
Proceedings of the 1987 Rochester Forth Conference 79

ColorForth: A power full programming language for the COCO-II 1

G.-E. April Ecole Poly technique de Montréal P.O. Box 6079
station A Montreal H3C-3A7 Canada (514) 340-4877

The Radio Shack Color-Computer may be easily modified to accept a
Rom-resident version of Forth, especially developped for that machine.

The software has been so arranged as to facilitate the direct
transfer of debugged programs into ROM for operation on a stand-alone
dedicated board for turn-key operation. Two companion boards were also
designed, one being an I/O extender which plugs into the cartridge port
of the computer, the other a full featured SBC which shares the same
memory and I/O map as the computer (+I/O extender). This allows
programs to be developped and debugged on the Color Compu ter, then
transferred wi thout modifications to the target board.

-System features.

In spi te of the declared intention to make this a dedicated
package, wi th emphasis on real time performances, Color-Forth (as we
lovingly call it), was equipped wi th a full complement of mathematical
and scientific functions as well as string handlers. It also includes
some novel structures as well as minor modifications to some classical
features of Forth.

-Modified Forth features.
Because of the introduction of complex ari thmetic, for which a "c"

prefix seemed appropriate, the Forth words cl c~ and cmove were renamed
bl b~ and bmove respectively (for byte-store byte-fetch byte-move).

" user 11 was modified to relieve the programmer from specifying
absolute addresses. Instead, the top of the stack is used to determine
the number of bytes to be reserved for the variable so defined.

e. g. 3 user X 5 user Y i user Z (ENTER Ok
X . Y . Z . (ENTER) 3270 3273 3278 Ok

11 variable " was similarly modified to facili tate its use wi th ROM-

based programs. Instead of initializing the value from the top of the
stack, it will use this to determine the number of bytes to reserve, so
it is not necessary to use " allot. "when variables of non-standard
lengths have to be handled. In this way, if it is desirable to have
variables reside outside the dictionnary (should this be in ROM), it
is sufficient to add the two defini tions below and then compile as
usual.

2 variable Variable pointer (Create a pointer
hex 2000 Variable põinter I (Area for variables to start at $2000
: variable Variabie pointer dup ~ constant +1 ¡

Thereafter, try:

3 variable XO i variable YO i variable ZO (ENTER) Ok
XO . YO . ZO . (ENER 2000 2003 2004 Ok

Nothing else need be changed.

1 COCO-II is a registered trademark of Tandy Corporation.

80 The Journal of Forth Application and Research Volume 5 Number I

" compile" and (compile) " have been made "state-smart" so that if
they are encountered outside a definition (i.e. in "execute"
state), they will simply act as no-operation functions. This produces
considerable space savings in some types of functions.

" bmove " ("cmove") has been made "direction-smart" and will now
produce correc t resul ts, even when ranges overlap. This avoids the
necessity for different functions for moves up and down. For instance,
the following:

1000 1001 10 bmove
will effectively move 10 bytes up by one position,rather than producing
ten copies of the same byte (which could easily be done with " fill "

-New features

A number of new or relatively rare features have been implemented
in ColorForth. Some inspired from other languages, some new (as far as
we know).

"block: "is a defining word which, when used in conjunctiön wi th
" close" and" ¡close" allows the definition of local variables and
procedures. The words defined by " block: " behave in all respec ts as
though they were colon definitions. The usage of " block: " is illustra-
ted below:

: xxx ¡ (Place marker in dictionnary)
block: XYZ
: Xl Forth words
: X2 Forth-words
code X3 ... Assembler words end-code
subroutine X4 Assembler words... rts, end-code
close ... Forth words XL X2 Xl X3 XL X2 ... Forth words ... ¡ close

Ok
vlis t (ENER)
XYZ block:
xxx
(BREAI Ok

The actual definition of XYZ is found between "close" and
" ¡close" where the same rules apply as in colon definitions. Notice,
however, that none of the definitions performed between" block: " and
" close" will be available after " ; close" has been successfully
compiled. This prevents the dictionnary from becoming cluttered with the
names of local variables and procedures.

-The" case" structure.
This is just a convenient way to implement decision trees.
The general format is as follows:
case of Forth words endof

of Forth-words endof
of .. . Forth-words ... endof

end case ...
The word " case " simply marks the start of the structure. The word

" of " compares the top two entries on the stack and, if they are equal,
drops both and executes the sequence between " of " and " endof ", after
which execution resumes at the word following " endcase ". If they are
different, the top one only is dropped, and execution continues after
" endof" If execution reaches" endcase ", i.e. if none of the" of "

Proceedings of the 1987 Rochester Forth Conference 81

clauses were satisfied, then the top stack entry is dropped, and
execution proceeds past " endcase" This structure could of course be
replaced by a series of " if ... else... then" statements, but these
can get pretty confusing when the number of choices becomes large.

-The n case: " defining word.
This is a defining word that creates words that are decision trees.

For cases that are to test all or most values of a variable (from 0
up), this produces more compact and faster code than. the "case"
s truc ture. The general format is as follows:

case: XYZ wordO word I word2 wordn ¡ case

Vhen " XYZ " is executed, it will take the top stack item and use
it to determine which of wordsO to wordn should run. Specifically, if
the top stack i tern is 0 or negative, wordO (only) xiII be executed. If
it is I, wordI (only) etc. . If it is equal to or greater than n, then
wordn will be executed.

-The" defer: " defining word.
" defer:" is very similar in structure to " block: " except for

the fact that words defined using it are immediately available for
compiling in to other words i and the. words defined after it remain
available. If the worci defined by " defer:" is executed, however,
nothing happens. The actual action of the word may be defined at a later
time, and all previous references will automatically be updated.
Further, it is also possible to change the definition many times,
wi thout recompiling the program. This allows top-down programming as
well as some rather fancy automata. The general format is as follows.:

defer: XYZ
: Xl ... XYZ

define XYZ ... Forth_words ... ¡ define

The actual definition of XYZ is found between "define" and
" ¡define" with the exact same syntax as a colon definition. However,
contrary to colon definitions, all past references to XYZ are updated.
To change the definition, it is necessary to first " undefine " the word
which may then be " define "d again.

e.g. undefine XYZ define XYZ ¡define

-The assembler.
ColorForth includes a full featured assembler, and two defining

words that produce assembler language sequences. The firs t, " code ", is
the simplest but it is a state-smart word on which we shall comment
later. Suffice it to say for now that when using" code" as a defining
word, the programer is responsible for preserving the pseudo-program-
counter and returning to " next " at the end. "subroutine" on the
other hand, uses a high level handler which saves and restores this
register. The words defined by " subroutine" must simply end with
11 rts, ". There is a slight time penalty to these words when they are

called by high level definitions, but they have the advantage that they
may, wi thou t penalty, be called by other assembler language sequences.

82 The Journal of Forth Application and Research Volume 5 Number 1

e.g. subroutine XYZ rts, end-code
:- xxx XYZ ;
code call XYZ next jmp, end-code

As mentionned earlier, code is a state-smart word. Vhen encountered
in the execute state, it is a defining word, as seen above. However,
when it is encountered inside a defini tion, it is a kind of swi tch which
allows the definition to proceed in assembler language. The word
" Forth" allow the programmer to revert back to high level when the
time cri tical section is finished. The same pair also allows a word
defined in assembler to temporarily go to high level, then revert back
to assembler.

e.g. XYZ..
. .. Forth
code xxx
. .. code ..

Forth words .. code.... Assembler words ...
.. .. Forth words ;

.. Assembler words .. Forth XYZ .. Forth words
Assembler words ... next jmp, end-code -

-Other features.

Colór forth uses two data stacks, one for 16 and 32 bit integers,
the other for floating point and complex numbers. A full èomplement of
floating point operators (f+ f- f* fl fdup fdrop fswap etc.) is
included as well as trigonometric and exponential functions (sin cos
atn log In exp etc.). Further most of these operators have a complex
equivalent (c+ c- c* cl cswap etc.) and even exponential and
logarithmic functions have a complex equivalent (clog ~ln cexp
etc.).

Performances.

The CPU in the ColorCompu ter is a 6809, which is very well sui ted
to an implementation of Forth. For exemple, it allows the inner
interpreter "next" to be implemented in only four instructions and
twenty cycles, which, since most Color-Computers will run at 1.8 MHz.,
adds up to an overhead of li t tIe more than 11 micro-seconds.

Typical execution times were measured for the words below (with
computer in "fast" mode. These compare favorably with universally
accepted standard personnal computers (which shall remain nameless).
Further, it should be noted that scientific functions which are seldom
used in time-critical si tuations were not optimized for speed, but
compaètness and carry 2.5 more accurate digits than most personnal
compu ters .

dec (decimal)
xx 30000 0 do loop; (1.5 seconds i.e. 50 micro-secs. per loop
yy 1000 0 do e sin fdrop loop ; (25 seconds i. e. 25 milli-secs each
zz 1000 0 do pi sqr fdrop loop ; (5 seconds i. e. 5 milli-secs each

Conclusions.
Vhen equipped wi th our in-house version of Forth, the Color-

Computer becomes a powerfull development tool that allows the debugging
of dedicated controllers which may then be run unmodified on a target
dedicated board, making it much easier to produce powerfull smart
devices.

