Proceedings of the 1987 Rochester Forth Conference 27

The Massively Parallel Processor:
Architecture and Application

John E. Dorband

NASA/Goddard Space Flight Center
Image Analysis Facility/Code 635
Greenbelt, MD 20771

HISTORY

Born from ideas conceived during the mid 1970's at NASA's Goddard Space
Flight Center, the Massively Parallel Processor! (MPP) was built to explore
the application of parallel computing power to satisfy NASA's anticipated
vast space and Earth science computing needs, in particular LANDSAT with
its extremely large volume of image data. Goodyear Aerospace Corporation
began construction of the MPP to government specification in 1979. At that
time, no previous attempt had been made at a machine that possessed such a
high degree of parallelism. The MPP was delivered to Goddard in May of
1983. In 1984, NASA's Office of Space Science and Applications (OSSA)
issued a nationwide request? for proposals, seeking scientists interested in
pioneering the use of massively parallel processing for scientific
computation. A working group of 39 investigators was organized and began
their work in October 1985. One year later, most of these investigators
presented papers on their work at the First Symposium on the Frontiers
of Massively Parallel Scientific Computation3 held September 24-25,
1986 at Goddard. These papers and a subsequent report# written by the
working group documented the extremely wide variety of applications that
can effectively be processed on the MPP's architecture and permanently
established massively parallel processing as a viable and effective manner of
satisfying the seemingly overwhelming computational needs of the future.

ARCHITECTURE

The MPP (Figure 1) consists of a 2 dimensional array of processors, a
staging memory, and an array control unit (ACU). The array unit (ARU)
consists of 16,384 processors arranged as a 128x128 square grid.. Each
processor can communicate with its four nearest neighbors on the mesh (to
the north, south, east, and west). Each processor, or processing element
(PE), is bit serial and has 1024 bits of memory. This gives the ARU an
aggregate memory size of 2 megabytes.
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Figure 1. MPP Organization.

The staging memory, or stager, is an extremely versatile data reformatting
mechanism. Its memory is divided into 16 banks with 2 megabytes per bank,
giving it a total capacity of 32 megabytes. Data can be read in or out of the
memory at 80 megabytes per second. It can simultaneously send data to and
accept data from the ARU for an aggregate I/O rate of 160 megabytes per
second. The ACU consists of 3 control units, the I/O control unit (IOCU),
the processing element control unit (PECU), and the main control unit
(MCU). The IOCU controls the data flow between the staging memory and
the ARU memory. The PECU is a microcoded control unit that sends -
instructions and memory addresses to the PEs. The main control unit has a
typical microcomputer instruction set and sends I/O requests to the IOCU and
array instruction requests to the PECU.

A PE (Figure.2) is a bit serial processor. It has access to 1024 bits of
nonshared memory. It contains 6 single bit registers, a 30 bit variable length
shift register, a full adder, a logic unit, and routing connections to its four
nearest neighbors.

The C register holds the carry output of the full adder. The A and P register
are the inputs to the full adder. The B register is the output of the full adder
and the input to the shift register. The shift register is used to speed up
multiply, divide, floating point alignment and floating point normalization.

The P register is also an integral part of the logic unit and the routing
connections. Logic operations are performed between the contents of the P
register and the input to the logic unit from the common data bus with the
result being stored in the P register. The P registers of all the PEs are
connected in a north-east-west-south, or NEWS, grid, therefore, to
communicate between processors the plane of bits contained in the P registers
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slides to the north, south, east, or west. This grid of registers can be
connected at opposite edges as a cylinder, a spiral, or not at all.
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Figure 2. Processing Element.

The G register controls the masking of the processor during a masked
instruction. This allows a processor to compute whether it will execute
succeeding masked instructions. In a single instruction multiple data (SIMD)
machine like the MPP, this is a very important capability because all
processors receive the same instruction. Therefore the only options a
processor can have other than performing the given instruction is to not
perform it. This is important in such functions as sorting, generalized
routing, and floating point arithmetic.

The S register is the means by which data is transferred to and from the
staging memory. The S registers are connected to their neighbors to the east
and west. The output of the stager is connected to the western edge of the
processor array and the input to the stager is connected to the eastern edge of
the processor array. Therefore, /O is performed by sliding a bit plane (128
by 128 array of bits) in from the west or out to the east.

Two ways of using the stager's very versatile data reformatting mechanism
are provided for the user though the staging memory manager and the bit
plane I/0 facilities. The staging memory manager treats the staging memory
as a multidimensional array. This multidimensional array can be defined as
having as many as 28 indices. The power of this facility is that an array may
be read in with a specified ordering of the indices and read out with a
different ordering. Bit plane I/O is a much simpler facility for using the
stager. Bit plane I/O is based on the concept that the ARU memory can be
viewed as 1024 bit planes of data. Each bit plane consists of 16,384 bits, one
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bit per processor. Therefore, a bit plane is an array of 128 by 128 bits. Bit
plane /O simply treats the 32 megabytes of the stager as 16,384 bit planes of
data external to the ARU memory, which can be randomly accessed and
moved to and from any of the 1024 bit planes of the ARU memory.

The most interesting aspect of the MPP is obviously the array of processors,
but the aspect of the MPP which really makes the efficient nature of the
massively parallel architecture apparent is the parallelism of the MPP
controllers. Each of the controllers of the MPP run asynchronously,
whether it is the controllers of the staging memory or those of the ACU.
This allows the convenient overlapping of different types of processing, for
example, I/O and computation. Even within controllers there is parallel
processing. The PECU has 8 registers, each of which can simultaneously be
incremented or decremented. This is one reason why an array instruction is
performed nearly every array clock cycle. This effectively reduces the
overhead due to control to nearly zero.

But, what does this mean in terms of actual computational speed of the MPP?
The MPP has a 100 nanosecond clock cycle time. This means, for instance,
that it can do 163 billion bit operations per second, 55 billion boolean
operations per second, 12 billion 4-bit adds per second, or 5 billion 4-bit
multiplies per second. These operations are useful in such applications as
cellular automata and image processing. In most scientific applications,
floating point operations are very important. The MPP can perform 420
million floating point additions per second or 215 million floating point
multiplies per second.

It is easily understood that the MPP is capable of large amounts of
computations, since it has 16,384 operations going on at the same time. It is,
however, not obvious that the MPP is at all useful in terms of large amounts
of interprocessor communications, since each processor is only connected to
its four nearest neighbors on the 2 dimensional grid of processors. What
people fail to see is that 16,384 processors are communicating
simultaneously. This gives a total aggregate data transfer rate in the array of
20 gigabytes per second. What is this massive communications bandwidth
good for? Sorting can effectively use 50% of this bandwidth, 10
gigabytes/second. For instance, the MPP can sort 32,768 keys of 32 bits each
in 13 milliseconds and 512K keys of 28 bits each in 1 second. No other
machine to date claims to sort this fast.

SYSTEM SOFTWARE

The MPP is a single user device. To allow multiple users access to the MPP,
it has been attached to a VAX 11/780. Many developers can compile and run
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their applications from a multiuser environment3,6. Because the MPP is a
single user device, all users must wait in a queue to use it. There is also a
debug/monitor(CAD)7 program which is used to activate programs on the
MPP and allows the user to perform typical debug functions such as
examining memory, status, and setting breakpoints. The MPP has an
assembler8.9, and a high level language, MPP Pascall0,11 which are used to
generate executable code. It also has a FORTH environment that allows
execution of MPP Parallel FORTH!2,

MPP FORTH is a dialect of UNIFORTH™ with parallel extensions added.
The serial portion of MPP FORTH is as nearly identical to UNIFORTH™ as
possible. The parallel functions of MPP FORTH consist of a set of serial
functions that can logically be expected to be performed on a single PE, such
as addition and some global functions that are inherently parallel, for
example, interprocessor communications.

MPP FORTH includes two contexts: the default serial vocabulary (FORTH)
and the parallel vocabulary (PARALLEL). One can easily switch back and
forth between the serial and the parallel context through the use of '{" and '}".
The FORTH word '{' switches to the parallel vocabulary and '}' switches to
the serial vocabulary. Thus, the expression " { + } + " means to first add the
top two numbers on the data stack of each PE and then add the top two
numbers on the serial data stack in the MCU.

Every PE has a data stack in its memory, but not a return stack, because
programs are not run from PE memories, but from the MCU memory.
Parallel variables can be stored either in the staging memory or the ARU
(i.e., PE) memory as 128 by 128 arrays of elements. These elements could
be 1 -bit boolean values or multibit integer values. Therefore much of
parallel programming in FORTH can be viewed as describing what one
processor does -- it just happens to be happening on 16,384 processors.

To control a conditional expression, each processor computes a boolean
value. Only processors for which the value is true process the code
corresponding to the true condition, and subsequently, only processors
whose value is false process the code corresponding to the false condition.
This is done through the operation masking capability of each PE.

Global operations happen-across all processors. These operations include
such functions as global minimum (finding the minimum value from among
the 16,384 top numbers on all the PE data stacks), global maximum, global
OR, and the slide function which performs interprocessor communications.
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APPLICATIONS

With the ability to perform nonglobal, global, and conditional parallel
operations one can start to develop a reasonably general variety of
applications. Most applications on the MPP have been developed in MPP
Pascal and MPP assembler, but several applications have been developed in
MPP FORTH, these include the analysis of boolean delay equations,
computer graphics generation by ray tracing, and pure LISP.

The Working Group, as mentioned earlier, is responsible for the majority of
applications that now run on the MPP. These applications are from five main
areas of science: physics, Earth science, signal & image processing, computer
science, and graphics. The following list of projects are those being pursued
by members of the Working Group. The ones with a * following the title
were presented at the First Symposium on the Frontiers of Massively
Parallel Scientific Computation.

PHYSICS

Investigations on Electronic Structure and Associated Hyperfine Properties of Atoms and
Condensed Matter Systems Using the MPP

Dr. Tara Prasad Das, Department of Physics

State University of New York, Albany

Numerical Calculations of Charged Particle Transport *
Dr.James A. Earl, Department of Physics and Astronomy
University of Maryland, College Park

Simulation of Beam Plasma Interactions Utilizing the MPP *
Dr. Chin S. Lin, Southwest Research Institute
San Antonio, Texas

Particle Simulation of Plasmas on the MPP *
Dr. L.R. Owen Storey, STAR Laboratory
Stanford University, Stanford, California

Phase Separation by Ising Spin Simulations *
Dr. Francis Sullivan, Center for Applied Mathematics
National Bureau of Standards, Gaithersburg, Maryland

A Study of Phase Transitions in Lattice Field Theories on the MPP *
Dr. Peter Suranyi, Department of Physics
University of Cincinnati, Cincinnati, Ohio

Wave Scattering by Arbitrarily Shaped Targets-—Direct'and Inverse
Dr. William Tobocman, Department of Physics
Case Western Reserve University, Cleveland, Ohio
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Free-Electron Laser Simulations on the MPP *

Dr. Scort Von Laven, Mission Research Corporation
1720 Randolf

Albuquerque, NM 87106

The Dynamics of Collisionless Stellar Systems *
Dr. Richard L. White, Space Telescope Science Institute
Baltimore, Maryland

EARTH SCIENCE

Tropospheric Trace Gas Modeling on the MPP *
Dr. Gregory R. Carmichael, Chemical and Materzals Eng.
University of Iowa, Iowa City, lowa

Kalman Filtering and Boolean Delay Equations on the MPP
Dr. Andrew Mullhaupt,

University of New Mexico, Albuquerque, NM

Adapting a Navier-Stokes Code to the MPP *
Dr. Chester E. Grosch, ICASE
NASA/Langley Research Center, Hampton, Virginia

A Physically-Based Numerical Hillslope Hydrological Model with Remote Sensing
Calibration *

Dr.Robert J. Gurney, Hydrological Sciences Branch

NASA/Goddard Space Flight Center, Greenbelt, Maryland

A Comparison of the MPP with Other Supercomputers for Landsat Data Processing *
Mr. Martin Ozga, Statistical Reporting Service (SRS),
‘USDA, Washington, DC

Use of Spatial Information for Accurate Information Extraction *
Dr. James C. Tilton, Information Analysis Facility
NASA/Goddard Space Flight Center, Greenbelt, Maryland

A Magnetospheric Interactive Model Incorporating Current Sheets (MIMICS)
Mr. Elden Whipple, Center for Astrophysics & Space Sciences
University of California at San Diego, La Jolla, California

SIGNAL & IMAGE PROCESSING

Fixed Point Opt.imaf Nonlinear Phase Demodulation
Dr. Richard S. Bucy, Department of Aerospace Engineering
University of Southern California, Los Angeles, California

Pattern Recognition on an Array Computer
Dr.Y. Paul Chiang, Dept. of Electrical and Computer Eng.
Washington State University, Pullman, Washington
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Graphic Applications of the MPP *
Dr. Edward W. Davis, Department of Computer Science
North Carolina State University, Raleigh, North Carolina

Automatic Detection and Classification of Galaxies on "Deep Sky" Pictures *
Dr. Sara Ridgway Heap, Astronomy Branch,
NASA/Goddard Space Flight Center, Greenbelt, Maryland

Application of Parallel Computers to Biomedical Image Analysis
Dr. Robert V. Kenyon, Dept. of Engineering and Computer Science
University of Illinois, Chicago, 11l 60680

Comet Halley Large-Scale Image Analysis
Dr. Daniel A. Klinglesmith, Ill, Science Operations Branch
NASA/Goddard Space Flight Center, Greenbelt, Maryland

Synthetic Aperture Radar Processor System Improvements
Dr. Stephen A. Mango, Code 5381MA
Naval Research Laboratory, Washington, DC

Development of Automatic Techniques for Detection of Geological Fracture Patterns
Dr. H K. Ramapriyan, Information Analysis Facility
NASA/Goddard Space Flight Center, Greenbelt, Maryland

Development of an Improved Stereo Algorithm for Generating Topographic Maps Using
Interactive Techniques on the MPP *

Dr. James P. Strong, Information Analysis Facility

NASA/Goddard Space Flight Center, Greenbelt, Maryland

Reconstruction of Coded-Aperture- X-Ray Images *
Dr. Lo l. Yin, Solar Physics Branch
NASA/Goddard Space Flight Center, Greenbelt, Maryland

COMPUTER SCIENCE

Diégrammatic Information-Processing in Neural Arrays *
Dr. John A. Barnden, Computer Science Department
Indiana University, Bloomington, Indiana

Sorting and Signal Processing Algorithms: A Comparison of Parallel Architectures
Dr. Howard B. Demuth, Dept. of Electrical Engineering
University of Idaho, Moscow, Idaho

Parallel Algorithms for Graph Theoretic Problems
Dr. Susanne E. Hambrusch, Computer Science Depariment
Purdue University, West Lafayette, Indiana

Applications on Stochastic and Reaction-Diffusion Cellular Automata *
Dr. Harold M. Hastings, Department of Mathematics
Hofstra University, Hempstead, New York

Sorting and Signal Processing Algorithms: A Comparison of Parallel Architectures
Dr. Martin T. Hagan, School of Electrical and Computer Engineering
Oklahoma State University, Stillwater, Oklahoma

PR
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Solution of Complex, Linear Systems of Equations *
Dr. Nathan Ida, Electrical Engineering Department
University of Akron, Akron, Ohio

FORTH, an Interactive Language for Controlling the MPP *12
Dr. Daniel A. Klinglesmith, Il1, Science Operations Branch
NASA/Goddard Space Flight Center, Greenbelt, Maryland

Simulating an Applicative Programming Storage Architecture Using the NASA MPP *
Dr. JohnT. O'Donnell, Computer Science Department
Indiana University, Bloomington, Indiana

Parallel Solution of Very Large Sparse Linear Systems *
Dr. John H. Reif, Computer Science Department
Duke University, Durham, NC 27706

Massively Parallel Network Architectures for Automatic Recognition of Visual Speech
Signals

Dr.Terrence J. Sejnowski, Biophysics Department
Johns Hopkins University, Baltimore, Maryland

GRAPHICS

Space Plasma Graphics Animation *

Mr. Eugene W. Greenstadr, Space Sciences Department
TRW, Redondo Beach, California

Algorithmic Commonalities in the Parallel Environment *
Dr. Michael McAnulty, Department of Computer & Information Sciences
University of Alabama, Birmingham, Alabama

Animated Computer Graphics Models of Space and Earth Sciences Data Generated via the
MPP *

Mr. Lloyd A. Treinish, Data Management Systems Facility
NASA, Goddard Space Flight Center, Greenbelt, Maryland

UNUSUAL APPLICATIONS OF THE MPP

The MPP is a very regular arrangement of processors in terms of how they
are interconnected: a 2-dimensional array. Many applications have
previously appeared extremely difficult to map onto such an arrangement.
Most applications attempted by the Working Group are fairly easy to map to
a 2-dimensional array because they spend only a small amount of execution
time communicating between processors. This does not preclude, however,
executing applications which require a much larger fraction of execution
time for communications. In the extreme case, the application mapping is
dependent on the dynamic state of specific data values that are being
processed.
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Examples of applications involving irregular arrangements of data, are
artificial intelligence. (LISP) and graphic generation (ray tracing). In these
applications the data is distributed across processors, possibly arbitrarily, but
data items must be brought together at times during the execution. Typically, -
data rendezvous is done by generalized routing. Each data item is assigned to
a specific processor. Thus, if data is needed for a computation in another
processor, the data is explicitly routed from the source data’s processor to the
processor where the data is to be used. Therefore the source data must have
available the address of the processor where it is to be moved, and the array
of processors must have the appropriate hardware and software to move the
data from the source processor to the destination processor.

Since the MPP has neither generalized routing hardware nor software, a
different approach has been taken. This approach is more akin to virtual
routing than location-dependent (physical) routing and is based on a modified
version of sorting called sort computation. In physical routing, data is
assigned to physical processors, or to virtual processors that are assigned to
physical processors. In virtual routing, data is assigned to records which are
not tied to specific processors. Therefore, records are free to migrate to
where they can obtain or exchange data, independent of hardware
configuration. This may seem impossible since the data does not explicitly
know where it should go to be used, because no data reside at predefined
physical locations in the array of processors. This problem is resolved by
grouping records according to an internal key value. Sorting is used to
migrate records of a group past each other and acts on all groups
simultaneously.

Physical routing is intuitively easier to understand than virtual routing, since
data is routed from a specific location to another specific location. Virtual
routing allows data to move from one record to another, by giving them the
same key value and effectively placing them in the same group of records,
but it also allows more complex things to be done such as accumulating a
value from all the records of a group into one record of the group, sort
aggregation, or distributing the value of a record in a group to all records in
that group, sort distribution, all without tying data to specific processors.
This also means that records of data can be created and deleted almost at will
and garbage collection is nearly trivial. Sort computation is accomplished by
modifying the comparison routine of the sort, in such a way that it can be
provenl!3 that all records of each group are brought together. Note that the
communication between records is done during the sort, so it is unimportant
whether records of the same group reside in physically adjacent processors
after the sort. Thus, faster sorts that leave records in shuffled order may be
used.
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Given the ability to group records according to keys and perform
aggregation and distribution operations on the records of each group,
applications have been developed that require the processing of irregular
arrangements of data. Computer graphic generation by ray tracing and the
implementation of pure LISP are examples of applications that require this
capability. The pure LISP is implemented in MPP FORTH by distributing
the pointer pairs that make up the LISP data structure across the processors
of the MPP. Sort computation is used to bring the pointer pairs together
according to the functions that must be performed on them, such as the
creation of a new pointer. The basic functions of pure LISP were
implemented (i.e., CAR, CDR, CONS, EQ, ATOM, COND, APPLY,
EVAL, EVLIST, and LAMBDA). The MPP ray tracing approach!4 is based
on an algorithm that finds the intersections of light rays and objects in a 3-
dimensional space. It is done by recursively subdividing space. Records are
created that keep track of whether a specific ray or object intersects a
subdivision of space. If a subdivision of space is not intersected by both a ray

and an object, all records associated with it are deleted. Sort computation is
- used to determine where this condition is true. These two applications have
been implemented on the MPP using MPP FORTH.

CONCLUSION

The MPP has a simple, yet elegant architecture. Some have granted that it is
novel, and others have claimed it to be fundamental. Whichever is the case, it
has shown itself to be both useful and practical. Its hardware embodiment
consumes relatively low power compared to other supercomputers, does not
require special cooling, has an instruction cycle time that is relatively long,
thus allowing it to avoid high speed technologies, and yet it competes
respectably with any currently available supercomputer in speed of execution
of applications. Due to the efficiency of the architecture, ease of construction
and variety of applications, it is conceivable that within a few years
computational accelerators more powerful than the MPP will be available at
reasonable cost to be placed inside desktop workstations.
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