
Proceedings of the 1987 Rochester Forth Conference 165

A VLSI Implementation of a Stack-Frame Computer
C. Longway, Ray siferd, and R. D. Dixon

Wright State University

Introduction
The implementation of a 32-bit computer, the

archi tecture is described in the companion paper by
described in this paper. A diagram! of the implementation,
pipelined to a depth two, is at the end of this paper, and
used here come from that diagram or from Dixon' s paper.

This work is being done by graduate students and has been
separated into distinct functions for each chip. Later versions will
require fewer chips. We expect a 125 nanosecond version to be
available by spring 1988, and our goal for 1989 is a 20M-instruction/s
machine.
ALU CHIP IMPLEMENTATION

- The ALU is implemented in a VLSI chip and is the site of all
operations on data. One operation will take place during each
instruction cycle. At the completion of an instruction cycle, the
output of the ALU register is stored in the TOS. During the first
portion of the next instruction cycle, the output stored in the TOS is
transferred to the OTOS to be use as an operand to the ALU register or
output to the SBUS. During the last portion of an instruction cycle,
the ALU chip places a value on the SBUS. This value can be selected
from the OTOS, which stores values from previous operations, or the
ALUI register, which holds the SBUS value used as input for the
current operation.

For binary operations, the OTOS register is used as one operand.
The ALUI register is used as the other operand which is loaded from
the SBUS during the first portion of an instruction cycle. only one
operand can be accessed from a stack during a instruction cycle.
However, binary operations can be completed during one cycle since one
operand is supplied internally by the OTOS register.
STACK-FRAE CHIP IMPLEMENTATION

The log~ on the SBUS includes stack-frame chips as well as
special purpose chips and hardware. On every main memory cycle, the
SBUS goes through a read cycle and a write cycle.

The stack-frame VLSI chips can be thought of as memory as well as
stacks. The stack-frame chips support the typical stack functions of
PUSH and POP as well as the typical memory functions of READ and
WRITE. During the first portion of an instruction, either a READ or a
POP can be performed. During the last portion of an instruction, a
WRITE or a PUSH can be performed. ~

No addresses or pointers are used for the PUSH or POP operations
because they are implemented in hardware as vertical shift registers.
For the PUSH or POP instruction, the entire contents inside the stack
memory chip will move one address location. However, the memory
functions of READ and WRITE require that an explicit address be
supplied.

The special purpose stack-frames and hardware are accessed in the
same manner as the stack-frames. The C frame functions as a special
purpose register to pass constant values from the the address field of
an instruction to the SBUS. The I/O frame be used for I/O, but also
can potentially be used for ALU operations that do not fit in the ALU

SF1 (the
Dixon) , is

which is
all names

166 The Journal of Forth Application and Research Volume 5 Number 1

chip. The PC (program counter) is also treated as a stack by the stack
control signals. The implementation of this VLSI chip is discussed
below.
PC CHIP IMPLEMENTATION
-- The PC is implemented through the following functions: RESET,
INCREMENT, JUMP, JSR (JUMP SUBROUTINE), RETURN, and EXTEND.

RESET Function. During a system reset, the INC (incremented)
output is forced to zero and allowed to propagate to the input of the
INC and out the PCO (program counter output) driver to address memory
location zero.

INCREMENT Function. When the reset signal is released, the INC
will output an INC value to the PCO for addressing consecutive words
in memory.

JUMP/JSR Function. When an instruction is placed on the MBUS with
the least significant bit being zero, the PC passes this instruction
through JUMP and immediately wraps this value around to PCO to be used
as the next address. At the same time, the PC is loading INC with the
new address. If, in addition to bit zero, the JSR bit it is set to
zero, the PC responds by placing the output of INC on the stack bus to
be stored as the return address.

RETURN Function. During implementation of a RETURN function, the
return address is accessed from any device on the SBUS. The return
address is sent to the ALUI register during the first portion of the
instruction cycle. During the second portion of the cycle, the
return address is again placed on the SBUS and then propagated through
POP to PCO. At the same time that RETURN is being propagated to PCO,
it is also being loaded into the input of the INC.

EXTEND Function. The EXTEND function can be activated during the
first portion of any instruction cycle. When activated, the PCO
driver is disabled to allow the ALU chip to control the MBUS.

During a JUMP/JSR or RETURN it is necessary to move the input
values to the PCO very quickly. The internal architecture has been
optimized to implement these instructions quickly. Simulations show
that the data propagation of these instructions will be less than 5ns.
The majority of the PC circuitry is used to perform the 32-bit
increment. This INC is composed of combinational logic and will
stabilize in less then lOns.
CONTROL UNIT IMPLEMENTATION

In the current phase of design, control is implemented in PAL's.
We have selected to use PAL's since they allow us to make changes in
control at a low cost and fast turnaround time compared to having the
control logic in VLSI. The PAL's offer lOnS setup and delay times
which allow the system to run at full speed. During later phases of
design, we expect the control to migrate into the VLSI with the option
of using either internally generated or externally generated control.

The extended instructions require a minimal amount of state to
sequence through the extended portion of the instruction, but
otherwise each cycle is controlled directly by the bits from the
current instruction.
~ Codinq for the SFl
The description of the instruction set of the SFl in Dixon was made
without reference to the mapping between instructions and the binary
coding of those instructions. The mapping given here is being used in
the current implementation and is given as an example.

Proceedings of the 1987 Rochester Forth Conference 167

An instruction is composed of the following fields,
~JSR or operation bi t~~the rest~,

which are mapped to bits B31 through BO (B31 is the high order bit) .~JSR or operation bit~ BO~the rest~ . B31-B1
In case BO=O, the instruction is a JSR or a JMP and the fields

are defined as
~the rest~ := ~word number~~JMP bit~
~word number~ B31-B2~JMP bit~ B1
The instruction is a JSR if B1=0, a JMP if B1=1. In either case

the address to which control is transfered is
~word number~*4.
the case BO=1, the instruction is a regular operation withIn

fields:
~the rest~ . - ~opcode~~source~~destination~

~di spl acement~~direct~~memory~
~opcode~ . - ~op~~status~~op~ : B7-B3~status~ : B2
Here ~op~ is a binary coding for ADD, SUB, SUBR, AND, OR, XOR,

NOOP, LOAD, SHIFTRL, SHIFTRA, SHIFTL.
If ~status~ is 0 then a regular operation is indicated. If

~status~ 1 then the corresponding _ST instruction is indicated
(returns the status of the operation in TOS) .

~source~
~s-stack-frame~
~s-mode~
~destination~ .-
~d-stack-frame~
~d-mode~
The ~?-stack-frame~ fields

names, S, F, R, L, G, C, I, P.
The ~? -mode~ is 0 for stack access and 1 for frame access.
~displacement~ : B28-B16
This field is used as the address into any stack-frame accessed

in frame mode.~direct~ : B1
The ~direct~ field is a 0 when the old TOS is used to provide the

value to be written in the destination. If it is a 1 then the ALUI,
the value just read from the source, is used.

~memory~ : = ~extended~~read/wri te~~extended~ : B31~read/write~ : B30
When ~extended~ is a 1 then this is an extended instruction which

occupies two cycles and does a main memory access. The ~read/write~
bit is a 0 for a read, a 1 for a write.

.- ~ s-stack- frame~~s-mode~
: B15-B13
: B12

~d -s tack- frame~~d -mode~
: Bl1-B9
: B8

are a 3-bit coding of the stack-frame

168 The Journal of Forth Application and Research Volume 5 Number 1

" ¡

~

~

l
- ..

!i
~

g ",a ~ ~ ~
i 0
~ ~

~

-~

,.

~.
i

(J
:;
(""
I
-i;;
:¡;:
rr

;¡
r-cCl

rr
("
o ----------_____________
Cl
rr -i 0

c
Z
::

;:
rr;;o;;
-((/

rnc
(/

a

ti

;;
c
(/

r
9

------- -j- ---- ---------------------------

lJ
("

I
~

(;

~ I

~ I

~,. -- 1-

_=:

