
Proceedings of the 1987 Rochester Forth Conference 195

mGH DENSIT PARALEL PROCESSING

U. Software and Programing

H. T. Nguyen, R. Raghavan, C. H. Ting, H. S. Truong

Lokheed Palo Alto Researh Laboratones, Palo Alto, CA

Summ

Tools, utilities, assemblers and compilers are needed to develop programs
which can be run on our parllel processor system, makng use of the full
power of the GAPP processor aray and the Distrbuted Macro Controller.
Some of the software tools are descrbe here and a few examples are also
given to ilustrted the proess of software development on ths system.

In order to make the parallel proessor system generally useful for expenmentation by thoSe not
famliar with the hardware, a set of software tools is being developed. A host-resident console
program was produced that allows program loading, program execution at arbitrar starting
addresses, program halting,. and examnation of status and error flags.

An assembler progr has been developed to assemble GMP instrctions and addrss macrs for
the Macro Generator Units. This program has a unique strcture as it must deal with three
concurent instrction streams, and keep track of relative timing or program lengths among them.

This assembler has also to take feature.s of a high level compiler so as to generateappropnate
instrction streams for the Flow Control Unit, which is the focal point of the entie DDP system,
coordinating the GMP processor arar with the two Macr Generator Units.

1. The Console Monitor

The Console Monitor is a program which runs on the mM AT host computer. It allows a user to
penorm somepnmitive operations on the Distrbuted Macro Controller (DMC) system, such as
initiation, loading code into the Flow Control Unit and the Macro Generator Units, running a flow
program, and monitonng the status of the DMC-GAPP system while it is running.

The DMC is designed so that all its wntable contrl store memory aras can be accessed by the host
computer. In fact, all the wntable control store memory and many of the important internal
registers in both the Flow Control Unit and the Macro Generator Units ar mapped to a contiguous
128 Kbytes of memory. The mapped memory locations can be interrogated by the host, and new
code or data can be loaded into these registers and memory areas though the Console Monitor.
Effective use of this feature alows a user to assemble GAPP programs and flow progrs dìecdy.
It is extrmely valuable dung testing and debugging phases of program development.

The Console Monitor also has may built in high level functions. One is loading progrs in either
binar form or hexadecimal form. The binar fonn of program is simply the image of the 128
Kbyte mapped memory, which can be saved as a binar fie on the disk of the host computer. The
saved binar fie can be loaded back into DMC to restore DMC to the state when the saved fie was
generated. A hexadecima fie format was defined so that code wntten in hexadecimal numbers can
be translated and downloaded into varous selected pars of DMC. Thisfie format also specifies
the output fie prouced by GAPP assemblers and DMC compilers which can be run on other host
computers for off line progr development.

The other important feature of the Console Monitor is that it can load data into the GAPP
corner-turn processor aray and unload results from the corner-turn ary, though a DMA board
inside the mM AT. This is necessar for testing GAPP and DMC programs and venfy that the
hardware and software are in working conditions. It is also useful in testing varous algonthms
and evaluate Ù1eir penonnance. The Console Monitor Ù1US serves as the major user intenace to the
Development Demonstrtion System.

./

196 The Journal of Forth Application and Research Volume 5 Number 1

2. GAPP and Addrss Macro Assembler

GAPP is a Single-Instrction-Multiple-Datapath (SIMD) machine. Its ALU unit is an one bit
full-adder-subtractor, and there are many data paths arund the ALU and the internal registers and
memory. A GAPP instrction is used to specify precisely the data paths to and from the registers
and the memory. A GAPP instrction is 20 bit wide, 13 bits for data multiplexers and 7 bits for
memory selection, as shown in Figure 1. A GAPP program is thus a sequence of these 20 bit
instrctions commanding the GAPP aray how to route data and results inside the processor ary.
It is fully programable in the sense that any function that does not exceed the memory capacity of
the machine can be executed. However, all processing units execute identical instrction so that a
gener MI (Multiple Instrction Multiple Datapath) command is executed at lower effciency.

To faciltate programng efforts, a set of GAPP mnemonics is defined to specify the source and
destination of data in each clock cycle. The Assembler trslates these mnemonics into GAPP code
and memory address specifications, and constrcts macro routines which are callable by flow
programs. As there are many data paths independently controllable by a single GAPP instrction,
the assembler allows the user to specify multiple data paths in a single instrction, as well as the
detailed function which has to be cared out by the address macro generator, such as pushing,

popping or incrementing the memory pointers on the stacks.

The Macro Assembler generates two concurent macro's from a set of mnemonic code sequence,
termnated by the special operator '_$_'. The address macro takes the most significant 16 bits and
the GAPP macro takes the least significant 16 bits of an assembler 32 bit code. The two pars wil
be separated and downloaded to their respective wrtable control store memory in the Macro
Generator Units.

A librar of macro routines are assembled and kept in the Macro Generator Units for the flow

control progr to calL. For specific applications, special macro routines can be define by the user
and downloaded to be used together with the librar macros. Figure 2 shows a sample of the
macr routines reuied by the Game of Life flow progr.

98765432 0

Flow Control Word

macro pointer A macro pointer B

Macro Call Word

C

C sram op
C sram op

Memory Management Word

(--- Address Macro Word --) (-- GAPP Macro Word --)

Figure 1. Instructions Formats for Distributed Macro Controller

Proceedings of the 1987 Rochester Forth Conference 197

g: ini t-life 8005 gadr c=p _$_ _$_ _$_
g: ew1 sum 8005 gadr p: ns: ew=c _$_

ew=w _$_
ns=ew ew=ns _$_
ew=e $
8000 gadr ns: ew=plus carry _$_
8001 gadr p=c$

g: ns2sum
8002
8001
ns=s
8003
8004

c=O
gadr
gadr

$
gadr
gadr

ns=s $
plus earry _$_
ns: ew=p _$_

plus carry _$_
p=c _$_

g: ns3sum
8002
8001
8003
8003
8004

8000 gadr ns=p c=1
gadr ew=p ns=n _$_
gadr ns=p _$_
gadr ew=p ns=n $
gadr plus carry- $_
gadr ns=O ew=p _$_

$
-8Õ02 gadr plus carry _$_

8004 gadr ew=plus _$_

g: final 8003 gadr ns=p c=o $_
8002 gadr ns=p borrow _$_
8002 gadr p=c c=1 _$_
8005 gadr ew=p _$_
8002 gadr borrow ew=p ns=O _$_
carry _$_

scratch 807f gadr ;

g: c-to-scratch scratch p=c -$- -$- -$-

g: shift-scra tch scratch cm=p $ south -$-
scratch p=cm -$-

g: sera tch-to-ew scratch ew=p -$- -$- -$-

g: ew-to-scra tch c=ew -$- scratch p=c -$- -$-

g: mm-to-scra tch top c=p -$- scratch p=c -$- -$-

g: scra tch-to-mm scra tch c=p -$- top p=c -$- -$-

Figure 2. Ma c r 0 routines for Game of Life.

3. Flow Contrl Assembler

The Flow Control Unit stores its instrctions in 32 bit words, each flow instrctions requires 3 to
18 flow words. The first word in a flow instrction is called Flow Control Word which specifies
the program flow, such as JUM, LOOP, CALL, and RETURN. The second flow word specifies
the macro's to be executed from the Macro Generator Units and the clock cycles and number of
macro instrctions to be executed in this macro. It is called Macro Call Word. The third and
following flow words ar Memory Management Words, which controls the memory management
mechanism in the Address Macro Generator Unit. The fonnats and the functional fields in these
flow words are show in Figure 1.

198 The Journal of Forth Application and Research Volume 5 Number 1

The Flow Control Assembler compiles the flow control mnemonic code, similar to those commonly
used in high level programing languages, and generate sequences of flow words. The flow
words wil then be downloaded into the Flow Control Unit. Any of the flow instrction, staring
with a Flow Control Word, can be executed and the DDP wil perform algorithm specified by this
and subsequent flow instrctions until completion.

Since the Flow Control Unit supports all the fundamental programming strctures. such as
conditional and uncondìtional branching, looping, subroutine calling and returing. flow programs
can be modularzed and wrtten in highly strctured form. This practice greatly enhances progr
readability and eases debuggig and maitaence. The Flow Contrl Assembler prouces effcient
code within this strctur framework.

An example of flow program is show in Figure 3, implementing the Game of Life. It uses the
macros assembled by the macro assembler. The core or the Game of Lüe progr is a 25 machine
cycle sequence of GAPP instrctions, assembled into 4 macros which are called by the main
program. The most time consuming par of the progrm is to dump the map of lifes out to the
dìsplay device, which is islated as a subroutie caled from the mai program loop.

4. Conclusion

We have built enough tools and utiities to program and use the high density SIMD processor
arys effciently. Complicated algorithms can be broken into address macrs. op-code macrs and

flow control sequences,which ca be assembled from high level source program into machine code

loaded into the parel proessor system and executed. Effective use of macrs thus trmendously
simplifies the programng effort and greatly compress the program. The limted experience we
have gained in the past few weeks exceeds our. expectation that the DMC controller allows
massively parallel processors to be conviently programmed using high level language without
compromising the performance. The program compression wil allow much more complicated
algorithms to be expressed concisely for the evantual execution on huge processor arys.

Several aricles of this project, as well as research results on parallel computations and on
applications have ben prepared in more deta for publication.

flow-block output-life (from gadI'. 7f scratch plane)
loop 9 times 4 gre (frame mark) _$$$_
loop Oc times $$$

noop ram-en- $ - shift-scratch macro S$
noop et-en 1- shift-scratch macro 1$ -(2 msb bits)
loop 4 times -$. scratch-to-ew macro _$$_
loop 10 times- J$$

noop $. šhift-w macro _$$_
end-loop- $$$
end-loop -$$$-

end-loop $$$ -
end-loop -$$$-return Sl$ -

end-block - -

flow-block game-of-life
noop mm-en $ ini t-l ire

flow-block repëat-life
noop mm-en $ 6 cycles
noop mm-en -S- 6 cycles
noop mm-en -$- 8 cycles
noop mm-en -$- 6 cycles
call output=life adr mm-en
jump repeat-life adr Send-block - -
stops

end.- block

macro _S$_

6 instructions ew1 sum macro
6 instructions ns2sum macro
o instructions ns3sum macro
6 instructions final macro
S c-to-scratch macro

-$- $
S -1-

-S- -1-
$-_l_-

-$ $-

Figure 3. Flow program of Game of Life.

