
Proceedings of the 1987 Rochester Forth Conference 209

An OPS5 Expert System Converted to FORPS

James L. Rash
Code 531. 1

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

ABSTRACT
FORPS, a simple Forth-based production system, has been used

to re implement TRAPS, an expert system originally programmed in
OPS5 to perform input data checking in Goddard i s Communications
Link Analysis and Simulation system (CLASS). The FORPS version
of TRAPS is implemented both on the CLASS computer and on an IBM
PC/AT compatible machine (Hewlett-Packard Vectra). This paper
presents results of the TRAPS reimplementation; compares FORPS
with OPS5,including efficiency on the HP Vectra¡ and offers
suggestions' for enhancements to FORPS.

INTRODUCTION

Rule-Based Proarammina. An expert system is a computer
program which can perform as well as a human expert in some
problem domain. Typically, expert systems are created using a
nonprocedural programming methodology known as rule-based
programming, in which knowledge (rules) concerning the problem
domain is kept separate from the data (facts) that characterize
the current state of the problem domain. Programs written in
conventional computer languages rely on hard-coded execution
paths locked into the obj ect program at compilation time.
Execution of a rule-based program, on the other hand, follows a
more cyclic or "data driven" path which is unrelated to the order
of the rules in the rule base. Execution (firing) of a rule is
followed by a fresh comparison (matching) of the conditional
parts of the rules in the rule base with patterns in the facts
data base. In a process called "conflict resolution", one of the
matched rules is then selected to fire. This match-select-fire
cycle is controlled by the inference engine (Brownston 85).

OPS5. Numerous production system languages have been
developed. One of the oldest and most popular is OPS5 (Official
Production System, Version 5), developed in the 1970' s by Charles
L. Forgy at Carnegie-Mellon University. Early implementations
were in BLISS, MACLISP, and FRAZ LISP (Forgy 81), but today OPS5
implementations exist in other languages including Forth (Dress
86) and C.

FOR PS . FORPS (FORth-based Production System) was developed
by Chris Matheus in 1986 at Oak Ridge National Laboratory. It
was designed to be fast and efficient, maintaining the usual
Forth environment and thereby providing a tool to develop
knowledge based systems for real time applications (Matheus 86).

THE OPS5 VERSION OF TRAPS

The Traj ectory Preprocessing system (TRAPS) was developed as
an expert system to detect certain kinds of errors in spacecraft
mission traj ectory data supplied to the CLASS computer. Buil t as
a prototype on an IBM PC, TRAPS was intended both to servè as a

210 The Journal of Forth Application and Research Volume 5 Number 1

model for other expert systems and to provide a vehicle for
comparing various approaches to sOlving problems using procedural
languages as well as expert system tools (Rash 86).

Implemented in the OPS5+ software package from Computer
Thought Corp., TRAPS comprises 49 rules based on six "human
rules" expressing requirements to be satisfied by spacecraft
mission trajectory data. No calls to user-written routines in
the hQst language (C) were required in the OPS5 version.

THE FORPS VERSION OF TRAPS

The availability of FOR PS provided an opportunity to compare
OPS5 with another prOduction system tool. To make a fair compar-
ison, the original TRAPS application was translated from OPS5 to
FORPS, rule-for-rule in most cases, and then run on the same
computer (an 8 MHz Hewlett-Packard Vectra, which is compatible
with the IBM PC/AT). A version of FORPS obtained from its
inventor, and running under Laxen & Perry's F83 on IBM PCs and
compatibles, was used. The FOR PS version of TRAPS has also been
implemented in SS-FORTH on the CLASS computer.

COMPARISON OF FORPS AND OPS5

Efficiency. Table 1 presents results of test runs using a
typical TRAPS input data file containing 163 records. The table
compares the original OPS5 version to two new versions written in
FORPS, one comprising 48 rules and the other, 35 rules. Instead
of some dozen rules to generate output, as in the original OPS5
version, the 35-rule version uses only one rule (which had to be
supported by several custom routines in Forth). The table shows
that the 35 rule version runs 30 percent faster than the
or ig inal, but the 48 rule vers ion is only 18 percent faster.

However, for applications with inuch larger rule bases, FORPS
would be at an ever increasing disadvantage relative to OPS5
because FORPS evaluates the left-hand side of every rule in the
rule base during each match-select-fire cycle. The Rete match
algorithm used in OPS5, on the other hand, takes advantage of

TABLE 1. Summary of Test Results---
Tool # Rules Processing

I Used I in I Efficiency 1
11 Rule Base 1 (Records/Second) I
1---------1 -----------1 ------------------1I OPS5+ I 49 1 6.0 I
1---------1 -----------1 ------------------1I FORPS I 48 1 7. 1 I
1 ---------1 -----------1 ------------------1I FORPS 1 35 I 7.9 I------ --------------------- ---- ---------

"temporal redundancy" of data in the facts base to avoid the
inefficiency of evaluating all rules during each cycle (Brownston
85, Chap. 6).

Host Lanauage SUDDort. Offsetting the efficiency advantage
of the Rete algorithm in OPS5 is the fact that, in FORPS, host
language routines are so easily incorporated. This is important
in debugging applications and in developing applications which

Proceedings of the 1987 Rochester Forth Conference 211

must run fast. or interface with other systems such as data bases
and hardware devices. Efficiency can be greatly improved with
appropriate use of procedural routines. OPS5 has a host language
interface, but this provides far less than the tight coupling
capability available with the FORPS/Forth combination, and in
fact represents a relative weakness of OPS5.

Knowledge Representation. Knowledge is represented in OPS5
in the form of rules as well as data objects, which are defined
and referenced bya special, built-in pattern description
language. Custom Forth code had to be developed in the FORPS
version of TRAPS to provide facilities for pattern matching and
knowledge representation. Though the necessity of devising
routines for such essential components of a production system
language suggests basic inadequacy of FORPS, it is noted that
FORPS was deliberately designed as a simple inference engine
around which can be built any desired expert system facilities.

Conflict Resolution. Controlling rule selection is crucial
in production systems because the execution path is data driven
rather than instruction driven. The primary means of control in
FORPS is rule priority assignment. This sufficed for TRAPS, but
more difficult problems would call for other control strategies,
which, with Forth, could be devised specifically for the problem
at hand. OPS5 has no built-in rule priority scheme, but instead
more elaborate strategies based on "recency" (how recently a fact
was added or modified) .

User Environment. User environment is implementation-
dependent. OPS5+ provides a "dévelop mode" which includes a
useful window and mouse-menu interface to aid in application
development and debugging. FORPS has no such features, but the
normal Forth environment somewhat offsets this lack.

Readabilitv. Figure 1 presents one of the OPS5 rules, while
Figure 2 shows the corresponding rule in the FORPS version of
TRAPS. This is one of the simpler rules but it serves to

------ --- ------ ---
(p link-support-3-switch-counting

(goal=process-a-record)
((current-support Acurrent-support-code ~cs~Aswitch-count ~k~) ~c)o)
(record Alink-support-3 (~s)o ~)o ~cs)o) Alink-3 ~~ 'a)--~
(modify ~c)o Acurrent-support-code ~s)oAswitch-count (compute ~k)o + 1)))

-- -- --
FIGURE 1. Example of an OPS5 Rule.

--- - -- ------- --- - ------------ ---------------------- -----------
RULE: LINK-SUPPORT-3-SWITCH-COUNTING PRIORITY: 10

IF
GOAL=PROCESS-RECORD
$CURRNT-SUPPORT-CODE LINK-SUPPORT-3 $= NOT
LINK-3 "0" $= NOT

THEN
LINK-SUPPORT-3 $CURRNT-SUPPORT~CODE $!
SWITCH-COUNT 1+ TO SWITCH-COUNT

END-- - ------------- ----------------------------- -----------------
FIGURE 2. Example of a FOR PS Rule.

212 The Journal of Forth Application and Research Volume 5 Number 1

illustrate a subjective comparison to be made: readability. The
author previously judged OPSS rules more readable than FORTRA,
but now regards FORPS rules as more readable than OPSS rules.

Memory Reauirements. Typical of Forth applications, memory
requirements are low in FORPS -- less than 2 Kbytes for FORPS
itself, while the entire TRAPS program added less than 20 Kbytes
(including space for facts, compiled rules, and ancillary Forth
code). Total memory required, including F83, was less than 42
Kbytes. In contrast, OPSS+ requires 2S6 Kbytes just to load,
plus space for working memory and compiled rules.

Implementations. As a final comparison, it is noted that
FORPS is in the public domain. It has been implemented in F83,
C-Forth, polyFORTH (tm, FORTH, Inc.) and SS-FORTH, and should be
easily adaptable to other Forth dialects. By contrast, while
there are many implementations of OPSS, by far most are
implemented in LISP on rather large machines; to the author's
knowledge OPSS is not available in a public domain version for
microcomputers (although it should be possible to port one
of the public domain LISP versions to a PC).

CONCLUSIONS

The FORPS implementation of TRAPS discussed in this paper
appears to be at least as viable as the OPSS implementation for
the following reasons: (1) it processes input data faster than
the OPSS+ version; (2) it seems, subjectively, to be more
readable and therefore should be more maintainable; and (3) the
ability to incorporate custom Forth code is expected to make it
more adaptable to special future requirements.

The combination of Forth and FORPS should be viewed as a
serious alternative to OPSS for smaller expert system
appl ications. However, FORPS would be inadequate for general use
in developing larger expert systems because it lacks features and
capabilities often taken for granted in expert system development
tools. A list of enhancements to resolve this would well include
knowledge representation schemes such as objects/frames with
inheritance, a pattern matcher based on the Rete algorithm,
flexible conflict resolution strategies, and an attractive user
environment based on windows.

REFERENCES

(Brownston 8S) L. Brownston, R. Farrell, E. Kant, and N. Martin,
Proqramminq Expert Systems in ~ an Introduction to Rule-
Based Proqramrninq, Addison-Wesley, Reading, Massachusettes,
1985.

(Dress 86) W. B. Dress, "REAL-OPS, A Real-Time Engineering
Applications Language For Writing Expert Systems",
Proceedings, 1986 Rochester Forth Conference.

(Forgy 81) C. L. Forgy, QL User's Manual, CMU-CS-81-13S,
Carnegie-Mellon, University, Department of Computer Science,
1981.

(Matheus 86) C. J. Matheus, "The Internals of FORPS: A FORth-
based Production System", The Journal of Forth Application and
Research, Vol. 4, No. 1.

(Rash 86) J. L. Rash, "A Prototype Expert System in OPSS for
Data Error Detection", Proceedings, 1986 Rochester Forth
Conference.

