Fortran is Dead! Long Live Forth!

J.V. Noble
Department of Physics
University of Virginia
Charlottesville, Virginia 22901

Abstract

Many scientists, engineers and others using computers for numerical analysis and various
forms of scientific computation have found Forth to be a strong contender as the scientific
programming language of the future. One reason is that its extensibility permits Forth to handle
floating-point and complex-number arithmetic as expeditiously and transparently as FORTRAN.
And Forth has advantages, described below, over FORTRAN’s antiquated ways.

Although previous reports of FORTRAN’s demise have been exaggerated, avant garde num-
ber crunchers feel that Forth is poised to displace FORTRAN as the pre-eminent number crunch-
ing language. For this to happen, the Forth community will have to accept some standards for
floating-point and other “scientific” data types.

Introduction

The community of number-crunchers is large and diverse, including physical scientists, math-
ematicians, statisticians, life scientists, engineers, operations analysts, architects, students, and
many more. Since its introduction, FORTRAN has been the primary computer language of this
community. That is generally recognized in the Forth community, where it has led to a regretable
apathy concerning, e.g., such matters as Forth standards for floating-point arithmetic. The major
themes of what I call “fear of floating” seem to be: “If we add floating-point, it won’t be Forth,”
[1] and “If the people want to crunch numbers, let them use FORTRAN.” [2] The latter Marie
Antoinette approach is inappropriate for the grass-roots, people’s langua ge that Forth purports
to be. Obviously someone wants to crunch numbers in Forth, or Forth vendors would not supp-
ly floating-point and complex-arithmetic extensions. [3]

There has to be a reason why the number-crunching community is turning from FORTRAN.
The dear old lady still shows a fair turn of speed and style even with all those miles on her clock.
Why abandon her now? and for Forth of all things? Sad to say, FORTRAN'’s age is showing. Her
wrinkles peek through and she sags in embarassing places. The more adventurous number
crunchers, realizing this, have flirted with C or Pascal, seeking renewal in a younger language.
Their quest generally unsuccessful, most have returned — disillusioned —to their old
FORTRAN. She may be tired, her structure may be nothing to brag of, she may be out of trim
from too much spaghetti (code), but she gives them what they want and need. What does
FORTRAN give them? In a nutshell, floating-point arithmetic, complex arithmetic, and double
precision versions of both — all without having to jump through hoops or write unnatural and
contorted code. And it doesn’t hurt that FORTRAN also provides conveniences such as the for-
mula translator that it’s named for; rigid I/O conventions; and a natural array notation.

Journal of Forth Application and Research Volume 5, Number 2

261

262 The Journal of Forth Application and Research Volume 5 Number 2

Why Crunch Numbers in Forth?

Many scientists and engineers have learned about Forth because it is fast and compact and
offers a simple way to interface microprocessors with laboratory equipment and other machines.
[4] Forth has not found great favor in number-crunching applications, however. But a few num-
ber crunchers (e.g. me) have discovered that Forth is a very good, perhaps ideal, candidate to
replace FORTRAN. In Forth we have found a high-level language that is easy to program in,
debug and maintain, that embodies the post-FORTRAN programming precepts of portability,
structure, modularity and information-hiding, that permits recursion, that enables dynamic
storage allocation (and re-allocation), that allows extension of types and operators as necessary,
and that can be speed-tuned easily with in-line machine-code for selected, time-critical functions.

We Forth-wise number crunchers have found that, especially in conjunction with a co-
processor equipped workstation, Forth can be extended to handle floating-point and complex-
number arithmetic as transparently as FORTRAN. This is no trivial matter; I have seen articles
[5] in which complex arithmetic is implemented in Pascal — essentially by re-inventing parts of
Forth.

The speed issue is also crucial. Consider having to solve a lot of linear equations — say, 300
to 1000. Such problems sometimes arise in the kind of physics I do. Without access 10 an array
processor or supercomputer, how can I handle a system of such magnitude? One obvious way is
to use a library routine on the CDC mainframe at my university’s Academic Computing Center.
That routine will be written in FORTRAN, will use standard, well-tested techniques, and I can
quickly write the program 10 use it, confident that it will work. So what’s wrong? Why did I take
so much trouble to roll my own in Forth for a 10MHz PC cum 8087? The problem is memory.
Solving linear equations is practical only if the matrix and inhomogeneous term fit into RAM.
The 640K of PC RAM easily accomodates a 350 x 350 REAL*4 matrix and its inhomogeneous
term, or a 247 x 247 set of REAL*8 data. Isn’t the CDC memory big enough? Of course it is. But
to get access to such a large chunk of CDC memory I need a very high priority (it is a timeshare
system, of course). In practical terms, this means batch submission, with turnaround time of
several hours, perhaps overnight. But my PC, and it’s not such a great one, does 350 x 350 in
about sixteen minutes using Forth with the innermost loop hand-optimized in assembler. [6]
With a Definicon [7] 68020/68881 board, I expect to reduce the time for 350 x 350 to one or two
minutes. How would I cope with 999 x 999? The CDC’s virtual memory will allow me the room,
but cannot know which part of the matrix should go in RAM and which on disk. Thrashing will
slow it considerably. Whereas, working in Forth on my PC using LIM extended memory to hold
the data, and using moderate care in organizing the calculation, should realize the (theoretical)
factor of 37x from a 3-fold partition of the matrix. The time would be about 8 hours on my PC,
perhaps 0.5 to 1 hour on the Definicon board, probably only 5 minutes with an INMOS T800.
[8]

Figure 1 contains another example,a FORTRAN subroutine for minimizing a function using
the simplex algorithm, reproduced from the book Numerical Recipes. [9] The figure illustrates
another reason, beyond sheer speed, that Ilove Forth, and prefer it to FORTRAN. Without com-
ments it would be tedious to decipher either what the FORTRAN program does or its logical
structure in terms of data or decision {low. The variable names are too cryptic to be mnemonic
and there is no obvious decomposition by operation. The code is well-structured, but so what?
It’s still hard to understand. Contrast this with the main word in my Forth variant of this algo-
rithm (Fig. 2). The structure of the Forth version of the simplex algorithm is so clear and readable
that one hardly needs the flow diagram or comments (Fig. 3). Learning Forth gave me a strange
sensation — I could understand my own programs! Figures 1 and 2 should show why.

Fortran is Dead! Long Live Forth!

SUBROUTINE AMOEBA(P,Y,MP,NP,NDIM,FTOL,FUNK,ITER)
PARAMETER (NMAX=28,ALPHA=1.0,BETA=8.5,GAMMA=2.4, ITMAX=500)
DIMENSION P(MP,NP),Y(MP),PR(NMAX),PRR(NMAX) ,PBAR(NMAX)

11

12

13

14

15

MPTS=NDIM+1
ITER=0

IL0=1
IF(Y(1).GT.Y(2))THEN
IHI=1
INHI=2
ELSE
IHI=2
INHI=1
ENDIF
DO 11 I=1,MPTS
IF(Y(I).LT.Y(ILO)) 1ILO=I
IF(Y(I).GT.Y{IHI))THEN
INHI=THI
IHI=1
ELSE IF(Y(I).GT.Y(INHI))THEN
IF(I.NE.IHI) INHI=I
ENDIF
CONTINUE
RTOL=2.*ABS (Y (IHI)-Y(ILO))/
(ABS(Y(IHI))+ABS(Y(ILO)))
IF(RTOL.LT.FTOL)RETURN
IF(ITER.EQ.ITMAX) PAUSE
‘too many iterations.’
ITER=ITER+1
DO 12 J=1,NDIM
PBAR(J)=0.
CONTINUE
DO 14 I=1,MPTS
IF(I.NE.IHI)THEN
DO 13 J=1,NDIM
PBAR(J)=PBAR(J)+P(I,J)
CONTINUE
ENDIF
CONTINUE
DO 15 J=1,NDIM
PBAR(J)=PBAR(J) /NDIM
PR(J)=(1.+ALPHA)*PBAR(J)
-ALPHA*P (IHI,J)
CONTINUE
YPR=FUNK(PR)
IF{YPR.LE.Y(ILO))THEN
DO 16 J=1,NDIM
PRR{J)=GAMMA*PR(J)
+{1.-GAMMA) *PBAR(J)

17

18

19

21

22

23

24

25

DO 17 J=1,NDIM
P(IHI,J)=PRR(J)
CONTINUE
Y(IHI)=YPRR
ELSE
DO 18 J=1,NDIM
P(IHI,J)=PR(J)
CONTINUE
Y (IHI)=YPR
ENDIF
ELSE IF(YPR.GE.Y(INHI))THEN
IF(YPR.LT.Y(IHI))THEN
DO 19 J=1,NDIM
P(IHI,J)=PR(J)
CONTINUE
Y(IHI)=YPR
ENDIF
DO 21 J=1,NDIM
PRR(J) =BETA*P (IHI,J)
+(1.-BETA) *PBAR(J)
CONTINUE
YPRR=FUNK(PRR)
IF(YPRR.LT.Y(IHI))THEN
DO 22 J=1,NDIM
P(IHI,J)=PRR(J)
CONTINUE
Y (IHI)=YPRR
ELSE
DO 24 I=1,MPTS
IF(I.NE.ILO)THEN
DO 23 J=1,NDIM
PR(J)=8.5*(P(I,J)
+P(1L0,J))
P(I,d)=PR(J)
CONTINUE
Y (1) =FUNK(PR)
ENDIF
CONTINUE
ENDIF
ELSE
D0 25 J=1,NDIM
P(IHI,J)=PR(J)
CONTINUE
Y(IHI)=YPR

Fig.1 AFORTRAN subroutine for minimizing by the simplex algorithm.

264 The Journal of Forth Application and Research Volume 5 Number 2

The Unique Benefits of Forth

There are some interesting things that Forth can do for number crunching that FORTRAN
cannot encompass. For example, I have developed typed generic variables (defined by SCALAR),
accessed and manipulated by generic operations that decide, by vectoring, what to do atrun-time.
[10] I pay a small speed penalty for the extra overhead (although nothing like that of object-
oriented programming), but the virtue is that I write (and name and load) only one version of a
word, such as a linear equation solver or an adaptive numerical quadrature routine, that works
as easily with REAL*8, COMPLEX and COMPLEX*16 data types as with REAL. Now
programming a contour integral in the complex plane is no harder than an integral on the real
line, once I have defined and tested the generic adaptive quadrature routine at its core.

Forth permits another style that I have found useful — Forth makes it easy to encapsulate
run-time code with the data structure that it operates on. For example, in a complex Monte-Carlo
simulation of a process in high energy physics, one must choose random numbers from several
different kinds of distributions, avoiding statistical correlation with preceding or succeeding
choices. I manage this by tabulating the cumulative distributions that I need to choose from, [11]
then looking up in the table using an address given by a uniformly distributed pseudo-random
number generator (PRNG) with a very long period. [12] I handle correlations [13] by planting
the seeds in the table itself, and designing the PRNG to get current seeds from the current table.
The whole process of defining the table, filling it and initializing its seeds takes one step using
CREATE ... DOES>, which has been justly called [14] the “pearl of Forth”. All the tedium is neat-
ly hidden from my eyes: I merely invoke the name of the appropriate table at the appropriate
point in the simulation, and an appropriate random number is placed on the floating-point stack.
I know of no such simple mechanism for encapsulations in any procedural language. Object-
oriented languages permit it, of course, but they are usually too slow for number crunching.

\ SIMPLEX MINIMIZATION ALGORITHM
\ Usage: USE{ Fn.Name ERROR % E }MINIMIZE

Not.Better? New.Point HWorst.Point Better.Test?
IF New.Point INSERT & ELSE Clean.Up -1 THEN ;

: JMINIMIZE INITIALIZE
BEGIN Not.Close.Enuf? Iterations Max. Iter < AND
WHILE REFLECT Not.Better? (INSERT)
IF DOUBLE Not.Better? (INSERT)
IF HALVE Not.Better? (INSERT)
IF SHRINK SORT THEN
THEN
THEN
REPEAT

Fig.2 A FORTH variant of the simplex minimization algorithm.

Fortran is Dead! Long Live Forth! 265

Why FORTRAN is Slow to Die

FORTRAN programs are usually clumsy, but the formula translator is excellent. FORTRAN
arithmetic is performed by “smart” operators working on typed variables and literals. This per-
mits the convenience of mixed-mode arithmetic expressions, such as

A = B1*3 + B2*1.2E-5 -H(3)/3.14159265358979D-14 + K

FORTRAN provides a limited suite of data types: INTEGER, LONG-INTEGER, REAL,
DREAL, COMPLEX, DCOMPLEX, LOGICAL and CHARACTER. It provides no facilities
for defining new types (other than arrays of the above). But these are sufficient for most number
crunching problems. Types can be either implicit, or declared explicitly. Arrays must be declared
according to a strict format, but up to 3 indices are permitted. FORTRAN’s array notation is
simple, logical and follows the conventions of algebra, replacing subscripts with parentheses, e.g.
Ay becomes A(LJ)).

Initialize: choose simplex, sort
® praIN
Not.Close.Enuf?
Iterations Max.Iter < AND
Done No
WHILE
B
?
Yes Better?
Insert No REFLECT (worst point through
o center of simplex)
Yes Better?
Insert No DOUBLE (extend previous point
© 2-fold)
Yes Better?
Insert No HALVE (try halfway between
© worst point & center)
Yes Better?
t [A -
Inser o No SHRINK (move all points toward
best point)
SORT
0 REPEAT

Fig.3 Flow diagram of Simplex algorithm.

266 The Journal of Forth Application and Research Volume 5 Number 2

Crucial to FORTRAN’s utility in scientific programming is the mathematical function
library, including REAL, DREAL and COMPLEX versions of trigonometric functions, ex-
ponentials, logarithms, inverse trigonometric functions, sometimes hyperbolic functions and
their inverses, and often a random number generator of uncertain quality. Very importantly,
FORTRAN supports modularity through separate compilation of functions and subroutines.
This enables the construction and exchange of standard subroutine libraries such as Numerical
Recipes, CERNLIB, MATLAB, LINPACK, and so on. But this is not so much an attribute of the
language as it is the historical accumulation of useful subroutines and functions. The same could
exist for Forth.

All of these attributes give FORTRAN the essential functionality to solve scientific com-
putational problems. It works, and many are reluctant tQ junk the horse and buggy if they have
to learn to drive. The horse gets there too, eventually.

Why FORTRAN Should Die

To achieve the simplicity of mixed-mode expressions, the FORTRAN compiler must be
prepared for any eventuality. The operators “+7, “—7, wrn @pr wxE? and “=" must be “smart”
— they must “know” (or at least be able to figure out) what kinds of numbers are going to be
used and what kinds of arithmetic will be used to combine them. The smartness is built in at com-
pile-time: Consider the actions performed by the FORTRAN compiler in parsing the mixed-
mode expression

A = B1*3 + B2*1.2E-5 -H(3)/3.14159265358979D-14 + K

1) Space is defined and reserved for a floating-point single-precision variable A (implicit
type REAL) if A does not already exist.

2) The literal integer constant 3 is converted to floating-point and multiplied by the
(implicit-REAL) variable B1’s current value (fetched from memory).

3) The product is placed in temporary storage (TEMP). The implicit-REAL variable B2is
fetched and multiplied by the REAL literal 1.2E-5.

4) The second product is added to the contents of TEMP.

5) The third element of the (implicit-REAL) array H is fetched and divided by the DREAL
(double-precision) literal 3.14159265358979D-14, converting to and from DREAL
format as necessary.

6) The dividend is converted to REAL and subtracted from TEMP.
7) The implicit INTEGER variable K is converted to REAL and added to TEMP. Finally,

8) The result is moved from TEMP to the memory reserved for A. It’s clear why
FORTRAN is a formula translator.

FORTRAN assumes implicit data types when names begin with certain letters of the al-
phabet. It also permits explicit type declarations that override the implicit compiler actions
described above. Thus, had the program contained these declarations in its first few lines

INTEGER A, H(15), B1, B2

REALK
the conversions and assignments would have been floating-point to integer, rather than vice-
versa.

Imagine the complexity of a compiler that must be able to decide the type of each variable
and then select the appropriate routine to combine them, perhaps optimizing at various levels.
All this huffing and puffing is a mixed blessing. The compiler that can do it will be both complex
and slow. My experience using Microsoft’s two-pass FORTRAN compiler to perform a fairly

v

Fortran is Dead! Long Live Forth! 267

simple calculation in 120 lines of code, on a portable PC with only floppy drives, nearly curdled
forever my basic forgiving kindness. The result of this complex compilation is that lengthy
FORTRAN routines for micros are usually developed on a mainframe and ported to the smaller
machine.

Modularity and separate compilation is another mixed blessing; many a subtle bug has been
introduced in a FORTRAN program by omitting an argument from a long calling sequence, or
by inverting arguments in a list (thereby, for example, telling a subroutine to interpret a REAL
as an INTEGER — of order 10°). I can vouch for these problems from long, sad experience at
debugging FORTRAN.

Further, modern FORTRAN has been defined by accretion, with additions designed not to
obsolesce older methods of doing things. Thus FORTRAN has several ways to define functions,
such as through external function subprograms and through inline definitions like BASIC. And
it has several ways to allocate memory for arrays. Data types can be changed explicitly via func-
tions and implicitly via replacement statements, leading to such redundancies as

A = FLOAT(K)
being the same as
A=K
or
K = IFIX(A)
meaning
K=A

FORTRAN has several overlapping control structures: GOTO, computed GOTO, assigned
GOTO, and ASSIGN are horrible relics of a an ancient past, leading to exceptionally unstruc-
tured, unmaintainable, and unreadable code. And in addition to the semi-modern logical IF
THEN ELSE, FORTRAN retains the antediluvian numerical IF. The “WHILE” structures of
more modern languages: BEGIN WHILE REPEAT, DO WHILE, WHILE WEND, etc. are a
closed book to FORTRAN. They have to be simulated by IFs and GOTOs,

Finally, and perhaps worst, FORTRAN imposes a high overhead on subroutine and func-
tion calls, thereby discouraging decomposition of problems into small, single-purpose sub-
routines. Conversely, because the subroutines tend to be long their argument lists are also long
(this is part of the overhead in CALL), providing fertile soil for the germination, transposition,
and propagation of bugs.

The Eventual Triumph of Forth

Every operation that FORTRAN is capable of can be programmed easily in Forth. But Forth
can not only do anything FORTRAN can, and using less memory, compiling much faster and
perhaps executing faster as well, but Forth can do things that FORTRAN can not. I have given
some examples above, and my book [15] contains many more.

But there are several hindrances to the general acceptance of Forth by the FORTRAN-using,
number-crunching community that converts like me are zealously working to overcome. First is
the lack of a generally accepted standard for floating-point arithmetic. This makes it virtually im-
possible to define standard libraries of useful routines, such as exist in FORTRAN. It further
hinders large programming projects because Forth programmers tend to develop idiosyncratic,
and largely incompatible, styles and notations. Second many FORTRAN users find RPN an-

268 The Journal of Forth Application and Research Volume 5 Number 2

tithetic, despite its familiarity from Hewlett-Packard calculators. I find especially that the most
common Forth matrix notation for placing the address of a matrix element on the stack,

mn Mat.Name

is unacceptable to most number-crunchers. Third, the formula translator in FORTRAN is ex-
tremely convenient, and many find it hard to give it up for an entirely new style.

What may be done to remove these stumbling-blocks? While aware of a variety of innova-
tions, I can speak most confidently of those I have been concerned with personally. First needed
is a standard set of floating-point operators, based on a separate floating-point stack, or fstack.
These must include standard words for formatting, inputing and displaying floating-point num-
bers, including standard exponential notation as in FORTRAN. [fortunately did not have to
work out most of these myself, as they were supplied with my Forth system. [16] However, Thave
reworked and customized some of the code to more closely resemble the functions in a standard
FORTRAN mathematical library. But since the words are not standardized, I cannot share code
with those using other systems. I cannot overemphasize that a standard floating-point lexicon
must become part of Forth. I do not imply that floating-point must be part of the kernel, but
provision must be made for a standard extension. Particularly useful would be extension of NUM-
BER (perhaps by vectoring it) to recognize floating-point inputand place it on the fstack. Second,
a standard for complex arithmetic is also badly needed. We all tend to implement our own ver-
sions, [17] and this ruins portability. Third, names are important: I suggest names for complex
operators beginning with X, rather than C (which is widely used for byte operators).

As mentioned above, I have worked out a system for using typed data with generic
operators. At present I include more types than are strictly necessary, but certainly REAL,
COMPLEX, REAL*8 and COMPLEX*16 must be included. My operators have forms like G@ and G! ,
G*, G/, G+, G-, 1/G, and so on, and use fast vectoring to decide which operation to use at
run-time. My original aim was to reduce the burden of remembering which of the many possible
@ and ! operators to use in a program. The unexpected benefit was that a word defined using
generic operations would work fine with any type of data.

Elsewhere [18] I have proposed a notation reminiscent of FORTRAN:
Vec.Name{ n }
Mat.Name{{mn }}

where the { in Vec.Name{ and the {{ in Mat.Name{{ are mnemonic, but }and }} are operators
that compute the address. The need is obviously felt by others, as I have seen similar address-
ing conventions proposed in other articles on Forth.

Finally, the programming style encouraged by Forth tends to obviate long expressions in al-
gebraic or semi-algebraic notation. Nevertheless, a FORTRAN to Forth translator, beginning
with formulas, could be extremely useful, [19] especially to beginning Forth programmers.

Conclusion

Forth can be extended to be an excellent language for number-crunchers. It can do every-
thing that FORTRAN can, and much more. But most Forth designers are unaware of the many
potential users in science and engineering. That has led to a neglect of essential functions, such
as floating-point, complex arithmetic, and easily accessed arrays and matrices. And genericarith-
metic operators along with the ability to translate (compile) algebraic notation would be of great
help. Most FORTRAN users recognize its age and inconvenience, but don’t go to Forth because,
most systems lack what they need. When Forth does give what’s needed it is the best and could
become the most widely used language for number-crunching.

Fortran is Dead! Long Live Forth! 269

Footnotes and References

L

10.

11.
12.
13.
14.
15.
16.
17.

18.
19.

As all Forth mavens know, its inventor, Charles Moore, for reasons of speed and elegance
eschewed software floating-point in favor of rescaled integers. Thus bare Forth has no float-
ing-point. The ready availability of numeric coprocessors for all sorts of computers voids
the argument against floating-point.

Translation: “Go away and leave us to serious programming concepts.”

HS/FORTH, LMTI's FORTH and MMSFORTH, to my knowledge, have floating-point ex-
tensions.

The ASYST system (ASYST Software Technolo gies Inc., 100 Corporate Woods, Rochester,
NY 14623) is a very extended Forth system specifically tailored for the IBM PC family, with
graphing and data analysis functions built in.

Ct. D. Gedeon, “Complex Math in Pascal”, Byte Magazine, July 1987, p. 121.

The Microsoft FORTRAN version takes almost twice as long, because the innermost loop
cannot be optimized this way without a great deal of trouble.

Definicon Systems Inc., 1100 Business Center Circle, Newbury Park, CA 90320.

Based on the quoted time of 3ms for a 64 point FFT on the 20 MHz TS00 (Pete Wilson,
“Floating-Point Survival Kit”, Byte Magazine, March 1988, p. 220.)

W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes: The
Art of Scientific Computing, Cambridge University Press, Cambridge, 1986, p- 292ff.

These are described by me in an article “Data Structures for Scientific Forth Pro gramming”
submitted to JFAR and in more detail in my forthcoming book Scientific Forth: A Modern
Language for Scientific Computing.

Obtained by solving a transcendental equation, usually.

Thus the table is traversed many times, but in many different orders.

Le., by avoiding them!

Michael Ham, Dr. Dobb’s Journal, October, 1986,

Scientific Forth: A Modern Language for Scientific Computing.

HS/FORTH by Harvard Softworks, P.O. Box 69, Springboro, OH 45066

See, e.g., G.-E. April, Journal of Forth Applications and Research, Vol.5, No.1, pp. 79-82.
Rochester, NY : Institute for Applied Forth Research, Inc., 1988.

“Data Structures for Scientific Forth Programming”, submitted to JFAR.

I'am writing one, using my techniques of typed data and generic operators. Formulas are
much harder than loops or IF ... THEN. GOTOs and other antiquated control structures
are the hardest, as Forth has no analogs of them.

270 The Journal of Forth Application and Research Volume 5 Number 2

