
Proceedings of the 1987 Rochester Forth Conference 157

Implementing Forth on the 80386

John E. Lecky
62 Overlook Dr.

So. Burlington, VT 05401

Background

The introduction of a wide range of commercial 32-bit microprocessors by Fairchild, Intet Motorola,
National and others has intensified the drive for native 32-bit Forth implementations. These new processors
offer two important advantages as Forth system hosts. First, their 32-bit address spaces provide for the
maintenance of enormous Forth dictionaries without resorting to overlaying or segmentation which slow exe-
cution and frustrate programmers. Coping with such large dictionaries is increasingly important as Forth is
calIed on to solve more and more complex problems requiring massive programs and data structures.

The second advantage of these new processors is their speed. Forth is often the language of choice for
solving real-time control problems. Maintaining execution speed in the face of large control routines and data
sets is critical in these applications. The new processors exploit the latest design and fabrication technologies
to permit clock rates of up to 30 MHz. At the same time, many instructions execute in fewer clock cycles
than were required by earlier processors as more efficient paralIel processing is performed internally.

The purpose of this paper is to describe a Forth system that has been developed for one of these proces-
sors, the Intel 80386. The 80386, now a key player in the new line of personal computers offered by IBM, wil
soon enjoy the level of support already enjoyed by some of the earlier entries in the 32-bit market. The 80386
has a "real" mode in which it can execute existing 8086 programs. This feature makes it an attractive system
host, as the wide range of existing hardware expansion products already available in the IBM PC-compatible
marketplace can be utilzed. Similarly, any of the multitude of software products running under MSDOS1 or
other operating systems can be used as extensions to a Forth-PC system, creating a very powerful and heavily
supported workstation or system controller at comparatively low cost.

While the basic architecture of the 80386 closely resembles that. of the 8086, a larger instruction set,
more orthogonal addressing capabilties, and vastly improved instruction execution times make 80386 Forth

an essentially new implementation opportunity. In addition, the hostility of the Intel architecture toward
multiple-stack machines makes the job somewhat invigorating.

The 80386based Forth system described herein has been built around the Intel iSBC 386/20l Single
Board Computer running on MULTIBUS 1.2 The system includes floppy and hard disk support, a fulI-screen
editor, and a complete, standard syntax 80386 assembler. The system also interfaces with a framegrabber and
an array processor to allow it to serve as an industrial vision engine.3 The complete package is targeted for

porting to the 386lC environment as hardware becomes available.

Execution Threading

Several concerns confront system authors in designing a 32-bit Forth. First, dealing with 32-, 16-, and
8-bit data requires the invention of some new primitives. This problem is easily solved by simply extending
the solutions already in use in 16-bit Forth. Second, the possibility of huge dictionaries raises concerns about
dictionary search, and therefore compilation, speed. Search speed may be maintained, however, by

'MS-DOS is a trademark of MicroSoft Corpration.

'¡SBC and MULTlBUS are trademarks of Intel Corpration.

%is system was developed under contract with Control Automation, Inc., Prince ton, NI.
Fairchid, Intel, Molorola, National and IBM are trade names used herein to refer to FairchUd Camera and Instrment Corpration,

Intel Corpration, Motorola Inc., National Semiconductor Corpration, and International Business ~lachines Corpration.



158 The Journal of Forth Application and Research Volume 5 Number 1

employing the standard technique of hashing into multiple (Le., 256) search paths. Other porting issues have
been addressed and conquered before; in fact, the only critical design decision involves the manner in which
execution will "thread," or flow from one word to another.

In designing Forth for speed, two threading approaches are commonly used; direct and subroutine. In
the direct threaded approach, Forth definitions are compiled as a list of code field addresses. This list is
headed by the address of the word DOCOLON, and terminated by the address of the word EXIT. Table 1
shows how these words are typically coded on the 8086 and the 80386, along with execution times in clock
cycles. The direct threading into and out of a colon definition requires 119 clocks on the 8086. The same job
can be done in 52 clocks on the 80386 due to more effcient instruction execution.4 These times represent a
measure of the overhead involved in executing colon definitions; looked at another way, they measure the
time needed to execute a Forth word which does nothing, as in : NULL

Table 1: Direct Threading on the 8086 and 80386

8086 Implementation 80386 linplementation

Code Time Code Time

DOCOLON: INC DI 63 clocks ADD EDJ,4 27 clocks
INC DJ
DEC BP SUB EBP,4
DEC BP
MOY IBPj,SI MOY IEBPJ,ESI
MOY SI,DI MOY ESI, EDI
LODSW LODSD
XCHG AX,SI XCHG EAX, ESI

JMP ISI) JMP IESI)

EXIT: MOY SI,IBP) 56 clocks MOY ESI,(EBP) 25 clocks
INC BP ADD EBP,4
INC BP
LODSW LODSD
XCHG AX,SI XCHG EAX, ESI
JMP (SI) JMP IESIJ

Subroutine threading contrasts sharply with direct threading in that the microprocessots own subrou-
tine call and return capability transfers control from one word to another. Compiled Forth words consist of a
list of machine code CALL instructions, optionally interspersed with other machine code instructions. Execu-
tion is terminated by a machine code RET instruction. In a 16-bit Forth, subroutine threading increases the
storage requirements of compiled Forth words by 50% as the CALL opcode byte must be stored with each
two-byte address. This overhead decreases to 25% in 32-bit Forth, as the pointers to the routines must be
four bytes long at the outset. Table 2 shows the coding for this simple subroutine threading approach on the
80 and 8038, along with execution times in clock cycles. Subroutine threading into and out of a colon
definition takes 27 clock cycles on the 8086 and only 19 clocks on the 80386, again owing to more effcient
instruction execution on the 80386.

Table 3 summarizes these threading speeds, assigning direct threading on the 8086 (the slowest) a speed
of 1.0. Ths direct clock count comparison ignores the 80386's advantage in clock rate-- a 16 MHz part is

presently available, and 25 and 30 MHz parts are planned by Inte\. Adhering to the present, Table 4 projects

'Branching instrctions on the 80 UMP, CALL, KET, etc.) have an execution time which is dependent on the complexity of Ihe
instrction located al branch destination. This effeel is caused by prcfetch queue reloading delays. Timing calculations herein assume
an average reload delay of 1 clock cycle, which has proven reasonable expenmentaUy.



Proceedings of the 1987 Rochester Forth Conference 159

Table 2: Subroutine Threading on the 8086 and 80386

8086 Implementation 80386 Implementation

Code Time Code Time

CALL addr i 9 clocks CALL addr 8 clocks

RET 8 clocks RET 11 clocks

threading times for the 8086 running at 8 MHz and the 80386 running at16 MHz. The threading times for the
80 have been experimentalIy verified for several versions of Forth running on the 8086. As a result of inev-
itable wait-states incurred by a 16 MHz CPU in accessing RAM, the actual subroutine threading time on the
80386 averages 1.5 ¡iS. The iSBC 386/20P board uses a cache subsystem to eliminate some of these wait-
states. although cacheing is of limited utility in executing a threaded language like Forth.

Threading Processor
Type 8086 80386

Direct 1.0 2.3

Subroutine 4.4 6.3

Threading Processor
Type 8086 80386

Direct 14.9 ¡iS 3.25..S

Subroutine 3.38 ¡iS 1.9 ¡iS

Table 4: Projected Threading Overhead
(Null Definition Execution Time)
8086 at 8 MHz, 80386 at 16 MHz

It is clear that subroutine threading offers large speed advantages over the direct threaded approach.
Threading speed is very important in Forth, as high-level routines which make few calIs to primitives can
easily spend more than half their execution time threading. The t'xecution of primitives, however, is some-
what complicated by subroutine threading, as explored next.

Table 3: Relative Threading Speed
At Equal Clock Rates

Coding of Primitives under Direct and Subroutine Threading
In direct threaded Forth, the return stack is pointed to by the BP register and is managed separately by

DOCOLON and EXIT. This leaves the CPU stack pointed to by the SP register free for use as the parameter
stack. Conversely, in subroutine threaded Forth the CPU stack must be the return stack. Thus, a second
register, usualIy BP, must be used as a pointer for the parameter stack. As the Intel àrchitecture only pro-
vides PUSH and POP instructions which operate relative to the SP register, and as it has no register auto-
increment or auto-decrement capabilities, interacting with the parameter stack at the machine level is cumber-
some. The code for DUP, again on both processors and for both threading techniques, is shown in Table 5.
Note that the more orthogonal addressing capabilty of the 80386 is used to advantage in both threading
environments.

Performing a DUP is significantly more time consuming under subroutine threading on the Intel archi-
tecture. The other primitives are affected in a similar fashion; any word that modifies the depth of the stack
must update the EBPregister explicitly. Fortunately, the add and subtract immediate instructions on the
8038 execute in only two clock cycles, and so while a greater burden is placed on the Forth system author in
developing the kernel, a much faster final product results from the huge savings in threading time.

Definition Interchangeabilty and Inline Code
Subroutine threading offers the additional advantage of simplifying the interface between colon defini-

tions and CODE definitions. AII subroutine threaded words, whether written in Forth or code. are compiled



160 The Journal of Forth Application and Research Volume 5 Number I

Table 5: Coding of DUP for Direct and Subroutine Threading

Threading 8086 Implementation 80386 Implementation

Type Code Time Code Time

Direct MOV DI,SP 23 clocks PUSH (ESP) 5 clocks
PUSH (OIl

Subroutine MOV DI,BP 31 clocks MOV EAX,(EBPl 8 clocks
XCHG BP,SP SUB EBP,4
PUSH (OIl MOV (EBPl,EAX
XCHG BP,SP

as machine code routines. This unification of the compiled form of all definitions is useful when code defini-
tions must be called by both Forth words and code words without execution-time penalty. Furthermore,

machine language instructions may be inserted with impunity ;,ito the bodies of Forth definitions. This power-
ful capability, known as inline code, permits partial optimization of debugged Forth definitions to increase
their execution speed without necessitating complete translation into assembly language. This facility pro-
vides a very wide latitude in managing the trade-off between programmer hours and final execution speed.

Inline code has also been used to great advantage in the optimization of the Forth control flow con-
structs. For example. the execution time of LOOP was decreased by 40% by compiling it as:

CALL (loop)
JNZ (beginning of loop)
ADD ESP,8

This sequence calls an index incrementing routine, (loop), which leaves the zero nag set if the loop should
terminate. The conditional branch instruction then either branches back to the word following the original
DO or falls through to the ADD instruction which drops the index and limit off the return stack. This
arrangement eliminates the conditional branch in the (loop) routine which would otherwise be needed to
orchestrate this drop. Using this technique, the subroutine threaded Forth on the 80386 at 16 MHz executes

307,00 empty DO-LOOPs per second.

Conclusion

Several test programs were executed on a direct threaded, 8 MHz 8086 system and the subroutine
threaded, 16 MHz 80386 system. The 80386 system proved between six and eight times faster than the 8086.

The introduction of the 25 MHz 80386 wil decrease instruction execution time by over 50%, although more
clock cycles will be wasted on memory wait-states as the RAM struggles to keep up with the CPU. For this
reason, the 25 MHz 8038 wil probably run Forth ten to twelve times faster than does the 8086. Defining
macros which assemble inline code for simple but ineffcient constructs like DROP DUP or DUP )oR can
often increase execution speed by an additional order of magnitude.

The enormous, 4 gigabyte dictionary space of the 80386 opens up many new frontiers for effective Forth
application. While Forth implementation on the 80386 is somewhat complicated by the Intel architecture and
the choice of subroutine threading, these complications are transparent to Forth programmers. The resulting
machine is nearly three times faster than a direct threaded 80386 Forth would be. at only moderate storage
expense. At the same time, subroutine threading leads to a unifed compiled definition structure that opens
up new possibilities for implementation and optimization.

Acknowledgement

The author wishes to thank the University of Vermont, Intel Corporation. and Control Automation, Ine.
for invaluable dssistance and support throughout this project.


