
Proceedings of the 1987 Rochester Forth Conference 161

BORON- Yet Another Object Oriented Forth

Steven M. Lewis
Dept. of Biomedical Engineering

U. Sou the r n. Ca 1 .
Los Angeles CA 90089

ABSTRACT

A system of object oriented extensions to FORTH are described.
Objects support inheritance, subclasses, instance variables, both
early and late binding and may be intermingledwi th standard FORTH
code. In the absence of specific messages, objects invoke default
operations. A uniform means of handling structures of multiple
objects is also described. Early binding generates code similar to
FORTH code with little run time penalties.

Introduction

Object oriented
pro g r amm i n gin pIa c i n g

data structures within
selected by sending a
genera tes more readable
programmer.

programming differs from conventional
knowledge about methods for manipulatiing
the structures themselves. Methods are
message to the structure. The process
code and places a lower burden on the

A significant advantage of object oriented programming come
when the sa~e message evokes simi lar behaviors from a number of
different objects. For example, consider a collection of FORTH
VARIABLES, FVARIABLES, STRINGS, LISTS and other structures. To
print the contents of each, one needs to write: ?; F~ F. ; COUNT
TYPE ,a separate code for each object. As OBJECTS the message
PRINT: will cause all types of objects to print themselves.

A number of object oriented versions of FORTH have been
described ((Duff 83),(Duff 86), TkC1ick 86),(Pountain 86)). At
least one commercial system, NEON (Krya Systems) is a version of
FORTH with extensive object extensions. BORON is generic FORTH code
for OBJECTS which, while retaining compatability with other
systems, gives the programmer substantial control over the
operation of Objects.

As with all object oriented systems, BORON introduces three
new data types: CLASES, INSTANCES and MESSAGES. A CLASS is a
defining word used for cre"ating INSTANCES. Classes contain
operations for building INSTANCES together with a list of all
allowable operations on an instance of that class. Each possible
operation is selected by a MESSAGE. Each INSTANCE is a state
sensitive, immediate word. On execution the INSTANCE reads the
message, looks up the operation and, in immediate mode, executes
the operation. In compile mode the operation is compiled. I will
use t he word i invokes i for these two opera t ions.

Major decisions in the design of an object oriented system
relate to the operation of INSTANCES and MESSAGES, the operation of
objects when no message is received and whether interpretation of
messages is done at compile time (early binding) or run time (late



162 The Journal of Forth Application and Research Volume 5 Number 1

binding). An additional consideration is knowledge of the structure
of the specific FORTH implementation used. I attempted to write a
generic system with minimal assumptions about the FORTH
interpreter, vocabulary structure or form of the compiled code.
This sacrifices elegance for portability. All systeM dependencies
are handled by defining a few words which operate in a system
dependent manner at the beginning of the system.

In the absence of a message in the current class, the address
of the object is passed to the PARNT class for interpretation. In
most standard object oriented systems, the unmodified address is
passed to the PARENT. I felt that this was unnecessarily
restrictive. While passing the object address is the default
operation for a class, each class has the ability to modify the
data before passing it to the PARENT. For example, a POINTER to an
ARRAY invokes ~ to get the address of the array before passing the
message to ARRAY for interpretat ion.

Messages are associated with a CFA to invoke. This may be a
single FORTH word (ADD-ACTION). a generated, headerless word (:MT
message .... MT;) or a sect ion of code which saves the base address
on a stack for availability to all objects in the message (:M
message .... M;) The first two methods place the object address on
the parameter stack and operate with no run time overhead.
EXAPLE 1
( C rea t e c I ass V AL U E

( Value is used like variable of the system - default ~
CLASS: VALUE (PARENT SUPER-CLASS(DEFAULT ~ ( default action is to ~ data

-) ADD-ACTION! ( message -) causes! a single word
:MT ++ 1 SWAP +! MT; (make headerless word for message ++
:M ++~ ++ SELF SELF Mj ( SELF is current object, ~ is default

( more act ions;CLASS ( end of class definition
( Create a class VALUE(), an indexed VALUE, messages not
( related to the indexing are passed to VALUE with element addr
CLASS: VALUE( J (PARENT VALUE

(CREATE-ACT CREATE-INDEX ( indexed variable)
(DEFAULT INDEX ( index,base -- addr get addr of indexed e1em)
( Add index methods here );CLASS ( end of class definition

10 VALUE() MYDATA() create a 10 element array. I use () in the
name as a reminder that this is an array)

: TEST -) 5
compi les to:

lit 5
MYDATA( )
INDEX

MYDATA( ) 3 MYDATA() j

lit 3
MYDATA( J INDEX
~

base. address
array default message -) is for VALUE
act ion for message -) in VALUE

same as above )
default for VALUE since there is )
no message, default actions compile.)



Proceedings of the 1987 Rochester Forth Conference 163

The system provides for the possibility of decoding messages at
run time. Because of the time penalties involved, this is not
recommended unless the message and/or the class of the instance are
not available at compile time.

Users have access to all elements of the class structure. The
par e n t , de fa u i t act ion, c rea t ion act ion, me t hod san d s t r u c t u reo f a
class may all be altered by the user. Three relations are possible
for classes: SUPER, PARNT and SIBLING. Super creates an identical
copy of the parent class without methods. Additional methods and
data may be added. PARENT simply declares the destination of
unresolved messages. SIBLING creates an identical copy of a class
structure, usually as a prelude to modification. For example, if
STACK i sac 1 ass sup p 0 r tin g s t a c k 0 per a t ion s ( pus h , pop, i nit, A top
where the later gets the address of the top element), then:
:CLASS VSTACK (SIBLING STACK (PARENT VALUE (DEFAULT ATOP
; CLASS
will create a class accessing
absence of a stack operation,
the top element.

all stack operations but in the
supporting all VALUE operations on

All structures consisting of collections of similar elements,
arrays, stacks, lists amd queues share a set of methods with
s i m ¡la r e f f e c t s, a 1 t h 0 u g h the de t a ¡Is are qui t e d i f fer en t from 0 ne
class to another. START: initializes an internal pointer to point
to the first element. It returns true unless the structure is
empty. CURRENT: read the last message on the stack and apply it to
the currently addressed element. NEXT: advance the pointer to the
next element. NEXT: fails if either there are no further elements
or the word BREAK is used. Failure initializes the internal
pointer. BREAK stores the address of the instance addressed in
CURRENT- VALUE.

EXAPLE 3
4 0 STACK SI (c rea tea s t a c k, S 1
( NOTE if SI is an array, list or queue the same code works
SUMSl ( ()--n sum all elements in stack SI )o START: SI ( ini t ial ize offset

BEGIN WHILE GET: CURRENT: SI ( get current data+ NEXT: ( -- f true if next is valid element
REPEAT

( A more complex use, here the operation and the structure are
both arguments. Thus, 0 ' (+) SI MAPSTACK is the same as SUMSl
*STACK *SS (create a pointer to a stack )

MAP S TACK ( 0 per a t ion, A s t a c k - - ( ) a p ply the 0 per a t ion t 0

all elements on the stack)P-) *SS store stack address in *SS, P-) is
a message to a pointer to store)R operation to return stackSTART: *SS ( ()-- f start a structural access

BEGIN WHILE GET: CURRENT: *SS ( fetch current)
R~ execute (perform that operation on it
NEXT: *SS (-- f true if next is valid element

REPEAT R) DROP ;



164 The Journal of Forth Application and Research Volume 5 Number 1

Implementation

Messages are immediate words which place their address on the
message stack. All INSTANCES begin by compiling their address as a
literal. The current message is then read. If the message is in a
list within the class called the action list, the associated action
is fetched and compiled. If not, the default action is compiled and
the message is passed to the PARENT class and the process is
repeated. In the absence of a message, a default message is sent
which always returns a NOOP. Uninterpretable messages cause an
abort.

I n add i t ion toe xis tin gob j e c tor i en t e d s y stem s , 0 the r
approaches offer much of the flavor of object oriented programming.
The TO concept ((DOW 83) ) stores methods as multiple CFAs in each
instance. This approach wastes memory when the number of possible
methods is large compared with the alternative of placing methods
for a class of objects in a single location and simply pointing
each object to that location. Earlier, (Lew 85) I proposed an
extension to the TO concept placing responsibility for invocation
of the correct code in a an immediate, state sensitive object. This
paper describes how that concept can be extended to a full object
or ¡en t e d s y stem.

(CLI 86)Click, C and P. Snow, Object oriented programming in FIFTH,
J FAR 4: 1 9 9 - 2 0 2, 1 9 8 6 .

(DUFF 84)Duff C.B., A group construct for field words, JFAR 2:83-
88,1984.

(DUFF 86)Duff, C.B., Development of a threaded, object oriented
1 an g u age, J FAR 4: 1 3 3 - 1 5 4, 1 9 8 6 .

(DOW 83)Dowling, T, The QUAN concept expanded, JFAR 1:69-72, 1983.

(LEW 85)Lewis, S.M. Should variable be an immediate, state
sensitive word, JFAR 3:53-62, 1985.

(POU 86)Pountain, D. Object-oriented FORTH, Byte 11:227-233,1986.


