Proceedings of the 1987 Rochester Forth Conference 141

A Forth Implementation of LISP

Tom Hand

Department of Computer Science
Florida Institute of Technology
Melbourne, Florida

This paper describes a Forth implementation of the language LISP.

After discussing various aspects of this implementation, a table of
the implemented functions is presented.

INTRODUCTION

The LISP language was invented by John McCarthy of MIT in 1967. LISP is
the most popular language of Artificial Intelligence in the United States. [t is the
second oldest high—level language in current use.

This implementation is based on Franz LISP and was totally written in TTForth
on a Moloria 68000 microprocessor. TTForth is a token—threaded Forth that was
written by H. S. Lee at Florida Institute of Technology.

IMPLEMENTATION

As in Forth, both data and programs are ireated in the same way by LISP.
The basic data structure in LISP is a list. LISP contains an evaluation process

that transiates ono s—expression (short for symbolic expression) into another
s—expression.

a—oxpreulon LlSP t—oxprouion
Evaluator >




142 The Journal of Forth Application and Research Volume 5 Number 1

For simplicity, this implementation requires that tokens in the LISP source
code be enclosed within blanks.

The primitive data objects of LISP are called atoms; they are sither numbers
or symbols. The basic data structures are linked lists and property lists. Atoms
and lists are handled differently. Atoms have structure that is quite similar to
Forth; they are words but they are not directly accessible by the inner interpreter.
The structure of an atom is illustrated by the following figure:

link fisld

name field

code field

type field

value fleld

property field

function definition field

Type checking is performed at run—time because LISP requires dynamic
type checking. Any number of properties can be assigned to a symbol with
these properties having arbitrary types.

Lists are represented as binary trees. For exampils, the list

((ab) ¢ (d)

is represented as the following binary troe:

L1 LI/
L1 1 c




Proceedings of the 1987 Rochester Forth Conference 143

It is always the case that the left node points to the current element of the list
while the second node points to the remainder of the list.

Standard LISP functions have been implemented as Forth words. On the
other hand, user defined functions are represented as binary trees in a manner
similar to that done by most LISPs. Forward references are handled by main-
taining a list of undefined symbois along with the addresses that correspond
to each such symbol.

As mentioned earlier, the basic operation in LISP is called evaluation. For
a list to be svaluated, its first argument must be a function. If such a function
is detected, the remaining arguments of the list are each evaluated and finally
the function itself is evaluated.

Because data structures are dynamically created and deleted, tree nodes
require continual allocation and dealiocation. Efficient memory allocation-
requires that garbage collection be performed to reclaim any unused nodes.
A first fit algorithm decides which memory is allocated from the free pool.
Garbage collection is performed as data structures change dynammically.

INSTALLED LISP FUNCTIONS

A reasonable subset of LISP functions from Franz LISP have bsen
implemented in the current prototype. They are listed below:

List Functions:

car cdr last
nthelem nthedr cons
append list nconc
rplaca rplacd assoc
length reverse

Comparator Functions:

and or not
atom nuli numberp
symbolp listp eq
equal neg nequal
greaterp lessp zerop
minusp plusp evenp
oddp = <=

> =

Data Structure Functions:
setq putprop defprop
get plist

Evaluation Controi Functions:
quote eval funcal



144 The Journal of Forth Application and Research Volume 5 Number 1

Arithmetic Functions:

+ - *
/ 1+ 1-
mod abs

Input/Output Functions:
print read load
msg

Function Definition Functions:

defun ‘ def getd
putd ,
Flow of Control Functions:
cond . if while
prog go return
CONCLUSIONS

This version of LISP was successfully implemented as an initial
prototype. Currently, two other enhanced versions are under develop -
ment that take advantage of Forth’s extensibility.

REFERENCES

1. Brodie, L., Starting Forth, Prentice—Hall, 1981.

2. Lee, H,, TTFORTH: A Token Threaded Forth, Florida Institute of
Technology, 1985,

3. MccCarthy, J., LISP 1.6 Programmer’s Manual, MIT Press, 1965.
4. Wilensky, R., LISPcraft, W. W. Norton & Company, 1985.
5. Winston & Horn, LISP, Addison Wesley, 1984.

6. Yin, Q., FLISP: A LISP Embedded in the Forth Environment, Florida
Institute of Technology, 1986.



