery scheae could easily be substituted.
12 DECIMAL : BUGFRON [BUB 1 * HERE (DEBUB) ;
13 4 3 THRU HEAP COMPILER) HREL provides high-level relocation of an offset pointer,
14
135 WARNING ON C/X compile or execute depending on compilation state,
4 35
\ ROHDA-FORTH HEAP COMPILER 1AJANBTRHD \ ROKDA-FDRTH HERP COMPILER #9FEBB7RHD
1 \ This technique cannot work unless F83 branches are The HEAP compiler stores the body of the definition in HEAP
2\ ismplesented in a relocatable sanner!!!! aemory. The dictionary entry contains the relative heap pointer
3 ONLY FORTH ALSO HIDDEN ALSD FORTH DEFINITIONS WARNING OFF at which the body is stored, At runtise the body is copied onto
4 VARTABLE HPMDDE YARIABLE X0S an ’execution stack’ (in the dictionary segeent at present) and
J HEX Dge# X0§ ! executed,)
[HPNODE is a flag determining whether to store in DICT or HEAP
7 ¢ HEAP HPNODE ON Y08 is the stack pointer for the 'execution stack’
8 ¢ DICT HPMODE OFF ; HEAP or DICT select HEAP or DICTionary coapilation, respectively
PIEXE (ad>) DR
16 ¢ LST@ (ptr > ptr’ wdct) 20UP 1 IPTR 25WAP X@ ; EXE sets up execution of a colon definitian body.
11 EVAL (ptr wdct > 7) DUP NEGATE XOS @ DUP JR SWAP IPTR @EVAL, EVAL and LST provide taols for the retrival and
12 DUP X0S ! CE® SWAP ROT XHOVE X0S & EXE R» X0S ! ; execution of LISTS (¢ def bodies) stored in HEAP as a word
130 QEVAL (ad >) 2@ HREL LST® EVAL ; count followed by the list of words (analogaus to byte count
14 DECIMAL followed by character sequence for strings).
13
5 37
§ \ ROHDA-FORTH HEAP COMPILER 14JANB7RHD \ ROHDA-FORTH HEAP COMPILER , $9FEBATRHD
1 ALSI 0 HIDDEN DEFINITIONS
21X (h>)} LAST @ NANE> >BODY Aj sets up the word count, allocates space in HEAP, and moves
3 HERE OVER ~ t+ 2/ DUP JR (CT) 1+ HEAPALLOT the body of the definition to HEAP. The HEAP offset to the
4 20UP HREL 2DUP Re -ROT X! 2+ list is stored in the paraaeter field of the dictionary entry
5 CS8 5 PICK 25WAP R) YMOVE and the reasainder of the dictionary space is reclaimed.
& ROT DUP 2 IPTRDP ! 2!
7 The fact that the interpret loop is buried INSIDE of : in FB3
8 FORTH DEFINITIONS necessitates the redefinition of both @ and . Normally
9 ¢ [COMPILE) : HPMODE &€ IF DDES> REVAL THEN only redefinition of ; is required.
18 IMMEDIATE HPHODE is
11 ¢ ; [CONPILE] ; HPNODE 8@ 1IF JX; THEN ; checked in both cases and appropriate additional action is
12 INMEDIATE taken if HEAP coapilation is enabled.
13

14 ONLY FORTH ALSD DEFINITIONS DECIMAL
13 NARNING ON

Forth 83 Hodel

