Logarithmic Number Representation in Forth

Dennis L. Feucht
Innovatia Laboratories

Abstract

The log-point representation is an alternative to floating point. Whereas floating point com-
bines linear and logarithmic scales, log point is purely logarithmic. It maintains a constant precision
over its range, thus minimizing the accumulation of round-off error. Log-point characteristics are
demonstrated, compared to floating-point, and a Forth implementation of a log-point word-set is
provided.

Introduction

The Forth language provides fixed-point numerical capabilities, but many scientific and en-
gineering problems require an extended-range representation. Floatin g-pointrepresentation has
been the most popular, and Forth floating-point word-sets have been developed. An alternative
representation, log point, is described here, and an implementation of it in Forth is given. Fixed
and floating-point representations will first be briefly reviewed, leading to the log-point concept.

Arithmetic operations in Forth use a fixed-point two’s-complement representation of num-
bers. Not every number can be represented by fixed point-only integers within a 16-bit range.
Rational numbers can be easily accommodated by assuming the binary-point is at a given bit
position. This results in integer and fractional fields within the 16-bit number, and can be ex-
pressed as Q = I.27, where [is an integer represented in fixed point with a binary point at the
ith bit, resulting in rational number Q. The fixed-point arithmetic words of Forth can be used
with rational numbers with some modification. Products must be scaled by multiplying them by
2" and quotients by 2. Forth provides the word */ to do this without 10ss of precision.

For calculations with a dynamic range greater than 16 bits, some other representation is
needed. Double numbers can extend the range of fixed point to 32 bits, but this is often too
limiting for many scientific and engineering applications. The conventional solution to the
limited-magnitude problem has been to use a floating-point representation.

Floating vs. Fixed-Point Representation

Floating point (or scientific notation) greatly extends the range of numbers it represents.
Instead of integer and fractional fields, floating point splits the n-bit cell into mantissa and ex-
ponent fields instead. This scheme is a combination of linear (mantissa) and logarithmic (ex-
ponent) representations. The exponent provides increased range at the expense of fewer bits
(and thus less precision) in the mantissa. However, over the domain of represented numbers,
floating point usually has better precision than fixed point because range error is limited to an
order of magnitude; that is, the mantissa has (for decimal) a 10:1 range over the entire float-
ing-point range. Because of this, small numbers can maintain their significant figures (their
precision) by scaling them with the exponent. Fixed-point numbers suffer from range error in-
creasingly as the number becomes smaller. For example, the fixed-point number 1000, repre-
senting 1.000, has three significant figures while 1 has almost none. Range error increases as

Journal of Forth Application and Research Volume 5, Number 2

271

272 The Journal of Forth Application and Research Volume 5 Number 2

the reciprocal of the number so that nx is » times as precise as x. To achieve precision com-
parable to floating point, many more bits in the represented number are required.

In arithmetic operations, fixed point is exact for addition (or subtraction) but rounds or
truncates the least significant figure (LSF) when multiplying (or dividing). Floating point
rounds for both operations. Fixed point, because of its additive exactness, is optimal for count-
ing, which historically must have been the first use for numbers. [SIM80] In computing, it is
preferred for counting applications such as indexing in an iterative loop. It appears then that
both fixed point and an extended-range representation are desirable for scientific and engineer-
ing numeric computing.

Log-Point Characteristics

Log point is an extended-range representation which can be described starting with float-
ing point. Only the sign of the mantissa is kept; the magnitude is included in the exponent, which
is made a rational number. The original number is represented by its logarithm to a given base.
Since the logarithm is defined only for positive numbers, the sign of the mantissa is retained to
provide signed representation. The resulting log-point number has two signs: of the number it-
self and of the exponent. A log-point number can be expressed as: £b*4, where b is the posi-
tive integer base of the log-point representation and g is the rational number signed exponent,
with whole and fractional parts.

Interestingly, log point has no zero since the logarithm is undefined there. It can be ap-
proached to within the precision of the representation but cannot be represented purely as a
log-point number. (In the implementation given here, zero is quite easily and naturally repre-
sented as a simple extension to pure log point.) Clearly, log point is not optimal for counting,
but it is for ratioing, which occurs frequently in scientific and engineering computations. Mul-
tiplication is exact since the product of two numbers is the fixed-point sum of their exponents.
Unlike fixed point, addition rounds and is the hardest to perform. However, tabular addition
is quite feasible, requiring a one-dimensional look-up table. Tabular fixed-point multiplication
requires a two-dimensional table with a correspondingly larger memory requirement.

Unlike both fixed and floating point, log point has a constant precision over its entire range.
Because the log-point scale is logarithmic, the step size between least significant states is not
regular as with fixed point but increases with the magnitude of the number. Since this increase
is exponential, the step size remains a constant fraction of the number. Consequently, the
precision of the number is the same as all other numbers over the log-point range.

The particular log point implementation chosen here for 16-bit arithmetic is:
ms bleswf)

where:
b = base of the representation

ms = sign of the mantissa (that is, of the number itself) in two’s-complement form
(ms = 1 for negative numbers)

es = sign of the exponent in offset binary form (es = 0 for negative numbers.)

w = whole part of the exponent, with length of w bits

f = fractional part of the exponent, with length of f bits

o For this implementation, b = 2,f = 8,and w = 6:

151413121110'9 8p7E6fl 584 31281480

msles w f

Logarithmic Number Representation in Forth 273

Log Point Range and Precision

The maximum representable magnitude occurs with all log-point bits set to one, or:

maximum magnitude = 2@~ D+Q-1 /2
= 2% =20 =92

The minimum magnitude is:
minimum magnitude = 2@~ 29=2-2
The range of the magnitudes is the ratio:

range = max magnitude / min magnitude = 22"*' -2
=T+l 1()2¥+1/3.32

For w = 6, the range is about 3.4 x 10* or + 19 decimal orders of magnitude. For 32-bit log
point with w = 10 and f = 20, the range is 10%3%,
¢ The exponent is expressed in offset binary, which is two’s-complement offset by half the

number range. The smallest number is binary 00...00 and the largest is 11...11. For m bits,
the smallest is —2® and the largest is 2@ — 1. To convert from two’s complement to
offset binary, add binary 10...00 to the two’s-complement number. This has the effect of
merely complementing the sign bit (the MSB). Zero in two’s complement is 00...00 and
in offset binary is 10...00.

The precision of log point can be found by first considering calculation of fractional step
sizes. Since the scale is non-linear, an increment of a least significant bit (LSB) is not exactly
the same size as a decrement of an LSB from the same state. Since the scale is logarithmic, the
incremental step will be larger than the decremental step. As f— w, the incremental and
decremental step sizes converge to each other. They are:

incremental step size = 22°-20 = 227_ 1
decremental step size = 20— 2-2f =1 - 22f

The incremental step size will always be the maximum step size. With round off, the maximum
log-point error will be:

maximum eITor = maximum step size /2

Let X, alog-point number, represent x, where x = 2*. The average step size can be taken as the
ratio:

avg fractional step size = dx/dX = 2-In2 = In2 - 2-£

For f = 8, the average step size is 0.00271.
With uniformly distributed error (on a log scale):

error(rms) = max step size / V12
= (221~ 1)/3.46

Forf= 8§, error = +0.04%.

274 The Journal of Forth Application and Research Volume 5 Number 2

Comparison of Bit Efficiency With Floating Point

A number representation makes more efficient use of bits if it provides more range and
precision concurrently. Log point is somewhat more efficient than floating point.
[LEE77][EDG79] For FFT transforms of 256 to 1024-point sequences, for a given numeric
word length, the average error of log point is about an order of magnitude better than floating
point. [SWA83] For 32-bit word lengths, log point has a range comparable to floating point,
with 8 — rather than 7+ digits of precision.

Sixteen Bit Log Point Implementation in Forth
The implementation of log-point arithmetic given here is written in Forth-83. The word set
provides the following capability:
1. Input a number string and convert it to a log-point number.
2. Output a log-point number as a formatted ASCII string.
3. Perform common arithmetic operations.
4. Generate common transcendental functions.

The Mathematical Basis for Log-Point Arithmetic

To develop the mathematics of the log-point algorithms, numbers will be denoted by lower-
case letters, such as x and y, and their log-point representations will be denoted by upper-case
letters, X and Y. Thus,x = 2¥and X = g x, where ig is log,.

To multiply two numbers x and y is to add their log-point representations, XandY:
xy = 2X . 2Y = 2X+Y
Or, to take the square root of x:
1/2 = 1 =X
X2 Jgxt2 =2 1gx =%

where X is a rational fixed-point number. Fixed-point operations for 1gx, 27, and 27 are needed
to implement log point from the fixed-point operations of Forth. As a side benefit, these func-
tions can be used in fixed-point arithmetic.

Converting Number Strings to Log-Point Numbers
Number strings are of the form:

Sw.f" se

where S is optionally a minus sign, w a string of digits in the current base representing the whole
part of the number, f the fraction, s the optional exponent minus sign, and e the exponent fol-
lowed by a Forth delimiter. The Forth word which reads a number string from the inputstream
is REAL. It calls LVAL to do the actual conversion. LVAL converts Sw, f, and se in turn, parsing
the point and exponent sign () as it goes. These signs are optional when fand se are, respec-
tively, omitted. The only requirement is that either w or f be given.

To convert the string while parsing it, LVAL uses four numbers which become individually
available: w, the whole number, f, the fraction expressed as a whole number, 1, the number of
digits in the fraction, and b, the current base, found in the Forth variable BASE. Defining the
log-point addition function as:

XL+Y=1gx +y)

ly
of
1e

Logarithmic Number Representation in Forth 275

Input conversion becomes:
w+ bR =lgw + fb0) = WLt lgfb™ = W L+ (F + (-n)igh)

The last term is carried out using fixed-point multiplication with scaling and the fixed-point
word L0G2, which takes the log of a whole number by first scaling it using shifting operations
before passing it to LOG2*, LOG2* has a domain of [1,2) and a range of [0,1).

Log Point Addition

Just as multiplication is difficult in fixed-point arithmetic, so addition is in log point. Four-
quadrant addition is performed by L+ which uses the pair of functions SL+ and SL- to add direct-
ly using X and Y without having to convert either of them tox ory. SL+and SL- are defined as:

SL+(z) = 1g(1 + 2%)
SL-(z) = 1g(1-2%)

Then,

X +y=2X+42Y=2X(1 + 2¥-X) ; 1g2X(1 + 2¥-X)
=X+SLHX-Y)=X1+Y

For subtraction,
x-y—>X+1g(1-2¥%) =X + SL-(X-Y)

The domain of SL+ is (-, +e0) while SL- is defined for positive numbers only. Also, SL+ is
asymptotic toy = -x asx — —c. In the Forth word L+, decisions are made that ensure that the
arguments of SL+ and SL- are always positive. Then SL+ need only be computed over the inter-
val [0,). For tabular implementation of SL+, this halves the table size.

The eight branches in L+ depend on the signs of X, Y, and (X —Y). SL+ is called when the
magnitudes of X and Yare added, and SL- when subtracted. In L+, SL+and SL- are always added
to the larger of X and Y. When subtracting, since SL- is negative, it reduces the larger number,
and when adding, the positive SL+ increases the larger number. L- negates the second argument
and invokes L+.

Because SL +(z) both approach zero asz — o, tabulating for large z results in long sequen-
ces of the same numerical value. About 75% of each table consists of these slowly changing se-
quences. Table size could be reduced by about 67% by run-length coding the asymptotic tails of
SL+and SL-.

SL are calculated in the given implementation using fixed-point arithmetic and based on
the following construction. Let the log-point argument to SL+ consist of whole and fractional
parts w and f, respectively. Then,

Ig(1 + 20049 = 1g2%(2¥ + 20) = —w + Ig(2¥ + 2)

In the Forth words for SL+, since the fraction, f; is the least significant byte of the 16-bit num-
ber cell, w and f are conveniently separated by the word SPLIT. (See glossary for definition of
SPLIT.) D+adds 2" and 2”. Now let (2" + 2”) be represented as m2° , where 1 < m <2. Then,

—w+Ig(2¥+2F) = —w+1gm2¢) = —w+Igm +e

Since m is within the domain of L0G2*, finishing the calculation is straightforward though scal-
ing is involved.

276 The Journal of Forth Application and Research Volume 5 Number 2

o A simple method for rounding a number being divided by » is to divide by n/2, increment
the result, and divide by two again. Doing this is the equivalent of adding ¥/2 to the
result, thus rounding instead of truncating,

Numeric Output Conversion

Converting log-point numbers to ASCII character strings is performed by the word LSTRS.
Tt calls L>E which does the bulk of the conversion, while the rest of LSTR$ creates the formatted
string. Then L. prints the resulting string. LSTR$ computes the number of significant figures
possible and prints all figures with any significance. It uses #DIGITS to determine the number
of digits that should be in the fraction of the mantissa.

L>E converts a log-point number to a mantissa and exponent in the current base. The man-
tissa ranges from one to the base minus a LSE. Converting a number to a mantissa and exponent
is based on the following construction which uses four numbers, just as LVAL did. The only dif-
ference is that Wand F are the whole and fractional parts of the log-point number. The current
base (> 0) is b, and n fixes the location of the binary point in the number itself. (For this im-
plementation, n = 8.) The construction is:

W+ F21 —» 20 + F2) = pWW + F2) [1gp
= bW /1gh - bF2"[1g b
exponent = W/lgh, mantissa = bf2"/1gh

The exponent in the expression for the mantissa is then broken into whole and fractional parts:

w = whole part of fraction
f = fractional part of fraction
mantissa = 2027/180) = ow + f = 2wp f

Implementing Zero and Relational Operators

Throughout the log-point word-set, zero is handled as a special case. The log-point num-
ber 00...00 intentionally has the smallest magnitude possible by deliberate use of offset binary.
This conveniently places the state of the number which is closest to zero at the same state as
the fixed-point zero. Thus, zero, as a special case in log point, can be easily detected using Forth
fixed point word 8=

Another advantage to offset binary is that the relational operators >, =, < can be the Forth
fixed-point operators. The sign of the mantissa in the MSB is two’s complement, and the mag-
nitude of the number is ordered the same as an unsigned fixed-point number would be since
the exponent sign can be regarded as the MSB.

A Limitation of Log Point

Tabular implementation of SL = gives log point its speed appeal. Since the four basic arith-
metic functions execute on the order of fixed-point addition, log point with tabular addition
can exceed fixed-point speed. For 16-bit implementations, the table size is feasible. As the log-
point word length is extended, the table size becomes unwieldy. For long word lengths, SL+must
be computed and speed suffers, but the other advantages remain.

Logarithmic Number Representation in Forth 277

References

[EDGT79] Albert D. Edgar, Samuel C. Lee, “FOCUS Microcomputer Number system”,
Comm. ACM, vol. 22, no. 3, MAR 1979, p. 166ff.

[LEE77] Samuel C. Lee, Albert D. Edgar. “The FOCUS Number System”, IEEE Trans. on
Computers, vol. C-26, no. 11, NOV 1977, p. 1167ff.

[SIM80] Kenneth A. Simons, “N-Logs: A New Number Language for Scientific Computers”,
Dr. Dobbs Journal, no. 50, NOV/DEC 1980, p. 4ff.

[SWAS3] EarlE. Swartzlander, et. al,, “Sign/Logarithm Arithmetic for FFT Implementation”,
IEEE Trans. on Computers, vol. C-32, no. 6, JUN 1983, p. 526ff.
e References on fixed-point log and exp algorithms:

Nathaniel Grossman, “Fixed Point Logarithms”, Forth Dimensions,vol. 5, no. 5, JAN/FEB 1984,
p. 11ff

R.J. Linhardt, H.S. Miller, “Digit-by-Digit Transcendental Function Computation”, RCA
Review, JUN 1969, p. 209ff.

Log-Point Forth Word Glossary

This glossary gives the stack activity and a brief description of the function of the words in
the Forth log-point word-set. The abbreviation ™ @ indicates the location of the fractional
point (that is, decimal point for base ten) in a rational number.

#DIGITS (—n)

Calculates n, the number of significant figures possible for a given base; used by L>E and
LSTRS.

-ADJUST (nl-—n2)
Adjusts from binary to decimal point using the constant 16K to set the decimal point for
four fractional digits. n1 ™~ @ ONE.
-EXP2* (nl-—n2)
Performs 2'"1, wherenl “"@ONEand0 < nl < 1.n2 ~@ONEand 1/2 < n2 < 1.
16K (—n)
A constant with value 10" used to adjust decimal point in ADJUST and ~-ADJUST.
L2/ (nl—n2)
Performs a logical right shift on nl.
ADJUST (nl—n2)
Adjusts from decimal to binary point, accepting a number for which the four rightmost
digits are fractional, and adjusts it for a binary point at ONE.
D2/ (dnl—dn2)
Performs a logical right shift on double number dnl.
D2* (dnl-—dn2)
Performs a double number doubling of dn1.
DNORM< (dnl—dn2)
Performs a double number normalization of dnl by shifting dn1 left until dn2 has a binary
1 whole number with ~ @ 226 (™~ @ ONE in the most significant byte of dn2).
EFACTORS (nl-—n2)

A table that takes index n1 and returns a value, n2; used by EXP2*,

278 The Journal of Forth Application and Research Volume 5 Number 2

EXP2* (nl—n2)
2™ function that takes n1 ™ @ ONE, where 0 < nl1 < 1 and returns n2 ~ @ ONE with 1 <
n2 < 2. EXP2* is a fixed-point algorithm described in the references.

FIXED (ln—dn)

Converts a log-point number to a fixed-point whole double number. Any fractional parts
of In are truncated.

FLOAT (dn—In)
Converts a whole double number to a log-point number.
L~ (InlIn2 —1n3)
Raises In1 to the In2 power and returns a log-point number, In3.
L* (Inlln2 —In3)
Multiplies two log-point numbers.
L+ (InlIn2-—In3)
Adds two log-point numbers.
L- (Inlln2—1In3)
Subtracts log-point number In2 from Inl.
L. (In—)
Prints the log-point number, In, using LSTR$. The number is formatted in scientific nota-
tion and is followed by a space.
L/ (ln—em)
Converts a log-point number, In, to an exponent, €, and a mantissa, m. The exponent is an
integer and the mantissa is a rational number with ~ (@ 2 Ve retmed by P16
LABS (Inl—1In2)
Returns absolute value of Inl.
LFACTORS (nl-—n2)

Similar to EFACTORS - a table that takes index n1 and returns a value used in LOG2* and
-EXP2*,

LNEGATE (In1—1n2)
Negates a log-point number.
LOG# (nl—n2)
Marks the beginning of the log-point word-set in the Forth dictionary and, when invoked,
prints version information.
L0G2 (nl-—n2)
Calculates the 1g (log,) of n1 in fixed-point arithmetic. It extends the range of LOG2*. n1 is

awhole numberandn2 "~ @ 2° (the least significant byte is the fraction, as in log-point rep-
resentation).

LoG2* (nl-—n2)
Calculates the 1g of a fixed-point number, n1, wherenl “@ONEand1 < nl <2.12 " @
ONE and 0 < n2 < 1. The algorithm is described in the references.
LSQR (Inl—1In2)
‘Takes the square of Inl.
LSQRT (Inl—1In2)
Takes the square root of In1.

Logarithmic Number Representation in Forth 279

LSTR$ (In—str)
Takes a log-point number and converts it to a string, str, where str — a u; a = address of
the first character of string, u = number of characters in string. The number of fractional
digits is determined by #DIGITS. A period (.) and a caret (™) denote fractional point and
exponent, respectively.

LVAL (str—In)

Takes a string [see LSTR$] and converts it to log point. A minus sign can optionally preceed
the whole number or the exponent. Either the whole number or fraction must be given.
The exponent and whole number or fraction are optional.

MLOG2 (dnl-—n2)
A mixed-number word that takes the logarithm of double number dnl, which is a whole
number. n2 ~ @ 2° as for log point.

N. (n—)
Prints an adjusted rational number with ~ @ ONE to four fractional decimal digits. Useful
for displaying results of LOG2*, EXP2*, or -EXP2*.

NORM< (nl—en2)
Used by L0G2 to normalize a whole number to be within the domain of L0G2*: 1 < nl <
2. e is a whole number binary exponent. n2 ™ @ ONE.

ONE (—n)
Constant that fixes the binary point for L0G2*, EXP2*, and -EXP2* at 2", This allows maxi-
mum precision without overflow for these functions.

REAL (—In)
Converts the next word in the input stream to log point using LVAL. When compiling, it
compiles a literal log-point number.

SL+ (nl-—n2)
A function used by L+ to add. Itis 1g(1 +2’“1), wherenl andn2 ~ @ 28, and n2 =0.

SL- (nl—n2)
Similar to SL+; used by L+ to subtract. Itis Ig(1 - 2™),wherenlandn2 ~ @ 28, andnl, n2
= 0.

~2 (nl-—n2)
A table used by SL+ and SL- to return a whole number power of two. n2 = 2%,

Non-Standard Words
The given implementation is written in Forth-83, but uses the following non-83-standard
words.
2% (nl-—n2)
Arithmetic left shift.
2/ (nl—n2)
Arithmetic right shift.
<SHIFT (nln2—n3)

Performs an arithmetic left shift of n2 bits on nl.
: <SHIFT @ ?D0 2* LOOP ;

SHIFT (nln2-—n3)

Performs an arithmetic right shift of n2 bits on nl.
: >SHIFT @ ?D0 2/ LOOP ;

280 The Journal of Forth Application and Research Volume 5 Number 2

200 (—)
A variation on DO that immediately leaves the loop if the top two arguments on the stack
are equal. An alternative construct for a zero initial index value would be:
?DUP IF @ DO .. LOOP THEN
COMBINE (nln2—n3)
Joins the low-order bytes of n1 and n2 into a single cell, n3, where the low-order byte of n3
is from nl.
: COMBINE 8 <SHIFT SWAP 255 AND OR;
NIP (nln2—n3)
Removes second item from stack.
: NIP SWAP DROP ;
SPLIT (nl—mn2n3)
The inverse operation of COMBINE ; nl is split into two bytes. The low-order byte becomes
the low-order byte of n2 and the high-order byte becomes the low-order byte of n3. The
high-order bytes of n2 and n3 are zero.
: SPLIT DUP 255 AND SWAP 8 >SHIFT 255 AND ;
TABLE (nl-—n2)
A defining word that creates a header at compile time and at run time uses nl as an index

from its body to an address from which it fetches a number and places it on the stack.
: TABLE CREATE DOES> SWAP 2* + @ 3

ck

es
he

Logarithmic Number Representation in Forth

281

SCR# 39
\ lLog-Point Number Words - Load Screen

DECIMAL

ONLY FORTH ALSO DEFINITIONS

LOG-PT .* 19 MAY 1985" ;

1 17 +THRU

UNKEST

>SHIFT @ D0 2/ LOOP ;
<SHIFT & D0 2* LOOP ;

SCR# 49
\ Log-Point Number Words

8192 CONSTANT ONE

(dnl -> dn2)
: D2/ DUP 1 AND >R 2/ SWAP 2/ R>

.

IF 32768 OR ELSE 32767 AND THEN SWAP

(dnl ->en2) (dnl &n2~ @ ONE; dnl >= 8)

.

we

MNORM> 2DUP OR

IF 8 >R
BEGIN 2DUP [ONE 2*] LITERAL & D< g=
WHILE D2/ R> 1+ >R
REPEAT DROP R> SHWAP

THEN

SCR# 42
\ Log-Point Number Words

TABLE LFACTORS (13 factors beginning with i =

3406 , 1578 , 763 , 375 , 186 , 93 ,
46 ,23,12,6,3,1,1,

(w1 ->n2) (binary point is at ONE)

.

we

(B <=nl<l;1/2<=n2<1)

-EXP2* ONE 2

BEGIN DUP 2- LFACTORS DUP >R 3 PICK SWAP <
IF R> DROP 1+

ELSE ROT R> - -ROT 2DUP >SHIFT ROT SWAP - SWAP

THEN DUP 13 =
UNTIL DROP NIP

z)

282 The Journal of Forth Application and Research Volume 5

Number 2

SCR# 42
\ Log-Point Number Words

(nl ->n2) (Takes ADJUSTed nl; returns ADJUSTed n2)
: LOG2* g 2 ROT
BEGIN DUP DUP 3 PICK >SHIFT - DUP ONE <
IF DROP SWAP 1+ SWAP
ELSE NIP ROT 2 PICK 2- LFACTORS + -ROT
THEN OVER 13 =
UNTIL 2DROP

SCR# 43
\ Log-Point Number Words

(dnl -> e dn2)
: DNORM< 2DUP OR
IF g >R
BEGIN DUP ONE <
WHILE 2* QOVER 32768 AND
IF 1 OR THEN SWAP 2* SWAP R> 1+ >R
REPEAT R>
ELSE @
THEN -ROT

SCR# 44
\ Log-Point Number Words

(Used by L+)

TABLE~21,2,4,8,16 , 32, 64, 128, 256 ,
512 , 1824 , 2948 , 4996 , 8192 , 16384 , 32768 ,

(nl ->n2) (nl, n2 >= g; @ 278)
: SL+ SPLIT >R 32 * -EXP2* & R@ ~2 ONE *D D+
MNORM> L0G2* 16 / 1+ 2/ SWAP R> - 256 * +

: SL- SPLIT >R 32 * -EXP2* @ DNEGATE R@ ~2 ONE *D D+
DNORM< NIP LOG2* 16 / 1+ 2/ SWAP 16 - R> + -256 * +

Logaritbmic Number Representation in Forth

283

SCR# 45
\ Log-Point Number Words
HEX

: LABS 7FFF AND ;
: LNEGATE DUP IF 8828 XOR THEN ;

: L* 2DUP AND IF + 4889 - ELSE AND THEN ;
: L/ OVER IF - 4098 + ELSE DROP THEN ;

CODE L2/ BOT 1+ LSR BOT ROR REXT JHP C;
+ LSQRT DUP IF 4008 + L2/ THEN ;

\ : LSQRT DUP IF 4088 + 2/ 7FFF AND THEN ;

: LSQR DUP IF 2* 4008 - THEN ;
DECIMAL

SCR# 46
\ Log-Point Number Words

(XY ->2)
: L+ 2DUP @= SWAP &= OR &=
IF 2DUP - >R OVER @<
IF DUP g<
IF R> DUP 8< (X<@; Y<§)
IF NEGATE SL+ + NIP
ELSE SL+ NIP +
THEN
ELSE R> DUP B< (X<8; Y >=8)

IF 32768 + SL- NIP + (32768 = 8099 HEX)

ELSE 32768 SWAP - SL- + NIP
THEN
THEN

SCR# 47
\ Log-Point Number Words

ELSE DUP @<
IF R> DUP 8< { X>=8; V<@)
IF 32768 + SL- NIP +
ELSE 32768 SWAP - SL- + NIP
THEN
ELSE R> DUP g< (X>=8; Y>=§)
IF NEGATE SL+ + NIP
ELSE SL+ NIP +
THEN
THEN
THEN
ELSE OR
THEN

284 The Journal of Forth Application and Research Volume 5

Number 2

SCR# 48
\ lLog-Point Number Words

: L- LNEGATE L+ ;
\ = < > @g= g< P> are same as fixed-point
16060 CONSTANT 18K

(nl ->n2)
: ADJUST ONE 18K */ ; \ Adjust from decimal to binary point.

(nl ->n2)
: -ADJUST 18K ONE */ ;

(n->)
: N. -ADJUST S>D <# # # # # ASCII . HOLD #S #> TYPE ;

SCR# 49
\ Log-Point Number Words

(nl ->en2)
¢ NORM< DUP
IF g SWAP
BEGIN DUP ONE <
WHILE SWAP 1+ SWAP 2%
REPEAT
ELSE &
THEN

(nl -> n2) (n2 has binary point at 278 - LSByte is fraction)
(32 / shifts bp of log2* set by ONE)
{ nl is a positive integer)
: LOG2 NORM< LOG2* 16 / 1+ 2/ 13 ROT - COMBINE ;

SCR# 58
\ Log-Point Number Words

{ dnl -> n2) (dnl is a positive integer; n2 ~ 278)
: MLOG2 DNORM< NIP LOG2* 16 / 1+ 2/ 29 ROT - COMBINE ;

(dw -> 1#) (dw is a whole number: dw >= &)
: FLOAT 2DUP OR IF DUP >R DABS MLOG2 16384 XOR R> @<
IF LNEGATE THEM ELSE DROP THEN

(str -> 13)
: LVAL >R PAD 1+ R@ CMOVE BL PAD 1+ R> + C! (move str to PAD)
@ & PAD DUP 1+ C@ ASCII - = DUP >R (save sign)
IF 1+ THEN CONVERT >R DABS FLOAT R> DUP C@ ASCII . =
IF DUP 1+ >R @ & ROT CONVERT >R FLOAT
R> R> OVER >R SWAP - 2DUP AND

Logarithmic Number Representation in Forth

285

SCR# 51
\ Log-Point Number Words

IF BASE @ LOG2 * + LABS L+ ELSE 2DROP THEN R>
THEN OVER (is mantissa non-zero?)
IF DUP C@ ASCII ~ =
IF @ & ROT DUP 1+ C@ ASCII - = DUP >R IF 1+ THEN
CONVERT ~ROT DROP R> IF NEGATE THEN SWAP >R
BASE @ L0G2 * + R>
THEN C@ BL OR BL - ABORT™ ?" R> IF LNEGATE THEN
ELSE DROP R> DROP
THEN

: REAL BL WORD COUNT LVAL STATE @
IF [COMPILE] LITERAL THEN
5 IMMEDIATE

SCR# 52
\ Log-Point Number Words

TABLE EFACTORS (13 FACTORS)

2637 , 1392, 716 , 364, 183 , 92 ,
4 ,23,12,6,3,1,1,

(n1 ->n2) (binary point is at ONE)
(B<=nl<l;1<=n2<2)
: EXP2* ONE 2
BEGIN DUP 2- EFACTORS DUP >R 3 PICK SWAP <
IF R> DROP 1+
ELSE ROT R> - ~-ROT 2DUP >SHIFT ROT + SWAP
THEN DUP 13 =
UNTIL DROP NIP

we

SCR# 53
\ Log-Point Humber Words
(->n1l) (nlis number of digits in fraction for LSTR$)
: #DIGITS 2368 (LOG2 OF 738: PRECISION LIMIT OF 16-BIT LOG #)
256 BASE @ DUP >R LOG2 */ SPLIT SWAP &> R> 11 > NOT AND
IF 1+ THEN (BASE <= 11 WITHIN RANGE WITH EXTRA DIGIT)
(1# ->dn)
: FIXED DUP
IF DUP >R LABS 16384 - SPLIT SWAP
32 * 16 + EXP2* SWAP 13 - DUP @<
IF NEGATE 1- >SHIFT 1+ 2/ &
ELSE DUP IF 1 SWAP <SHIFT *D THEN
THEN R> @< IF DNEGATE THEN
ELSE &
THEN

we

286 The Journal of Forth Application and Research Volume 5

Number 2

SCR# 54
\ Log-Point Number Words

(1# -> exp mant) (exp integer, mant rational)
: L>E DUP (mant ~@ 2"#DIGITS)
IF DUP >R (sign) LABS 16384 - 256
BASE @ LOG2 DUP >R */ SPLIT DUP 127 >
IF -256 ($FFEG) OR THEN SWAP R> M*
SWAP 4 / 1+ 2/ 8191 ($1FFF) AND (2~13) EXP2*
BASE @ 1 #DIGITS &
DO OVER * LOOP NIP ONE */ (ADJUST TO FS)
1 ROT <SHIFT * R> @< IF NEGATE THEN
ELSE 8
© ¢ PAD DUP 1+ C@ ASCII - = DUP >R { save sign)
IF 1+ THEN CONVERT >R DABS FLOAT R> DUP C@ ASCII . =
IF DUP 1+ >R 8 8 ROT CONVERT >R FLOAT
R> R> OVER >R SWAP - 2DUP AND

SCR# 55
\ Log-Point Number Words

{ 1# -> str)

: LSTR$ L>E >R DUP ABS & <# #S ROT SIGN ASCII ~ HOLD
2DROP R@ ABS O #DIGITS & D0 # LOOP
ASCII . HOLD # R> SIGH #>

we

(12 ->)
: L. LSTRS TYPE SPACE ;

SCR# 56
\ Log-Point Number Words
(XY ->2Z) (X>=)
: L™ OVER
IF 7DUP
IF DUP >R LABS 16384 - DUP >R ABS
SPLIT 72 SWAP 32 * EXP2*
16 */ 1+ 2/ SWAP 16384 - R> 8<
IF 256 ROT */ { X 256 Y)
ELSE 256 */ (X Y 256)
THEN R> 8<
IF NEGATE THEN 16384 + LABS
ELSE DROP [1 & FLOAT] LITERAL
THEN
ELSE DROP
THEN

we

