Proceedings of the 1987 Rochester Forth Conference 195

HIGH DENSITY PARALLEL PROCESSING

II. Software and Programming

H. T. Nguyen, R. Raghavan, C. H. Ting, H. §. Truong
Lockheed Palo Alto Research Laboratories, Palo Alto, CA

Summary

Tools, utilities, assemblers anid compilers are needed to develop programs
which can be run on our parallel processor system, making use of the full
power of the GAPP processor array and the Distributed Macro Controller.
Some of the software tools are described here and a few examples are also
given to illustrated the process of software development on this system.

In order to make the parallel processor system generally useful for experimentation by those not
familiar with the hardware, a set of software tools is being developed. A host-resident console
program was produced that allows program loading, program execution at arbitrary starting
addresses, program halting, and examination of status and error flags.

An assembler program has been developed to assemble GAPP instructions and address macros for
the Macro Generator Units. This program has a unique structure as it must deal with three
concurrent instruction streams, and keep track of relative timing or program lengths among them.
This assembler has also to take features of a high level compiler so as to generate appropriate
instruction streams for the Flow Control Unit, which is the focal point of the entire DDP system,
coordinating the GAPP processor arrary with the two Macro Generator Units.

1. The Console Monitor

The Console Monitor is a program which runs on the IBM AT host computer. It allows a user to
perform some primitive operations on the Distributed Macro Controller (DMC) system, such as
initiation, loading code into the Flow Control Unit and the Macro Generator Units, running a flow
program, and monitoring the status of the DMC-GAPP system while it is running.

The DMC is designed so that all its writable control store memory areas can be accessed by the host
computer. In fact, all the writable control store memory and many of the important internal
registers in both the Flow Control Unit and the Macro Generator Units are mapped to a contiguous
128 Kbytes of memory. The mapped memory locations can be interrogated by the host, and new
code or data can be loaded into these registers and memory areas through the Console Monitor.
Effective use of this feature allows a user to assemble GAPP programs and flow programs directly.
It is extremely valuable during testing and debugging phases of program development.

The Console Monitor also has many built in high level functions. One is loading programs in either
binary form or hexadecimal form. The binary form of program is simply the image of the 128
Kbyte mapped memory, which can be saved as a binary file on the disk of the host computer. The
saved binary file can be loaded back into DMC to restore DMC to the state when the saved file was
generated. A hexadecimal file format was defined so that code written in hexadecimal numbers can
be wranslated and downloaded into various selected parts of DMC. This file format also specifies
the output file produced by GAPP assemblers and DMC compilers which can be run on other host
computers for off line program development,

The other important feature of the Console Monitor is that it can load data into the GAPP
corner-turn processor array and unload results from the corner-turn array, through a DMA board
inside the IBM AT. This is necessary for testing GAPP and DMC programs and verify that the
hardware and software are in working conditions. It is also useful in testing various algorithms
and evaluate their performance. The Console Monitor thus serves as the major user interface to the
Development Demonstration System.

196 The Journal of Forth Application and Research Volume 5 Number 1

2. GAPP and Address Macro Assembler

GAPP is a Single-Instruction-Multiple-Datapath (SIMD) machine. Its ALU unit is an one bit
full-adder-subtractor, and there are many data paths around the ALU and the internal registers and
memory. A GAPP instruction is used to specify precisely the data paths to and from the registers
and the memory. A GAPP instruction is 20 bit wide, 13 bits for data multiplexers and 7 bits for
memory selection, as shown in Figure 1. A GAPP program is thus a sequence of these 20 bit
instructions commanding the GAPP array how to route data and results inside the processor array.
It is fully programmable in the sense that any function that does not exceed the memory capacity of
the machine can be executed. However, all processing units execute identical instruction so that a
general MIMD (Multiple Instruction Multiple Datapath) command is executed at lower efficiency.

To facilitate programming efforts, a set of GAPP mnemonics is defined to specify the source and
destination of data in each clock cycle. The Assembler translates these mnemonics into GAPP code
and memory address specifications, and constructs macro routines which are callable by flow
programs. As there are many data paths independently controllable by a single GAPP instruction,
the assembler allows the user to specify multiple data paths in a single instruction, as well as the
detailed function which has to be carried out by the address macro generator, such as pushing,
popping or incrementing the memory pointers on the stacks.

The Macro Assembler generates two concurrent macro's from a set of mnemonic code sequence,
terminated by the special operator '_$_". The address macro takes the most significant 16 bits and
the GAPP macro takes the least significant 16 bits of an assembler 32 bit code. The two parts will
be separated and downloaded to their respective writable control store memory in the Macro
Generator Units. .

A library of macro routines are assembled and kept in the Macro Generator Units for the flow
control program to call. For specific applications, special macro routines can be define by the user
and downloaded to be used together with the library macros. Figure 2 shows a sample of the
macro routines required by the Game of Life flow program.

" 3130 2928 2726 2524 2322 2120 1918 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0
fc lflow op | condi Je Ja | enable] flow address fdrp [count]

Flow Control Word

o [cycles [length | macro pointer A | macro pointer B | rein A | rein B |

Macro Call Word

c 1t ABIC sram A | sram B | sram C ---
0 A B {C | sram op sram address data
c j0 [AB|C | sram op sram address bank op [y U] — --—----T2C

Memory Management Word

31 : 16 15 0
1 ee—-- | ram address [i [-—-]ram[¢ ew ns cm
0 | src [dynop | top stack Jpottom stack |1 | --- | ram| ¢ ew ns cm
<--- Address Macro Word --> «-- GAPP Macro Word -->

Figure 1. Instructions Formats for Distributed Macro Controller

Proceedings of the 1987 Rochester Forth Conference 197

g: init-life 8005 gadr c=p _$_ _$_ _3_
g: ewisum 8005 gadr p:ns:ew=c _$_

ew=w _$_

ns=ew ew=ns _$_

ew=e $

8000 gadr ns:ew=plus carry _$_
8001 gadr p=c _3_
g: ns2sum c=0 ns=s _$_
8002 gadr plus carry _$_
8001 gadr ns:ew=p _$
ns=s _$_
8003 gadr plus carry _$_
8004 gadr p=c _$_

g: ns3sum 8000 gadr ns=p c=1 _9%_
8002 gadr ew=p ns=n _$_ 8002 gadr plus carry _$_
8001 gadr ns=p _$_
8003 gadr ew=p ns=n _$
8003 gadr plus carry _
8004 gadr ns=0 ew=p _§_ 8004 gadr ew=plus _§_

g: final 8003 gadr ns=p c=0 _$_
8002 gadr ns=p borrow _5_
8002 gadr p=c c=1 _$_
8005 gadr ew=p _$_
8002 gadr borrow ew=p ns=0 _$_
carry _$_

scratch 807f gadr ;

g: c-to-scratch scratch p=c _$_ _$_ _S$_
g: shift-scratch scratch cm=p _$_ south _$_
scratch p=cm _$

g: scratch-to-ew scratch ew=p _$_ _$_ _$_

g: ew-to-scratch c=ew _$_ scratch p=sc _$_ _$_

g: mm-to-scratch top c=p _$_ scratch p=c _$_ _$_

g: scratch-to-mm scratch c=p _$_ top p=c _$_ _$_
Figure 2, Macro routines for Game of Life.

3. Flow Control Assembler ’

The Flow Control Unit stores its instructions in 32 bit words, each flow instructions requires 3 to
18 flow words. The first word in a flow instruction is called Flow Control Word which specifies
the program flow, such as JUMP, LOOP, CALL, and RETURN. The second flow word specifies
the macro's to be executed from the Macro Generator Units and the clock cycles and number of
macro instructions to be executed in this macro. It is called Macro Call Word. The third and
following flow words are Memory Management Words, which controls the memory management

mechanism in the Address Macro Generator Unit. The formats and the functional fields in these
flow words are show in Figure 1.

198 The Journal of Forth Application and Research Volume 5 Number 1

The Flow Control Assembler compiles the flow control mnemonic code, similar to those commonly
used in high level programming languages, and generate sequences of flow words. The flow
words will then be downloaded into the Flow Control Unit. Any of the flow instruction, starting
with a Flow Control Word, can be executed and the DDP will perform algorithm specified by this
and subsequent flow instructions until completion,

Since the Flow Control Unit supports all the fundamental programming structures, such as
conditional and unconditional branching, looping, subroutine calling and returning, flow programs
can be modularized and written in highly structured form. This practice greatly enhances program
readability and eases debugging and maintainence. The Flow Control Assembler produces efficient
code within this structured framework.

An example of flow program is show in Figure 3, implementing the Game of Life. It uses the
macros assembled by the macro assembler. The core or the Gamie of Life program is a 25 machine
cycle sequence of GAPP instructions, assembled into 4 macros which are called by the main
program. The most time consuming part of the program is to dump the map of lifes out to the
display device, which is isolated as a subroutine called from the main program loop.

4. Conclusion

We have built enough tools and utilities to program and use the high density SIMD processor
arrays efficiently. Complicated algorithms can be broken into address macros, op-code macros and
flow control sequences, which can be assembled from high level source program into machine code
loaded into the parallel processor system and executed. Effective use of macros thus tremendously
simplifies the programming efforts and greatly compress the program. The limited experience we
have gained in the past few weeks exceeds our expectation that the DMC controller allows
massively parallel processors to be conviently programmed using high level language without
compromising the performance. The program compression will allow much more complicated
algorithms to be expressed concisely for the evantual execution on huge processor arrays.

Several articles of this project, as well as research results on parallel computations and on
applications have been prepared in more detail for publication.

flow-block output-life (from gadr 7f scratch plane)
loop 9 times 4 gre (frame mark) _$$$_
loop Oc times _3_
noop ram-en _$ = shift-scratch macro _$$_
noop ct-en $_ shift-scratch macro _$% (2 msb bits)

loop 4 times _$_ scratch-to-ew macro _3$$
loop 10 times™ 3$$_ B
noop _$ shift-w macro _$$_

end-loop _$$$_

end-loop _8_
end-loop _$3%_
end-loop _$$%_

return _3_

end-block

flow-block game-of-life
noop mm-en _$_ init-life macro _$$_

flow-block repeat-life
noop mm-en _$ 6 cycles 6 instructions ewlsum macro _$_ _$
noop mm-en _$_ 6 cycles 6 instructions ns2sum macro S s
noop mm-en _$ 8 cycles O instructions ns3sum macro ~$ ~$~
noop mm-en _$_ 6 cycles 6 instructions final macro _$_ _$
call output-life adr mm-en _$_ c-to-scratch macro $$ ~
jump repeat-life adr _$$3$_ -

end-block -
stops

end-block Figure 3, Flow program of Game of Life.

