
Proceedings of the 1987 Rochester Forth Conference 141

A Fort Implementtion of liSP

Tom Hand

Department 01 computer Science
Florida Institute 01 Technology

Melbourne. Florida

Thlipaper ducrlbei a Forth Implementation of the language LISP.
After dlicuiilng varloui aipecti of thli Implementation, a table of

the Implemented functloni II preiented.

INTRODUCTION

The LISP language wai Invented by John McCarthy of MIT In 1967. LISP II
the moit popular language of Artificial Intellgence In the United Stat... It II the
ucond oldut high -level language In current uie.

Thli Implementation I1 baud on Franz LISP and wai totally written In TTForth
on a Motoria 88000 mlcroproceiior. TTForth I1 a token-threaded Forth that wai
writen by H. S. Lee at Florida Initltute of Technology.

IMPLEMENTATION

Ai In Forth, both data and programi are treatid In thi iami way by LISP.

The bailc data itructuri In USP II a liit. LISP contalni an evaluation proceii
that tranilat.. oni i-expreiilon (ihort for iymbollc expre..lon) Into another

i-expre..lon.

1- ixpreulon LISP
Evaluator

1- expreulon
-



142 The Journal of Forth Application and Research Volume 5 Number 1

For simplicity; this implementation requires that tokens in the LISP SDurce

code be encloud within blank..

The primitive data objecti of LISP are called atomi; they are either number.
or symbols. The basic data itructures are linked lists and propert lists. Atoms
and li.t. are handled differently. Atom. have structure that i. quite .imilar to
Forth; they are words but they are not directly accessible by the inner interpreter.
The structure of an atom i. ilustrated by the following figure:

link field

name field

code field

type field

value field

propert field

function definition field

Type chicking is performed at run-time because LISP requires dynamic
type checking. Any number of properties can be auigned to a symbol with
these propertiu having arbitrary typu.

Lists are repruented .. binary trees. For example, the list

((a b) c (d))

is represented as the following binary tree:

f "r
rc

a b d



Proceedings of the 1987 Rochester Forth Conference 143

It is always the case that the left node points to the current element of the list
while the second node points to the remainder of the list.

Standard LISP functions have been implemented 81 Forth word.. On the

other hand, user defined functions are represented as binary trees In a manner

similar to that done by most LISPs. Forward references are handled by main-
taining a list of undefined symbols along with the addrelSes that correspond

to each such symbol.

A. mentioned earlier, the ba.ic operation in LISP is called evaluation. For
a list to be evaluated, its flnt argument muit be a function. If such a function

is detected, the remaining argument. of the Ii.t are each evaluated and finally
the function itself Is evaluated.

Because data structures are dynamically created and deleted, tree nodes
require continual allocation and deallocatlon. Efficient memory allocation

requires that garbage collection be performed to reclaim any unused nodes.

A first fit algorithm decide. which memory is allocated from the free pool.
Garbage collection Is performed as data structures change dynammically.

INSTALLED LISP FUNCTIONS

A reasonable subset of LISP functions from Franz LISP have been

implemented in the current prototype. They are listed below:

List Function.:
car
nthelem
append
rplaca
length

cdr
nthcdr
list
rplacd
reverse

lut
con.
nconc
.aaoc

Comparator Functioni:
and
atom
iymbolp
equal
greaterp
mlnusp
oddp
)0 =:

=

not
numberp
eq
nequal
zerop
evenp
c: =

or
null
ii stp
neg
leup
plusp

Data Structure Functions:

setq
get

putprop
plist

defprop

Evaluation Control Functions:quote eval funcal



144 The Journal of Forth Application and Research Volume 5 Number 1

Arithmetic Function.:
+/ 1+mod ab.

*

1-

Input/Output Functions:

print read
msg

load

Function Definition Functions:defun def
putd

getd

Flow of Control Functions:cond nprog go while
return

CONCLUSIONS

Thi. version of LISP wat tucceufully implemented a. an initial
prototype. Currently, two other enhanced versions are under develop-

ment that take advantage of Forth'. exten.lbilty.

REFERENCES

1. Brodie, L., Starting Forth, Prentlce-Hall, 1981.

2. Lee, H., TTFORTH: A Token Threaded Forth, Florida In.titute of
Technology, 1985.

3. McCarthy, J., LISP 1.5 Programmer's Manual, MIT Pre.., 1965.

4. Wilenaky, R., LISPcraft, W. W. Norton & Company, 1985.

5. Winston & Horn, LISP, Addlson Wealey, 1984.

6. Vino Q., FLlSP: A LISP Embedded in the Forth Environment, Florida
In.tiute of Technology, 1986.


