
Proceedings of the 1987 Rochester Forth Conference 205

A Two-Fisted Algorithm
For Moving Data In Tight Places

by Wait Pawley, Wump Research & Company

Some years ago, I invented this technique for exchanging the order of two arbitrarly sized,
adjacent blocks of data for use in a text editor. I assumed, probably rightly, that the algorithm
was well known; until recently, when informal discussions with numeroUS peple knowledgeable
about such matters led me to believe that it might not be. Unlike other algorithms that came up
in these discussions, this "two-rlSted" approach fetchs and stores each datum only once. While
the overhead required to run the two-fisted algorithm is somewhat more than some others, it can
greatly improve speed when the fetching and storing of the data is relatively costly. Applications
include such things as text manipulation, heap management or disk de-thashing. Fort code for
the two-fisted block exhange algorithm is included as an appendix.

Many years ago I was working in a sawmil using a primitive developement system. I had
to use a text editor named TIDE. TIE's performance and design were at least as backwards as its
name. TIDE was so exasperating that I vowed to write my own text editor, " ... in my spare time".
I carefully designed my editor on paper, keeping copious notes in a looseleaf binder. I wanted to
be able to pack meaningful data into "all" of memory and still be able to function. This necessitated
some "clever" mechanisms including a garbage collection algorithm that came to me in a flash of
inspiration. It was a stroke of genius. I was carful to record it in my notebok.

Well, it was about this tie when events in the sawmill business erupted and erased all my
spare time. I had to set work on my editor aside to do some work in the real world. My colleagues
and I labored many months, but finally some of that ellusive spare time returned and I went back to
my text editor right away. After all, I'd had to spend those months using TIE! That's when I ran
into a slight problem. My nice notebook had vanished! I discovered, also, that my inspirational
stroke of genius had likewise disappeard. While most of the design for my editor came rushing
back to me, to be frenetically recorded once again, I could not flash on garbage collection. In fact,
for quite a while, I could not solve the garbage collection problem at all. But I did not give up and,
after a while, the problem boiled down to this:

Given two blocks of data, adjacent to one another in
memory and of arbitrary sizes, how can they be swapped without
using large amounts of "unused" memory? It would also be nice
if it could be done without using very much time.

The Problem

Block 2
Block 1

Block 1
Block 2

"Before" " After"



206 The Journal of Forth Application and Research Volume 5 Number 1

I did not get to spend much time on the second par of the problem, because I couldn't see
how to solve the first par. I drew diagram after diagram and argued with myself about it day after
day. I completely missed the beautifully simple algorithm that splits each block in half, exchanges
bytes around the center of each block and then exchanges bytes around the center of the pai. This

must be some sort of standard, because many people have subsequently told me about it. Anyway,
one day while mied in my quandar, I was gesticulating about proposed events. I "picked up" the
first byte in one fist, saying to myself, "It goes there." But there was aleady a byte there. So I
"picked up" this incthe-way byte in my other fist to get it out of the way. Then I was able to put the
first byte where it belonged (which was a goo thing because I'd run out of hands). I knew where
the second byte came from, and came to the conclusion that regardless of which of the two blocks it
had come from, I could calculate where it had to go to be in the right place. Doing this, I found
another byte in the way again. So I used my free fist to pick it up and get it out of the second
byte's way. After a little reflection, this juggling act looked pretty goo to me. All I had to do was
use one fist to hold data out of the way while I moved data into place with the other fist until,
finally, a byte ended up where the firt byte came from. I tred al kinds of examples. It worked!

/;
I

Or at least it seemed to work. After experimenting with all those examples that "proved"
that it worked, I managed to generate a counter example. The bouncy path through the data didn't
necessarly move all of the data by the time the first element got replaced. Agai I didn't give up. I
kept fooling with examples, not seeing the forest for the trees. Finally some of the nature of the
problem osmosized through my thick skull. When the G.C.D. (Greatest Common Divisor) of the
block sizes was not one, the path closed before all the data was moved. In addition, the rest of the
data could be moved by tracing out the same path, shifted up one location each time. The number
of paths to follow was the G.C.D. of the block sizes.



Proceedings of the 1987 Rochester Forth Conference ZO.7

???I. . . .

A ShnpleColil1ter .
Example,

is solved by running
the "inner loop" GCe

times, shifting the
starting point up one

each time.

With this information in hand, I was able to successfully complete my text editor, which I
stil use to this day. I stared thinking about how to write this paper on April Fool's Day. How
appropriate! All these year I'd felt that this algorithm wasn't ~ obvious and, dispite the fact
that I was confident that it worked, I never really understoo "why" it worked. If you can imagine
sliding both blocks of data up in memory until the first block is in its final resting place, you can
see that the second block could then be lifted and placed in its new home. Therefore, the index,
relative to the star of the first block, of any datum's destination is simply its source index, plus the
size of the second block, taen modulo the sum of the block sizes.

"Why" It Works

Block 2

Block 2
Block 1

Block 1

.. ..~ ,..... ,.. ....,..

.1 Block 1 . ,
~ '

!.. . . .... J:



208 The Journal of Forth Application and Research Volume 5 Number 1

APPEHOIX - THE "TWO-FISTEO" BLOCK SWAPPIHG ALGOAITHM
20APRB7 WMP )

o URRIABLE SI2E2
o URRIRBLE S12E1S12E2+
o URR I ABLE THEBOTTOM
o UAR I ABLE THETOP

FIRSTFIST (... -BYTE ROOA
THEBOTTOM ii OUP Cii SWRP

HEXTPLACE ( AD OR - ROOR
SI2E2 li +
THE TOP ii OUER (
IF

S12E1S12E2+ ii -
THEH

( THE S 12E OF THE UPPER BLOCK )
( THE SUM OF THE S 12ES OF BOTH BLOCKS
( BEGIHHIHG OF BLOCK 1 )
( EHO OF BLOCK 2 )

STARTS A LOOP )

COMPUTES LOCAT I OH I H SWAPPEO BLOCK
( WHERE I T GOES, UHWRAPPEO )

( CHECK FOA WRAP AROUHO AEQU I RED

( WAAP THE ADDRESS AROUHO )

SWAPFISTS
OUP Cil
SWAP ROT OUER Cl

( BYTE AOOR - BYTE AOOR SWAP BYTE AT AOOR WITH BYTE OH STACK )
( GET "I H- THE-WAY" BYTE )
( PUT I H SWAPPED BYTE )

GCO

BEG I H

OUER
WH I LE

SWAP

REPEAT

( X Y - GCO(X,Y) ASSUMES BOTH X & Y ARE POSITIUE
( THE G.C.O. IS THE GREATEST COMMOH OIUISOR

MOD -OUP ( IS REMA I HOER 2ERO? )

(HO. OIUIOE OIUISOR BY REMAIHOER

( AOOR S 12E 1 S 12E2 - ... SWAPS TWO AOJACEHT BLOCKS )
SI2E2 I ( IHITIALI2E UARIABLES )

SI2EISI2E2+ I
THETOP I

THEBOTTOM I
S 12E2 II S 12E 1 S 12E2+ II GCO 0 (HOW MAHY OUTER LOOPS )

DO

SWAPBLOCKS
OUP

+ OUP
DU ER + 1-

F I RSTF I ST

BEG I H

HEXTPLACE
THEBOTTOM II OUER (

WH I LE

SWAPF I STS
REPEAT
C!
1 THEBOTTOM +!

LOOP

( GET FIRST I HHER LOOP BYTE
THE I HHER LOOP )

( F I HO OUT WHERE TH I S BYTE GOES
( SEE I F I HHER LOOP IS OOHE )

( PICK UP A BYTE. PUT OHE OOWH

( PUT LAST I HHER LOOP BYTE I H PLACE )
( START I HG POI HT FOR HEXT I HHER LOOP )

WR I TTEH I H SSHH - FORTH FOR I HTEROATA/PERK I H ELMER/COHCURREHT COMPUTERS )

( FROM WUMP RESEARCH & COMPAHY )


