
Proceedings of the 1987 Rochester Forth Conference 153

Transportable Forth
and Cross Compilers

Rieks J oosten
Pijnenburg Software Development

P.D. Box 82
5270 AB St. Michielsgestel

The Netherlands

Abstract

This article describes the philosophy and experience with prototypes of a Transportable Forth Kernel

(TFK). With TFK, the emphasis lies on transportability of 
the source code without sacrificing facilities

such as flexibility and speed. To this end, some vital terminology is developed, nucleus words are stated,
and future developments are discussed. TFK prototype systems prove to be not only decent "regular"

Forth systems, but also a basis for writing transportable Forth. The latter requires some extra effort from
the programmer.

1. Introduction

Forth has not been defined, it has grown. Efforts for standardization have not been very successful,

resulting in a number of "standards". The fact that the language itself is extendable has played a significant
role in this. One could say that contrary to classical languages as COBOL and FORTRAN, Forth is a
living language. It is this property, that most other languages lack, that makes Forth comparable with a
natural language.

In Holland it is not odd to find places that are hardly two miles apart, and yet have such different
dialects that people cannot interact with each other. However, when they must work in another town,
there is need for a generally accepted, yet workable language. In Holland this is found in what is called
"high Dutch", and this is the language taught in schools (although dialects may be used in certain classes).

Comparing Forth with the above described situation induces the idea of creating a language-dictionary
that contains the most often used Forth words and their definition. This can be done in two ways:
- descriptive (describe the words and their behavior from practical experience, as is done for some systems
in the book "All About Forth", by Glen Haydon)
- prescriptive (define the words like a standard would)

Either method has (dis )advantages, but sitting back doing nothing is worse. Creating such a language-
dictionary also wil not inhibit the use of local dialects; However, it may enable the writing of
transportable code, but that wil take some learning for the people involved.

2. Another Forth System

The fact that a generally accepted, globally workable definition of Forth is lacking has led to the
development of a new systeffthat is called EVO-Forth. This system does not pretend to be generally
accepted. It does claim to support transportable coding, (e.g. 32-bits systems), without any loss in
efficiency and capabilities.



154 The Journal of Forth Application and Research Volume 5 Number I

Reasons for designing yet another Forth system are many. First, there are the more philosophical
reasons as described previously. Second, past experiences with operating systems, fies/blocks, error
handling, memory management, large machines as well as single board computers, etc. . ., have balanced
ideas concerning a wide variety of hot Forth topics. Third, in order to get rid of outdated material, it is best
to design and implement a system from scratch.

Such a new system may contain several modules, each for specific tasks such as floating point, error
handling, memory management, filing, etc. Although they are projected to become parts of the system,
they are not discussed here; the emphasis lies on the design and definitions with respect to the very basic
system, the nucleus. To stress the nature of this nucleus and its importance, it has been given a separate
name: TFK (Transportable Forth Kernel).

The starting points of the TFK design have been the following:
1. TFK has been defined in such a way that source code may be transportable, without restricting thepossi-

bilities of the language
2. TFK is to be maximally compatible with existing Forth systems
3. TFK has to run on very small as well as very big machines
4. A TFK has to be at least as efficient with memory and time as a comparable non- TFK Forth system.

The method by which TFK gains hardware independency (so that source code may be transportable)
is primarily achieved by establishing appropriate terminology, and introducing models for memory,
stacks, and data in a size and structure independent way.

The method by which TFK gains hardware independency (so that source code may be transportable)
is primarily achieved by establishing appropriate terminology, and introducing models for memory,
stacks, and data in a size and stnicture independent way.

In order to run TFK-based programs on very small as wen as on very large machines requires a tradeoff
to be made between facilities supplied by the system and machine size. This tradeoff is a voided by stating
that an EVO-Forth development system includes facilities for meta-compilation with library and
package support. This results in the possibility to generate stand-alone programs from which all
superfluous code is stripped.

Such development environments are of such power, that it is straightforward to compile a TFK in such
a way that its performance is equal or better than that of comparable Forth systems.

3. Towards a Nucleus Definition

In order to reach the goals that have been set, it is of vital importance that solid terminology is defined
based on the use of Forth and of characteristics of portable programs. With this terminology, the
diffculties in transporting Forth programs can be expressed, and subsequently be solved.

The compatibility of the TFK with other systems, especially with respect to addressing and memory
store/ fetch operators, is mainly due to the terminology that is used and the choice in names for associated
operators. Making the program transportable requires the application to be rewritten in "TFK-style",
which mainly consists of eliminating machine and implementation dependencies.



Proceedings of the 1987 Rochester Forth Conference 155

The complete list of terminology cannot be given in this article, due to limits on the length. One of the
most important aspects of the terminology is to separate different data types and related operators to
eliminate machine dependent code. For example, the data type "boolean" is defined as a separate data
type, so the exact value of e.g. "true" can be implementation dependent. Also addressing types are strictly
defined, with definitions for "cell" - addressing, "byte" - addressing and "extended" - addressing. A
extended terminology list (as originally planned for this article) wil be published, and can be obtained
from Pijnenburg Software Development.

A number of constants and conversion routines supply the needed information to make code
independent of a particular implementation. These include definitions as "BITS/CELL" etc. to retrieve.
the characteristics of the implementation in case e.g. precision of a compact storage of data is relevant.
These can be used atcompile-time for conditional compilation, thereby imposing no runtime penalty for
using TFK.

4. Results

Prototype systems are built that run on the IBM pc/xt/at, as an extension of FYSForth. The most
important modules thereof are:
- Transportable Forth Kernel
- Forth Compiler; text interpreter
- Extended Buffer Management
- File i/o
- Exception handling

Apart from that, there are some miscellaneous facilities such as a high level serial line interface,
automatic document generation aids, i/ 0 port words, vectors, execution chains, conditional execution,
etc. They are specifically mentioned to acknowledge the dependency of the system thereon, albeit for a
small part only.

Using these prototype systems, Evolution Assembler Environments (EAEs) have been created. These
EAEs are machine-code programming environments that are all identical, except for the specifically
target-dependent parts such as the mnemonics. These EAEs handle source fies with speeds between the
300 and 500 kB/min, and yet have extensive logging facilities, macro support, forward referencing, etc.

It is found that writing the EAE-modules was uneasy in the beginning, and that it takes time to get used
to the ideas behind TFK. Learning from sins against TFK is tolerated until a program is transported. It is
felt that complying with TFK ideas is worth the effort of getting acquainted with it for a number of
reasons.

First, it makes one more aware of what one is doing. Such results are important especially in modules
that are difficult to oversee at first and afterwards turn out to be relatively simple. This has been the case
with a very powerful forward-referencing module that is now part of the EAEs.

Second, it is a relief to know that the system is orthogonal in its wordset, so that it is unnecessary to
think whether or not some routines are available. This saves considerable time looking whether or not
such words exist, or having to recompile because words do not exist. Having some synonym words
around is not a real disadvantage since this does not occupy dictionary space (headers are separated, and
reside in symbol table buffers that are external to Forth).



156 The Journal of Forth Application and Research Volume 5 Number 1

Third, it is shown, by the speed of the assemblers, that the prototype systems are not slower than
comparable Forth systems. As a matter of fact, the underlying FysForth would not be able to compile

nearly as fast as the EAEs do. This speed is mainly due to the fact that headers and code are separated,
allowing for other search-mechanisms to be utilized, but also to the fact that there are no limitations to the
implementations, and that the words defined do not presume programmer knowledge of internal
structures.

Apart from gaining experience with transportable Forth, the prototype system also allows for
experimenting with other novelties for which a need was felt during the development of a complete
high-performance yet robust Forth system. Naturally, the exception handling is amongst the new
features, but also execution vectors (that allow initializátion and finalization actions to be performed
when switching vectors) and execution chains (that allow appending or insertion of routines to such
chains; this enhances possibilities for initialization, finalization, resetting, etc., of modules in a system).

Each of these modules, as well as the more "classical" ones such as buffer management and symbol
table handling, have been carefully designed with as major requirements that
- the syntax must be in accordance (and as orthogonal) as the TFK itself, and
- implementation details must be hidden from the user.

These two requirements allow for internal optimalization when necessary, without a priori sacrificing
transportability of application programs that use these modules.

5. Conclusions

A prototype Transportable Forth Kernel has been developed for building professional Forth systems
that support writing transportable Forth source code, without sacrificing flexibility or speed. The
emphasis in the TFK design has been put on the definition of necessary terminology, and on maximum
compatibility with existing Forth systems.

Forth cross compilers have been built for programming either Forth on a byte machine (6809-based),
or a word machine (NOVIX NC4000-based). Running TFK-based test-applications on both machines
confirms that the TFK is reasonably defined, and that there is no speed or memory penalty.

In order to explore the potentials and weaknesses of the prototype TFK, prototype Assembler
Environments have been built on it. The performance (typically 400 kB/min on an IBM/AT) and
general applicability thereof (identical environments for different cpu's, except for machine-code
mnemonics), are direct consequences of the changing insights that are brought by the definition of the
TFK.

. Future work wil be directed towards the extension of the transportability concepts that started with
TFK, i.e. towards the definition of a high-performance, transportable, professional Forth system. Due to
the promises embedded in the prototype assembler environments, an effort will be made to develop other
programming environments based on this Forth system as welL.


