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ABSTRACT

Conventional computers are optimized for executing
programs made up of streams of serial instructions.
Conversely, modern programing practices stress the
importance of non-sequential control flow and small
procedures. The result of this hardware/ software mismatch
in today i s general purpose computers is a costly, sub-
optimal, self-perpetuating compromise.

The solution to this problem is to change the paradigm
for the computing environment. The two central concepts
required in this new paradigm are efficient procedure calls
and a user-modifiable instruction set. Hardware that is
fundamentally based on the concept of modularity will lead
to changes in computer languages that will better support
efficient software development. Software that is able to
customize the hardware to meet critical application-specific
processing requirements will be able to attempt more
difficul t tasks on less expensive hardware.

Writable Instruction Set/Stack Oriented Computers (WISC
computersY exploit the synergism between multiple hardware
stacks and writable microcode memory to yield improved
performance for general purpose computing over conventional
processors. Specific strengths of a WISC computer are
simple hardware, high throughput~ zero-cost procedure calls
and a machine language to microcode ,interface.

WISC Technologies i CPU/32 is a 32-bi t commercial
processor that implements the WISC philosophy.

INTRODUCTION

People buy computers to solve problems. People measure
the success of computers by how much was saved by using a
computer to solve their problems.

What is the expense of using a computer to solve a
problem? Computers cost users not only money for hardware
and software, but also resources for training, labor, and
waiting for solutions (both during development and during
use) . In the early days, the cost of solving problems with
computers was predominated by hardware costs. Miraculously,
hardware costs have plunged even while capabilities have
grown by leaps and bounds. As a result, the problems that
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computers are sOlving (and the programs that solve them)
have grown much more complex. This has lead to the dramatic
shift in recent years of spending more time and money on
computer software than on hardware.

Since expensive, complex software now dominates the
cost of providing computer solutions to problems, much
effort is going into changing the way software is written.
These efforts often end up placing more demands upon
hardware ("hardware is cheap"). Unfortunately, it never
seems that hardware speed increases can quite keep up with
added software demands (" software expands to f ill all
avai lable computer resources"). Consequently, much research
is being conducted on ways of making processors run programs
more efficiently for any given hardware fabrication
technology.
. The premise of this paper is that there are two

fundamental problems with current general-purpose
software/hardware environments: a lack of efficient hardware
support £or procedure calls, and an inability to tailor
hardware to applications based on software requirements.
The WISCarchitecturedescribed in this paper provides
efficient hardware support for procedure cal Is by using a
combination of two hardware stacks and a dedicated address
field in the instruction format. The WISC architecture also
supports cost-effective modification and expansion of
instruction sets by providing wri table microcode memory with
a simple format.

This paper first describes some of the historical roots
for the problems with conventional hardware/software
environments, then describes the concepts, implementation,
and implications of the WISC approach to providing a more
unified hardware/ software environment. Al though much of
this discussion is applicable to all computing environments,
the scope of this paper is limited to general-purpose
processing on single-processor computers.

THE HARDWARE/SOFTWARE EVOLUTION CYCLE

In order to see how the hardware environment can be
poorly matched to the needs of the software environment,
consider the historical pattern of steps in the
hardware/software evolution cycle since the days of the
first computers:

.! Profile existing software. How does a designer
determine what instructions should be included in a new
computer? Since the first use of most hardware is to run
existing programs, the most scientific way to design an
instruction set is to measure instruction execution
frequencies on computers already in use. Such measurements
usually reveal a preponderance of register manipulation
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instructions and simple memory loads and stores.
~ Design ~ computer that efficiently executes existing

software. When the new machine is built, it will use faster
hardware and a larger memory to execute more complex (and
memory-hungry) versions of existing programs faster.
Compilers for existing languages will be modified to take
advantage of the new hardware resources, and perhaps some
new features will be tacked onto the local dialect of the
language to make use of added hardware capabi i i ties.

ll write compilers that make new programs look like
existing software. When a new language or a new dialect is
developed, the compiler writer is interested in both
improving the software environment and in generating
efficient code. To acçomplish these often divergent goals,
compiler writers use optimization techniques to transform
the source code into a program that will execute as
efficiently as possible on available hardware. Since the
hardware designed in steps 1 and 2 is optimized for certain
types of operations, the output of these compi lers wi 11 tend
to use these same types of operations wherever possible.

Some of the most common optimizations that compiler
writers use include unrolling loops into in-line code
(figure la) and expanding the lowest level procedures as
macros within calling routines (figure lb). These two
optimizations are important in our discussion, because they
both tend to require increased program memory usage in
exchange for increased execution speed. This is based on
the almost universal assumption that hardware is most
efficient at executing in-line code.

il Write new applications using the ~ compilers
(which produces more machine code optimized for existing
hardware). When it comes time for new application programs
to be written, programmers can be counted on to exploit all
the strengths (and quirks) of the newly available compilers
and hardware.

.. = 1
statement a
stateriien t b

DO FOR J = 1 TO 3

state men t .:¡ ::st.temeri t b ~
nW-LOOP

SOUIKE CODE

.. = 2
statemerit a
statemeri t b

.J = :;:
statemen t a
stateri)ent b

OB.JECT CODE

Figure la. Unrolling Loops.
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::tatemeti t a
CALL B
::t.:itemen t c

CALL B
stateroen t d ~

statemn t a

stateMent bl
staternen t b2
stateren t b3

statemn t c

stternent bl
statemen t b2
sttemen t b3

statement d

OBJECT CODE

PROCEDURE B:

statemen t b 1
statemen t b2
statemen t b3

SOURCE CODE

Figure lb. Expanding procedures in-line.

Despi te the insulating effects of high leve 1 languages
between programmers and machines, programmers are
uncomfortably aware of any software features that reduce
performance. When programs perform poorly because they are
not suitable for automatic compiler optimization, the user
is compelled to re-write programs to avoid inefficient
structures or buy a more powerful (and more expensive)
machine. This tends to further skew usage statistics, since
new machines are perceived to be more expensive than clever
but shabby software techniques.

~ Go to step ll above, and get yet another computer
that is even better at running existing programs.

This development cycle clearly favors the propagation
of initial biases in computer design to successive
generations of machines. Could it be that years of pursuing
this cycle has resulted in instruction sets that still favor
the operations present in the early machines? Is this
fil tering process the real mechanism that lead to the
concept of RI SC archi tectures?

HARDWARE EVOLUTION

Having examined the process by which we ended up with
today i s computing environment problems, let us take a look
at some of the evolutionary steps computer hardware
archi tecture has taken along the way.

The history of computers has been a story of providing
faster hardware with increased capacity in smaller packages
with lower prices. The primary emphasis has been on
reducing the cost of computing by reducing the cost to
purchase and operate hardware. Measurements that indicate
the cost effectiveness of hardware include the cost per
megabyte of program memory and the cost per millions of
instructions executed per second. From the point of view of
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the purchaser, hardware becomes more of a bargain every year
(or month, or evén day).

There have been two central problems to be overcome in
increasing hardware performance: arithmetic computation
speed and memory access speed.
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Figure 2a. Pipelining.
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Figure 2b. Parallelism.

Arithmetic computation speed was a major problem in
ear ly computers. Origina i ly, the arithmetic computation
speed limitation was overcome by using pipelining (figure
2a) and parallelism within the system (figure 2b). For
example, separate portions of a processor could concentrate
on fetching instructions, fetching operands, computing
values, and storing results (pipelining). Additionally,
indi vidua i hardware adders, mul tipl iers, and dividers could
work simul taneous lyon data within the computation section
of the processor (paral lelism). Recently, the increasing
speed and complexity of VLSI circuitry (and especial ly the
avai labi i ity of inexpensive , fast floating point arithmetic
chips) have greatly reduced arithmetic computation speed as
a problem in general purpose programing.

As the time to perform arithmetic operations has been
reduced, main memory access speed has emerged as the leading
speed bottleneck. Historically, there have always been two
kinds of memory avai lable to computer designers: smal i high-
speed memory, and s low bulk memory. Today, the trend
continues. Affordable high capacity memory chips leap by
factors of four in size every few years with modest
increases in speed. Fast static memory increases moderately
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in size, but increases dramatical ly in speed.
As CPU speeds have outstripped bulk memory speeds,

memory bandwidth limitations have become more severe. There
are two ways to solve this problem: speed up average memory
access time, and increase the amount of work done per memory
access. Cache memory decreases average memory access time
at the cost of added complexity by using the small, high
speed memory devices to retain copies of instructions and/or
data that are likely to be needed by the CPU. CaChing
schemes usually rely on the concept Of locality: programs
tend to execute instructions in sequence, and tend to access
data in clumps.

Other techniques to speed memory access inc 1 ude
inter leaving banks of memory and pre-fetching opcodes beyond
the current operation being executed. Both methods tend to
increase speed for sequentially executing programs at the
cost of added hardware complexity. Separate data and
program memories can also increase available memory
bandwidth, but are beyond the scope of this paper.

The second method of reducing the effects ofa memory
access bottleneck is the technique of increasing the average
amount of work done by each opcode fetched from memory.
This has lead to the development of what is now called the
Complex Instruction Set Computer (CISC ) machine. CISC
maChines are based on the concept of reducing the semantic
~ between high level language source code and its
corresponding machine code. The theory is that if a high
level language specifies a complex operation such as a
character string move, it should be able to communicate this
operation with a single machine instruction and consume only
one memory cycle for opcode fetching. A simple, non-CISC
machine would have to synthesize a complex operation from a
sequence of simple instructions (consuming multiple memory
cyc les for opcodes), resul ting in a semantic gap between the
intent of the high level language and the way the intent
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Figure 3. Semantic Gap.
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must be communicated to the machine (figure 3). Some other
examples of complex instructions supportèd in modern CISC
architectures inc ludeframe based procedure parameter
passing, array address ca lculation, and I inked I ist pointer
maintenance.

As instruction sets have become more complex,hard-
wired computers that decode and execute instructions by
using only logic gates have become too complex to be cost
effective for most applications. Consequently, the use of
microcoded machines has come to dominate the computer
industry.

Microcoded computers execute several fast low-level
instructions (ca I led micro-instructions) to interpret and
execute each machine instruction. Since each machine
instruction may invoke a sequence of one or more micro-
instructions, microcoded designs a llow straightforward
implementation of the complex instructions of a CISC
machine. As the instruction set grows in size and
complexi ty, microcoded designs simply increase the size of
the ROM or RAM for storing micro-programs. Since microcoded
designs store the mechanism for decoding and executing
instructions in memory instead of as a network of logic
gates, many design errors may be corrected simply by
Changing the microcode of the machine. This provides a
significant savings in development time and cost over making
changes to logic gates in a hard-wired computer design.

Since adding instructions is relatively inexpensive in
microcoded Cl SC machines, these machines usual ly attempt to
reduce the size of the semantic gap by providing an
abundance of complicated instructions designed to directly
implement high level language functions. Unfortunately, as
the semantic gap is reduced in this manner, CISC machines
run into a different problem: semantic mismatch.
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Figure 4. Semantic mismatch.
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Semantic mismatch take places when a complex machine
instruction doesn i t exactly match the requirements of the
high level language being used (figure 4). Semantic
mismatch usually occurs because real-l ife CISC machines have
a single instruction set that must meet the requirements of
many diverse programing languages and application programs.
This means that the instruction set is, of necessity, a
compromi se.

Examples of how languages differ in their requirements
inc 1 ude: zero-based versus one-based array addressing,
procedure stack frame parameter organization, linked list
pointer organization, and string count and del imi ter
organization. In addition, new complicated instructions are
often not smart enough to efficiently handle special
degenerate (but frequent) cases such as parameter less
procedure calls. As a result, compilers often ignore many
of the very complex instructions added (at considerable
effort) to new machines. Most compi led programs tend to use
simple to moderately complex instructions.

The resul t of using the above approaches to increasing
hardware power has been that most machines are we 11 adapted
to executing sequential programs of medium level complexity
instructions.

SOFTWARE EVOLUTION

In ear ly computers, hardware cost so much and was so
scarce that any amount of programing effort was justifiable
just to get an answer. As hardware has become less
expensi ve, programs have become more complex, and software
has grown tremendous ly in complexity and cost. Today,
software is by far the most expensive part of any complex
computer-based solution to a problem.

Most programing is now done in high level languages.
There are two broad classes of high level languages in use:
special purpose languages and general purpose languages.

Special purpose languages such as LISP, Prolog, and
Small talk are based on computation models that stress
unconventiona 1 approaches to problem solving. They
typically do not address the issue of computational
eff iciency on general purpose computers. These languages
tend to trade computational efficiency for flexibility and
freedom of expression for specif ic tasks. Since these
languages are often developed in research environments with
ready access to powerful computers, computational efficiency
is not a primary consideration.

Whi le specia 1 purpose languages are important for their
application areas, the very same features that make them
powerful as a programing tool are the very things that make
them perform poor lyon limited resource conventional
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computers. Some of the special featurès are dynamic memory
management (especially garbage collection), run-time operand
binding, and inter-procedure communication protocols.
Today i s trend is to either provide language-specific
hardware, or more powerful but more expensive than average
hardware to run programs written in these languages.

Most application programs are written in general
purpose languages such as FORTRAN, BASIC, CaBaL, Pascal, C,
and Ada. The ear ly high level programing languages such as
FORTRAN were direct extensions of the phi losophy of the
machines they were run on: sequential Von Neumann machines
with registers. Consequently, these languages and their
general usage have de~eloped to emphasize long sequences of
assignment statements with only occasional condi tiona 1
branches and procedure ca 1 is.

I n recent years, however, the complexion of software
has begun to change. The current ly accepted best practice
in software design centers around structured programing
using modular designs. On a large scale, the use of modules
is essential for partitioning tasks among programmers. On a
smaller scale, procedures control complexity by limiting the
amount of information that a programmer must deal with at
any given time.

Procedures (often cal led subroutines) started out in
ear ly computers as a memory-saving device used at the cost
of reduced execution speed. In modern programing languages,
the importance of using procedures for software producti vi ty
is taken for granted; memory savings are an almost
incidenta 1 advantage.

Modern languages such as Modula-2, Pascal, and Ada are
designed specifically to promote modular design. The one
hardware innovation that has resulted from the increasing
popular i ty of these structured languages has been a register
used as a stack pointer into main memory. with the
exception of this stack pointer and a few complex
instructions (which are not always usable by compilers),
hardware has remained basica 1 ly unchanged. Because of this,
the machine code output of optimizing compi lers for modern
languages sti 1 1 tends to look a lot 1 ikeoutput from
ear 1 ier, non-structured languages.

Herein lies the problem. Conventional computers are
sti 1 1 optimized for executing programs made up of streams of
serial instructions. Execution traces for most programs
show that procedure cal Is make up a rather small proportion
of all instructions. Conversely, modern programing
practices stress the importance of non-sequential control
f low and sma 1 1 procedures. The c lash between these two
realities leads to a sUb-optimal, and therefore costly,
hardware/ software environment on today i s general purpose
computers(;

Th i s does not mean that programs have f ai 1 ed to become
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more organized and maintainable using structured languages,
but rather that efficiency considerations and the use of
hardware that encourages writing sequential programs has
prevented modular languages from achieving al i that they
might. Although the current phi losophy is to break programs
up into very smal i procedures, most programs sti i i contain
fewer, larger, and more compl icated procedures than they
should.

How many functions should a typica i procedure have? In
Psychology of Communication: Seven Essays, George Mi ller
gives strong eviòence that the number seven (plus or minus
two) applies to many aspects of thinking. The way the human
mind copes wi th complicated information is by chunking
groups of simi lar objects into fewer, more abstract objects.
In a computer program, this means that each procedure should
contain approximately seven fundamental operations (such as
assignment statements or procedure calls) in order to be
easily grasped. If a procedure contains more than seven
distinct operations, it should be broken apart by chunking
related portions into subordinate procedures to reduce the
complexi ty of each portion of the program. In another part
of the book, George Mi i ler shows that the human mind can
only grasp two or three levels of nesting of ideas within a
single context. This strongly suggests that deeply nested
loops and conditional structures should be arranged as
nested procedure calls, not as convoluted indented
structures within a procedure.

The only question now is, why don i t most programmers
fo i low these guidel ines?

The most obvious reason that programmers avoid small,
deeply nested procedures is the cost in speed of execution.
Subroutine parameter setup and the actual procedure ca i ling
instructions can swamp the execution time of a program if
used too frequently. Al i but the most sophisticated
optimizing compi ler can not help if procedures are deeply
nested, and even those optimizations are limited. As a
resul t, efficient programs tend to have a relatively shal low
depth of procedure nesting.

Another reason that procedures are not used more is
that they are difficult to program. Often times the effort
to write the pro-forma code required to define a procedure
makes the definition of a smal i procedure too burdensome.
When this awkwardness is added to the considerable
documentation and project management obstacles associated
with creating a new procedure in a big project, it is no
wonder that average procedure sizes of one or two pages are
considered appropriate.

There is deeper cause why procedures are difficul t to
create in modern programing languages, and why they are, used
less frequently than the reader of a book on structured
programing might expect: conventional programing languages
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and the people who use them are steeped in the traditions of
ba tch processing. Batch processing gives li tt le reward in
testabi 1 ity or convenience for working with sma 1 1
procedures. Truly interactive processing (which does not
mean doing batch-oriented edit-compile-link-execute-crash-
debug cyc les from a terminal) is only avai lable in a few
environments, and is not taught to any large extent in
uni versi ties.

As a result of all these factors, today's programing
languages provide some moderate ly useful capabi li ties for
eff icient modular programing. Today i s hardware and
programing environments unnecessarily restrict the usage of
modularity, and therefore unnecessarily increase the cost of
providing computer-based solutions to problems.

UNIFICATION OF SOFTWARE AND HARDWARE

Developments in the conve~tional programing environment
may be reaching a dead end. Recent uniprocessor hardware
innovations tend to focus on either special purpose
processing for symbol manipulation or disti 1 1 ing
conventiona 1 machine instruction sets with yet another pass
through the analysis-implementation-programing cycle
discussed ear 1 ier.

The premise of this paper is that there is sti 1 1
considerably more mi leage to be gained from uniprocessors by
breaking out of the past cycles and looking at the
hardware/software problem as a whole. The answer lies not
wi th a new hardware architecture that mirrors current
software, nor in changing software to suit current hardware.
The answer 1 ies in a redefinition of how we think about
hardware and software. In this manner, we can aspire to
achieve a unified hardware/software computing environment.

The first step in defining a unified general purpose
computing environment is to take to heart the philosophy of
breaking a problem up into smaller sub-problems. Instead of
building a computer that supports procedure calls as special
operations, what if we design a computer to expect
subroutine ~al Is as its primary mode of operation?

Implementing this idea resul ts in a machine that is
unlike conventional processors in a very fundamental way: it
is designed for non-sequential program "execution. It
becomes a "tree processing machine". Programs are no longer
1 ists of sequentia 1 instructions with occasional branches
and procedure ca lIs (figure 5). Programs are now organized
a s a tree structure, with each instruction containing
operations and/or pointers to lower level nodes in the tree
(f igure 6). In such a machine, the very notion of a program
"counter" becomes obsolete.
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PROCEDURE A:

st.3teiri? t b cal 1 C ca 11 D

PROCEDURE C:

call E stat~"ent f ca 11 G cal 1 H

PROCEIiRE E:
statemen t J

PI':OCEDURE G:

ca 11 K statemen t 1 call t'1

PROCEDURE K:

st.3terilerl t P statemeri t Cl

I

i

i PROCEDURE H:statefiierit n

PI':OCEDURE t'1:

statemerit t' statement 5

statement 0

PROCEDURE D:

staterilE'n t

Figure 5. A typical sequential program

If this machine could actually process procedure cal Is
simultaneously with other operations, modularity in programs
would not be penalized. Such a machine would encourage
better software design, and could fundamentally alter the
way programmers think about programs.

Now that we have the concept_ of hardware that is
efficient at implementing software procedures, how can we
change the software to better match the hardware? The
answer to this question lies in the concept of a modifiable
microcoded instruction set.

As discussed previously, reducing the semantic gap of a
processor can increase processing speed by reducing memory
bandwidth requirements. The only pi tfal 1 is that if a pre-
defined instruction set does not closely match the
requirements of a language or application program, semantic
mismatch negates the usefulness of many complicated
instructions. Since general purpose machines are expected
to perform well on a wide variety of problems in many
different languages, the answer is to change the instruction
set as required to suit each application program. This is
most easily done with a writable microcode memory (often
called writable control store).

Wi th wri table microcode memory, the user can modify the
instruction set of the machine to fit each application
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program or programing language support environment.
Applications can be initially written using a simple,
generic instruction set. Then new instructions can be added
to eliminate performance bottlenecks in heavily used code
sequences.

The combination of tree-processing hardware with
software that can modify the machine i s instruction set for
best efficiency can produce unexpected benefits in both
hardware and software performance. The next section
discusses an architectural approach to implementing such a
machine, and the benefits that may be derived.

THE wise APPROACH--
The Wri table Instruction Set Computer (WiSe) approach

to computer design provides a computer that efficiently
supports the integrated hardware/software development
environment just discussed. A wise machine has high-speed
procedure processing capability along with the capability to
redefine the instruction set. wise machines implement these
goals by using multiple hardware stacks for operand and
procedure return address storage, and wri table microcode
memory for storing the instruction set definitions. wise
machines also have a fixed instruction format for simplicity
and speed of operation, and strive to meet the criterion of
usefully employing all avai lable memory cycles.

Once the decision is made to use a hardware stack in a
design, an interesting and somewhat unexpected cascade of
benefits is realized. These benefits lead to the
archi tectural features of wise machines.

The wise machine discussed in this paper uses two
hardware stacks: one for data parameters and one for return
parameters. The first benefit of using these hardware
stacks is that the overhead cost normally associated with
procedure cal Is is greatly reduced. During a procedure
call, the hardware return stack eliminates the need to save
a return address to main memory. Additionally, the hardware
data stack eliminates the need to save registers and data
values to memory and/or fetch procedure input parameters
from memory within a procedure.

Now, however, the unexpected benef i ts beg in to accrue.
A pure stack machine has no need for parameters with opcodes
(except for memory addresses.) Since all operations are
relative to the current position of the stack pointer, each
opcode can be a simple parameterless field of five to ten
bi ts. This greatly simplifies instruction decoding logic
since implicit operands eliminate the need for explicit
addressing modes, register specifications, etc. In a
microcoded machine, this means that the opcode can directly
access a microcode word with no decoding logic. All this
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makes the hardware simpler, fasteri and less expensive to
deve 1 op and manufacture.

Since intermediate operands are kept on the hardware
data stack, each microcoded instruction need take only one
memory reference cycle (with loads and stores taking two
memory cycles). Since microcoded primitives can be kept
simple enough to execute within a single memory access
cycle, there is no need for a complex pipeline to perform
decoding, operand-fetching, execution, and result storage.
A simple overlapped instruction fetch/decode and instruction
execution strategy is quite ample to use all available
memory bandwidth.

As an added bonus of using a stack-oriented instruction
set, procedure cal Is may be made at zero cost in execution
time for most cases. Since a stack-oriented opcode need
only take roughly one-quarter of a 32-bi t instruction word,
the remaining instruction word bits are available to use as
a procedure branching address (figure 7). If an overlapped
fetch/decode and execution strategy is used, procedure
cal Is, procedure returns, and unconditional branches may be
processed in paral le! with operation decoding.

I ûPCODE I ADDRESS

Figure 7. Generic wise instruction format.

Now add the power of a changeable microcoded
instruction set to the hardware stack machine just
described. Since a fixed instruction format stack machine
is free from complex opcode format interpretation and other
complications, the hardware design is simple. And, simple
hardware means simple microcode.

One problem with the few wri tab.le instruction sets
avai lable on current machines is that the microcode is just
too hard to write. Microcode formats of 48 to 128 bits are
very common. That i s a lot of complexity for a programmer to
handle! In fact, such complex microcode formats make
expectations of customizing instruction sets for
applications unrealistic. As will be shown later, a single-
format 32-bit micro-instruction format is more than
sufficient for a WISC machine.

Since a wise architecture can be designed with a simple
microcode format, moderately sophisticated users (such as
compi ler writers) can customize the architecture to meet
their needs. Use of wri table microcode memory leads to an
increase in semantic content (and therefore a reduction of
the semantic gap) for each instruction, and therefore more
work done per memory access. It also eliminates the problem
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of semantic mismatch, since the instruction set can be
modified to suit the quirks of any application or language-
support environment.

There is yet another benef i t to the WI SC approach. The
combination of hardware stacks with wri table microcode
memory results in the blurring of the boundaries between
high leve i programs, machine code, and microcode.

Consider the conventional processor. High level
structured programs are converted from groups of procedures
wi th stack-oriented local variables to machine code. A
considerable change in the look and feel of the program
takes place as high level language operations are
transformed into groups of primi ti ve operations. Whi le a
complex machine instruction set may support such stack
operations as frame pushes and pops, and even fetch a
variable given a frame pointer and an offset, the paradigm
switches from variables and frames in high level languages
to registers and memory pointers in machine code.

The means of passing information between many high
level language procedures is the stack. The way of passing
information between conventional machine language
instructions is through registers or discrete memory
locations. The fundamental mechanisms are completely
different. If an instruction could be added to microcode
memory to replace a procedure, it would result in re-writing
the calling code to format the operands in registers instead
of in a stack frame.

Now consider a WISC machine. WISC machines accomplish
efficient procedure calling in part by the use of a data
stack to pass information from cal ling programs to
procedures. WISC instruction formats are greatly simplified
by using this same data stack for holding operands. This
means that a procedure can be transparently replaced with a
microcoded primi ti ve by simply replacing the procedure cal i
wi th an opcode. There is no impact to any other aspect of
the source code. This not only simplifies the substitution
of microcoded primitives for high level source code
fragments, but can actual ly lead to a view of, microcode
memory as a cache memory f~r frequently used operations.

In practice, this view of microcode memory as a cache
memory allows the developer to selectively optimize the
hardware for each application. This could be done by pencil
and paper analysis of the program, or by using execution
prof i i ing software to create a histogram of execution
frequencies for each section of code. The most heavily
executed procedures can then be partly or wholly transferred
from high level code to microcode, resulting in a
significant speed increase. In the case of providing run-
time support for the output of a compiler, the microcoded
instruction set can be tailored to exactly implement the
types of operations supported by the language. In either of
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these cases, the microcodebecomes a sort of cache memory
for storing the operations that need to be executed most
frequently.

This view of microcode memory as a sort of instruction
cache is the final link of a chain that transforms a wise
machine to something beyond a conventional processor ¡it
makes the wise machine into a tree processing machine that
merges al i levels of processing into a unified
hardware/ software environment. Instead of representing
programs as sequences of in-line instructions that are
occasionally interrupted by procedure calls, the wise
processor views programs as an orderly nested series of
procedure calls, with the final level of procedure call
being a call to microcode memory.

Now that wise machines are viewed as tree processors,
several changes in programming take place. If a suitable
microcoded instruction set is used, compiled object code can
closely correspond to the original source code, resulting in
simpler and more efficient compilers and debtigging tools.
There is no mismatch between the high level language source
code and the actual machine code executed at run time.

Additionally, procedures are not viewed by the
programmer as a collection of in-line code fragments, but
rather as tree structure. The branches of this tree
structure represent the control f low structure of the
program (procedure cal Is, returns, and jumps). The leaves
of the tree are represent procedure cal Is into microcode
(f igure 6 above).

From the above features we can see that a wise machine
uses simple, and therefore fast hardware to execute high
semantic content instructions that closely reflect the
structure of the software. Programmers are not pena i i zed
for organizing programs into small, understandable
procedures. This results in compact tree-oriented program
structures which are composed of hierarchically arranged
solutions to sUb-problems. Thus programs can be
simul taneously optimized for small memory space, fast
execution speed, and low development cost. This allows the
hardware/ software environment to deliver cost-effective
solutions to the user i s problems.

DESIGN OF A 32-BIT wise MACHINE

In order to reify the conceptual design just presented,
it is necessary to define the high level design of a wise
machine. For the purposes of this paper, the design of a
32-bit wise machine called the epU/32 will be discussed in
detai i.

It turns out that after a wise machine is specified as
having hardware stacks and a wri table instruction set, the
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single most important part of the design is the instruction
format. The key to high-speed processing with zero-cost
procedures is to use a fixed length instruction format that
contains both an ope ode and a procedure address.

The CPU/32 uses a 9-bi t opcode (figure 8). These 9
bi ts can form the page address for a page of microcode
memory, eliminating virtually all instruction decoding
logic. This allows for up to 512 opcodes in the machine.

BIT: :31
"j'j -:-:' 'j

1 0i-... i-i- i-

CiPCClDE .... DDRECS
CALL/
EXITH '., 0..

CONTROL

Figure 8. CPU/32 instruction format.

The remaining 23 bits of the 32 bit instruction format
are dedicated to address and control information. If all
instructions are aligned on byte boundaries that are evenly
di visible by 4, then the high 21 bits of the remaining 23
bi ts in the instruction can address an instruction word in
memory (with the low order 2 address bits masked to 0). The
lowest order 2 bits of each instruction can then be used as
a branching mode selection: procedure cal I, procedure
return, or unconditional jump. These 23 bits can be used to
execute an unconditional jump, procedure cal I, or (ignoring
the address field) procedure return in parallel with ope ode
execution. The CPU/32 can process procedure calls for free!

As additional embellishments, this instruction format
allows tail-end recursion elimination by substituting an
uncondi tional branch for a procedure cal I as the last
instruction of a procedure, and facilitates conditional
branching and looping by having the branch destination
address readily available.

The CPU/ 32' s block diagram is shown in figure 9. The
CPU/32's resources include a data stack, an ALU with a data
register (Data Hi) and a transparent latch, an auxiliary
(Data Lo) register that can connect with the Data Hi
register for 64-bit Shifting, a return stack with a bi-
directional data path to the memory addresser for procedure
cal I address manipulation, a memory addresser, program
memory, and microcoded controller. Al 1 of the resources are
connected to a central data bus, with access to I/O services
through an appropriate host interface. Al 1 data paths and
registers in the CPU/32 are 32-bits wide.

There are several interesting aspects to the CPU/32.
One feature that is not always found on hardware-based stack
designs is that the Data Hi register above the ALU can hold
the top data stack element. This allows the use of a
single-ported data stack RAM. Another is that the stack
pointers can be loaded with values from the data bus. This
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makes accessing deeply buried stack elements relatively easy
by eliminating the need for repetitive stack pushing and
popping.

The use of a transparent latch on the ALU inputs allows
connecting any data bus resource to one siqe of the ALU
within one clock cycle, but also allows the latch to retain
an intermediate value without disturbing the contents of the
Data Hi register. This capability results in a savings of a
clock cycle any time the top of stack element in Data Hi
needs to be swapped with a cell in the data stack RAM.

The CPU/32 has no program counter. Each instruction
contains the address of the next instruction. The only
exception to this is when procedure returns are being
processed, in which case the return stack value is passed
directly through the memory address logic to access the next
sequential instruction in the calling program.

Whi le there is no program counter, there is an
incrementer within the program memory logic that is used to
add a one word displacement to procedure call addresses
before they are saved on the stack. This incrementing is
required in order to generate correct return addresses. The
incrementer is also useful in block memory moves.

The micro-instruction register forms a one-stage micro-
instruction pipeline that eliminates wasted time which would
otherwise result from waiting for micro-program memory
access. The only drawbacks to this design are that a two
micro-cycle minimum is imposed on all op-codes, and delayed
micro-instruction branches must be used for condition code
testing. However, the small, high speed memory used to
implement the micro-program memory and data stack memory
al lows for two micro-code cycles within each memory cycle
time ,essential lyeliminating the impact of these drawbac~s
on system performance.

The micro-instruction format is shown in figure 10.
Each micro-instruction uses 30 of the avai lable 32 bits.

The entire instruction decoding path, from the return
address stack all the way through to the micro-instruction
register, is totally independent of the data bus. This
allows ALU and data stack operations to proceed while
simul taneously fetching and decoding instructions. This
structure allows nearly 100% of the memory bandwidth to be
used productively.

In the CPU/32, each instruction is fetched and decoded
during a two micro-cycle period, waits in the micro-
instruction pipeline for one clock cycle, then executes in
two or more addi tiona 1 microcyc les . The average instruction
execution rate is just under one instruction per two micro-
cycles.
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BITS
0-3
4-7
8-9
10-11
12-13
14-15
16-19
20
21
22-23
24-26
27-28
29
30
31

Figure 10.

USAGE
Bus source select
Bus destination select
Data stack pointer control
Return stack pointer control
ALU multiplexer shift control
unused
ALU function select
ALU mode select
ALU carry-in & shift-in
Data Lo register shift control
Microcode conditional branch select
Microcode next address generation
Increment microcode page register
Fetch & decode next macro-instruction
Memory address increment control

CPU/32 micro-instruction format.

An interesting software implication of the opcode
format and system design is that opcodes interspersed with
procedure calls must be compacted into single instructions
in order to get zero-cost procedure calls. The procedure
call in each instruction takes effect after the opcode has
been completed. The only times that procedure calls are not
zero-cost are in deeply nested procedures where there are no
opcodes before the first procedure call in each successive
level. Subroutine returns are zero-cost if the last
instruction in a procedure is an opcode reference.

A possible compiler optimization that can easily
increase efficiency is the substitution of an unconditional
branch for a procedure call if the last primi ti ve within a
procedure is itself a procedure call (this is often called
tai I-end recursion elimination). Another possible
optimization is a "bubbling-up" of the first opcode of a
procedure to a calling program when the calling program
would otherwise be forced to execute a null op-code in a
series of consecutive procedure calls.

The system software for the CPU/32 obviously plays an
important part in the establishment of a productive
computing environment. While languages such as C are very
well suited to the WISC architecture, eventually a new
language will evolve to exploit the new capabilities of
tree-oriented processors. Such a language would likely
have: sma 11, eas i ly defined procedures ¡ interactive
development, compilation, and testing at the procedure
level¡ easy access to a microcode assembler¡ extensibility
of both data and compiler control structures¡ a high level
infix syntax¡ a library of commonly needed functions¡ and
support for module archiving and reuse.
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THE WISC TECHNOLOGIES CPU/32

Now that the design for the CPU/32 has be presented,
the question is, can such a machine actually be built? The
answer is, of course, yes. WISC Technologies' CPU/32 is a
commercial system that implements all of the ph~losophy and
archi tectural features discussed in this paper.

Addi tional CPU/32 implementation features not
previously discussed are a DMA memory transfer capability
wi th the host computer, hardware and software interrupt
support, and support for byte-oriented memory access.

CONCLUSION

WISC Technologies i CPU/32 is an implementation of a new
way of thinking about computing environments: tree-organized
program structures that emphasize modular programing for
general-purpose computing. Preliminary use of WISC machines
indicates that performance is equal to or better than other
high-performance general purpose uniprocessors over broader
c lasses of problems than might be expected. In particular,
expert system programs with their tree-traversal emphasis
are particularly well suited to WISC-type architectures.

If the past patterns of hardware and software evolution
can be broken, we might yet see quantum leaps in programmer
producti vi ty. i think that WISC computers are more than
just another novel architecture. I think that they are a
new way of looking at the bottom line of computing: getting
problems solved.
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