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Abstract

A Brent-type solver for real equations f{x) = 0, with enhancements for root bracketing and
low resolution curve sketching, is implemented in Forth-83 augmented by floating point words.

Introduction

Solution of the equation f(x) = 0 is one of the core problems of mathematics. Even in the
case where f is a real valued function of a real variable, it is far from solved. If f satisfies certain
mild hypotheses, algorithms that never fail are available for the solution of f(x) = 0, but they may
require an unacceptably long time to run. This paper presents an algorithm due to R. P. Brent
and predecessors [2], that ‘usually’ will produce a root in a ‘reasonable’ time.

The description offered by Kahan [8] suggests that the Brent-type algorithm is the basis for
the highly-successful SOLVE routine embedded in the HP-34C calculator and, presumably, in the
HP-15C and other Hewlett-Packard products. Comparisons run between our implementation
and that in the HP-15C calculator show that the HP-15C is more robust, evidently because of
the care taken by the Hewlett-Packard engineers in the handling of extreme cases when they
designed the mathematical function algorithms built into the calculator. Nevertheless, the im-
plementation that we present in the accompanying Forth screens performs well.

Mathematical foundation

‘The Brent algorithm rests upon an important mathematical principle: If f is a real valued
function continuous on the closed interval [a, b] and if the values f(a) and f(b) have opposite
signs, then the equation f(x) = 0 has at least one root r lying within the open interval (g, b). The
simplest application of this principle, the bisection method, is described in almost every elemen-
tary textbook on numerical analysis. Its virtue lies in its surety of convergence to an approxima-
tion of any desired precision to a root r, but its failing is that this convergence is slow, sometimes
unacceptably so if the desired precision is high. If the function f'is differentiable, the faster-con-
verging Newton’s method can be invoked, but there are pitfalls. In general, when nothing more
than its continuity is known about the function f, the applicable root-seeking methods are few.
Since the bisection method is certain to yield a root of a continuous function once a suitable
bracketing interval [a, b] is known, the problem of root finding reduces ultimately to the search
for bracketing intervals.

Because the bisection method converges so slowly, various devices have been suggested for
speeding up convergence to a root r of f. Brent [2], building on the work of predecessors, has
proposed a root-seeking algorithm that ordinarily runs faster than the bisection method and
makes fewer evaluations of the function. Brent’s algorithm uses bisection when driven to do so,
but prefers to use the more rapidly converging secant method or the even more rapidly conver-
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gent technique of inverse quadratic interpolation. Comparison of convergence speeds may be
made by counting function calls. The bisection method, beginning on the bracketing interval
[a, b] and isolating the root 7y within [r, —2 - tol11,7,+2 - toll], will require essentially log, [(b—
a)/to11] steps, so the same number of function calls because each step needs the function value
at one new midpoint. Brent proved that his method will converge within at most about {log,[(b —
a)/to11]}* function evaluations. However, this bound, seemingly greater than that for the bisec-
tion method, is calculated for arbitrary continuous functions.When the functions treated are
smooth-—say continuously differentiable—then Brent’s algorithm is far faster than bisection and
almost as fast as Newton’s Method, without the danger of divergence inherent in the latter.

Fuller description of Brent’s algorithm can be found in various sources on numerical analysis,
but no one book gives the whole story in all its gory details. We have found useful details given
by Brent [2], Forsythe, et al. [4], Kahan [8], and Press, et al. [9]. These intricate details are unfor-
tunately much too long to reproduce here—or even to summarize. With regret, we must refer
the reader who wishes to understand the workings of Brent’s method fully to the sources just
cited, with the hope that the comments in our source screens prove to be some help in unravel-
ing the knots.

Brent’s algorithm on the computer

Implementations of Brent’s algorithm are available in the literature: ALGOL in [2],
FORTRAN in [4] and [9], and Pascal (machine translated from FORTRAN) in [9]. We know of
no other implementation in Forth. (Of course, the algorithm is implemented internally in cer-
tain Hewlett-Packard calculators.) The present implementation is written in Forth-83, and calls
upon a floating point enhancement that follows the protocols described by Duncan and Tracy
[3]

We have developed and tested our Forth program using an experimental floating point en-
hancement written by Martin Tracy which can display 9-10 significant figures as required by the
FVG Standard [3]. This implementation is precise, and the examples that we have run in com-
parison to the HP-15C SOLVE always show agreement of roots within one unit in the final digit
of the mantissa. The screens contain some protections against underflow, but without a doubt
much less attention to exceptional cases than is built into the HP-15C.

The main Forth words
The Forth words provided analyze a function defined according to the syntax

: <function> (r - f(r) ) etc etc etc ;

for which the input and output are each a real number (that is, a machine floating point num-
ber). There are three principal words: SKETCHING, [ROOT], and [SOLVING].

For convenience in analyzing functions for the existence of roots, multiple roots, maxima
and minima, etc., we provide a low-resolution graphing capability via the gerund SKETCHING,
whose syntax is

a b SKETCHING <function>,

The word <function> must already be defined as described. The output is a sketch of the graph
of y = < function > (x) on the interval [a, b]. This interval is divided into 79 equal subinter-
vals, with the function evaluated at the partition and end points. (The number 79 can easily be
adjusted to the Forth-83 Standard screen width of 63 subintervals.) The ordinates are normal-
ized so that the maximum absolute value of y is given the arbitrary value 10, with all other
values adjusted proportionally. An x-axis is drawn, but no points are labelled; the interval [a,
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printed as a reminder. We were persuaded to include a sketching word by the arguments of
Press, et al. [9].

The word [ROOT] is useful for searching out a root bracketing interval when the function is
already available. This word is not a gerund and it is defined to work on a generic function rep-
resented by the DEFERred word FUNC. Therefore, the current function must be vectored in:

' <function> IS FUNC a b [ROOT]

is the sequence of words to enter, with [a, b] a first guess at a root bracketing interval. If
<function> fails to have opposite signs at a and b, [RO0T] moves one endpoint and then the
other outward alternately, for a maximum of 50 moves. This bracketer can fail, which is why
SKETCHING will be handy: considerx*—1on [a, b] = [ -2, 2].If [ROOT] finds a bracketing interval
[x1,x2], it stores these endpoints into the FVARIABLEs X1 and X2, from which they can be
retrieved as needed. If no bracketing interval is found, a suitable message is displayed.

The solving itself is carried out by the gerund [SOLVING], with the syntax
a b [SOLVING] <function>

Beginning with [a, b], a search is made for a bracketing interval, although a single guess at the
root may be made, as in

a [SOLVING] <function>

and a second endpoint will be supplied automatically. If no brackets are found, a suitable mes-
sage will be displayed and the root search terminated. Otherwise, the Brent algorithm will be
invoked and the search completed. A soothing message assures the user that the search has
begun and that the machine has not gone off into Never-Never Land. The result of the search
appears on the stack as two floating point numbers <function>(r) , with 7 an approximate root
of the equation < function> (x) = 0. If r, is the exact real root, then r lies in the interval [r,—
2. toll,ry + 2. toll], where toll is retained in the FVARIABLE TOLL.

As the Brent algorithm is made up of steps that are never less effective than bisection, and
often more effective, it is clear that the algorithm is certain to terminate in a finite number of
steps, either by not finding a bracketing interval (for which search we have limited the number
of steps by fiat) or by the natural termination of the root approximation. The program can not
run away, provided of course that <function>makes only legitimate Forth calls; this is the usual
Forth admonition against self-destruction. Timings will depend upon the hardware and Forth
software, but calls to the iteration cycle, inverse quadratic interpolation, inverse linear interpola-
tion, and bisection will be found counted respectively in the VARIABLEs #ITERS, #QUAD, #LIN, and
#BISECT, Counting the number of functional evaluations is optional. To take a count, include the

words 1 #FUNC +! in the definition of <function>; if the definition is already in the dictionary,
then analyze <function>’, defined by

: <function>' 1 #FUNC +! <function> ;
All the counts can be called up at once by the word TOTUP.
The Forth screens

The screens are based upon standard Forth-83, with the fixed point enhancements follow-
ing the protocols proposed by Duncan and Tracy [3]. We believe that all of our nonstandard words
are documented there with the exceptions noted in the following screen comments.

Screen 4. The words DEFER...IS are used to vector execution, and they are defined and il-
lustrated in [1]. The word F#BYTES is an optional constant in the FVG Standard [3]; leaving on
the stack the number of bytes in a real number as it is represented upon the floating point stack.
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In analogy to the actions of €, and , , F, appends the floating point number atop the stack to the
end of the dictionary.

Screen 8. The phrase nl n2 TAB will position the cursor at the position 71 to the right and
n2 down from the upper left corner, which is the position (0,0).

Screen 11. BELL sounds an audible alarm.
Screen 12. DARK clears the screen.

Screens 14 and 15. We have chosen to carry out the inverse parabolic interpolation by means
of Neville’s algorithm [9] rather than by the subalgorithm proposed by Brent and adopted in the
various implementations already mentioned above.

Certain other features require comment. The Brent algorithm invokes a mixed sort of
tolerance to decide when it has converged. A relative tolerance is called upon when the root is
‘Jarge’ and another, absolute tolerance is used when the root is ‘small’. The absolute tolerance is
specified in the FVARIABLE TOL, and it is set at compiling time. (We have specified 2.5E — 10, based
on the display characteristics of the system that we used for development.) This number can also
be altered during interpretation. The relative tolerance is based on the number called ‘machine
epsilon’, which is the smallest positive machine number (call it eps) such that 1+eps>1.In
fact, the exact value of eps need not be used: the word MACHEPS? on Screen 21 computes eps up
to a possible factor of 2 and stores it, and it runs each time that [SOLVING] is called. Running
MACHEPS? suggests that the floating point enhancement that we have used in developing this
program carries 2-3 decimal guard digits, hidden from printout but found by experiment to be
active in comparisons like Fg<.,

Examples

Some examples will illustrate the use of the solver words. For the techniques of root hunt-
ing, see elementary textbooks on numerical analysis. The HP-15C Owner’s Handbook [7T] and the
HP-15C Advanced Functions Handbook [6] offer useful hints for root finding in a general set-
ting, not just with the HP-15C calculator. For terminology and numerical analysis lorein general,
Henrici’s text [5] is a splendid source.

Warning: There is as yet no declaration from the Forth Standards Team to guide floating
point implementers. Roundoff, truncation, overflow and underflow, floating point literals, arith-
metic coprocessors, and many other matters are treated at present according to theimplementer’s
preference. Consequently, roots and function values found on floating point implementations
other than the one used by the author may differ slightly from those printed here.

Example 1. The equation €*—2 = 0 has a unique solution: log 2, the natural logarithm of 2.
Define

: EEE FALN2E F— 3
and the counting enhancement
: EEE* 1 #FUNC +! EEE
Then
OE 1E [SOLVING] EEE' F. E.
prints out
.693147180E 001 —4.22004452E @18

for the values of the root (log2) and the value of the function at the root. Executing TOL1 E.
prints 1.3..E — 010. However, the final 0 in the root is shaky, as the last digit should be the roun-
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doff of 08. Without knowing more of the inner workings of the floating point package, we with-
hold further analysis.

The TOTUP is #FUNC = 65, #ITERS = 39, #QUAD = 15, #LIN = 9, and #BIS = 15.

Example 2. The equation € —5x + 3 = 0 is treated in [8]. The HP-15C SOLVE finds one of
the two roots of this equation in [1.25, 2]. We define

: HP FDUP FALN FSWAP 5E F* F— 3E F+ 3
Then 1.25E 2E [SOLVING] HP returns the warning message
NO ROOT BRACKETED AFTER 54 TRIES

We resort to sketching: 1.25E 2E SKETCHING HP yields a ‘convex’ curve that is positive at 1.25
and 2, butis negative about halfway between. There are two roots. We try for one with the phrase

1.25E 1.6E [SOLVING] HP F. E.
and are rewarded with printout
1.468829260 0.00000000E+000

for the root and the function value at that root.
Example 3. We try to solve f(x) = 0, where

f&x) =xcosx - sinx.
To this end, we extend the dictionary by
: XC-S FDUP FDUP FCOS F* FSWAP FSIN F- ;

The function f(x) has a unique root between —%/4 and /4, as can be seen by pencil-sketching
the curvesy = xandy = tanx on the same axes: the rootisx = 0. SKETCHING also suggests the
existence of a root in this interval. If we run the phrase (in which PI/4 is an FCONSTANT that
leaves /4 on the stack)

PI/4 FNEGATE PI/4 [SOLVING] Xc-S F. E.

we are rewarded with the root .000000000 and the corresponding function value —1.69...E —
021. This is amazing accuracy, but TOTUP tells more of the story: #ITERS = 2, #QUAD = 0,
#LIN = 2, and #BIS = 0. The function has odd symmetry in the selected interval, so linear in-
terpolation, effectively equivalent to bisection, converges to the root immediately.

To see the workings better, we try
gE PI/4 [SOLVING] XC-S F. E.

and see —.000013581 and 1.54...E —012. Having set the left endpoint a equal to the root in the
interval, we retrieve a putative root that is outside the interval (not necessarily a fault) but clear-
ly not the root 0. What happened? The answer tells us something about the construction of the
floating point implementation within which we are working. When.x is ‘small enough’, the quan-
tities x cos x and sin x are so close in value that their difference is represented by the machine
number 0. How small is ‘small enough’ can be deduced from the power series expansion of f(x)
for small x; it is

%) = —x°/3 + 5th and higher powers.
gher p

From the definition of TOL1 in Screen 22, we see that the root will be located within essential-
ly the tolerance in TOL if || is small, certainly the case when the root being converged upon is
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0. The variable TOL is set at compﬂanon to the value 2.5E —010. Hence the machine number
lfx)| < ToOL prowded thatx® < 7.5E—010,s0 always if | x| < 10”. The number —.000013581
returned for the root is within this bound, and its effect upon the stopping criterion is the same
as that of 0.

The phenomenon observed here is effectively cancellation. We can avoid it by refining the
definition of XC-S. Introduce the refined word

: XC-S# (r—r')
FDUP 1E-983 F<
IF
FDUP FDUP F* F* 3E F/ FNEGATE
ELSE
XC-$§
THEN

This modified function will not introduce spurious roots.

Example 4. Sometimes there are multiple occurrences of a root. For example, the polyno-
mial (x— 2) has the root x = 2 and this root may be counted with multiplicity 2 because each
occurrence gives one factor x—2. The nicest functions f(x), those called analyric, always behave
this way: each root r of f(x) = 0 is associated to a factor (x—r)” and the integer m is called the
multiplicity of . When a root is found by application of some algorithm and when ‘nothing’ is
known about the behavior of the function near that root, a check should be made for multiplicity,
either by sketching or by examining the modified function obtained by deflation. The function
obtained by deflating f(x) at the rootr is g(x) = f(x)/(x—r). If r is a multiple root of f(x), thenr
will also bearootof g(x). Because of roundoff and truncation errors introduced by machine rep-
resentations, it can sometimes be difficult to decide whether a function has a multiple root or
just simple roots very close together.

We illustrate another use of deflation by continuing the solution of the equation in Ex-
ample 2. SKETCHING showed that the function HP had two simple roots in [1.25, 2], so that the
root-bracketer failed. We got around that problem by using the sketch to narrow the search in-
terval to the bracketing [1.25, 1.6], finding the root 1.468829260. To find the second root, we can
search on [1.6, 2], but we can also deflate and search on the original interval. To avoid possible
input-output aberrations, we introduce an FVARIABLE R0OT1, then execute

1.25E 1.6E [SOLVING] HP ROOTIL F! FDROP
Now we extend the dictionary by the definition
: HP# FDUP HP FSWAP ROOTL Fe F-F/ ;

the deflation of HP at the root found first. To be sure, we try 1.25E 2E SKETCHING HP# and observe
that the deflated function has a single axis-crossing in [1.25, 2]. Then 1.25E 2E [SOLVING] HP#
F. E. yields the root 1.743751990 with corresponding function value —6.35..E~010. For
comparison, 1.6E 2E [SOLVING] HP yields the same root 1.743751990 with function value
—2.32..E~010. Deflation is especially useful when roots of polynomials are sought, because
each deflation cuts the work of evaluation substantially. Henrici’s text [5] gives examples and
points out treacherous quicksand waiting for the unwary.




B B

A = ™=

v

ve
P#
or
1e
se
nd

A Solver for f(x)=0

References

1. A. Anderson and M. Tracy, Mastering Forth, Brady, Bowie, MD, 1984,

2. R. P. Brent, Aigorithms for Minimization without Derivatives, Prentice-Hall, Englewood
Cliffs, NJ, 1973

3. R.Duncan and M. Tracy, “FVG Standard Floating Point Extension,” Dr: Dobb’s Journal,
#95 (September, 1984), 110-115

4. G.E.Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Com-
putations, Prentice-Hall, Englewood Cliffs, NJ, 1977

S. P Henrici, Essentials of Numerical Analysis, with Pocket Calculator Demonstrations, John
Wiley & Sons, New York, 1982

6. HP-15C Advanced Functions Handbook, Hewlett-Packard Company, Corvallis, OR, 1984

7. HP-15C Owner’s Handbook, Hewlett-Packard Company, Corvallis, OR, 1984

8. W. H. Kahan, “Personal Calculator Has Key To Solve Any Equation f(x) = 0,” Hewlett-
Packard Journal, (1979), 20-26

9.

W. H. Press, B. P. Flannery, S. A. ‘Teukolsky, and W. T. Vetterling, Numerical Recipes,
Cambridge University Press, New York, 1986



294 The Journal of Forth Application and Research Volume 5

Number 2

\ Scr# 0 Brent-style root finder: solves f(x) = 8 NG 98/14/86
(In the manner of HP-34C, HP-15C key SOLVE, without minima.)
When f(x) is a 'continuous' function that has opposite signs

at a and b, [SOLVING] (screen 33) returns a root of f(x) = 8 in
[a,b] to within a tolerance A4*macheps*|x| + tol, where macheps
is the relative machine precision {screen 21) and tol can be

set by user. Enhancements include low-resolution graphing and
bracketing interval search. See references on screen 34.

Copyright, 1986, by Nathaniel Grossman

The reader is authorized to make one machine-readable copy of
this program for his or her personal use, but further
distribution of such copies either as gifts, 'freeware', or by
sale is not authorized.

A1l commercial rights are reserved by Nathaniel Grossman.

\ Ser# 1 Solver, v1.0: F-83; requires floating point NG £8/14/86
: MARKER ;3 \ to FORGET from

2 13 THRU \ lores function plotter
14 16 THRU \ inverse interpolators
17 26 THRU \ root bracketer
21 34 THRU \ root finder
\ 35 \ references

2.5E-18 TOL F! \ tolerance is based on max of 9 sig figs
\ and can be user set after compilation

\  Varijous Fortran presentations of the Brent algorithm would
\ use the same words in different ways. The conventions follow
\ Forsythe, Malcolm, and Moler (see screen 34).
\ Scr# 2 Floating point (and other) extensions NG 87/27/86
: S>F (n =--1r) \ float an integer
SD FLOAT
: F2DUP (rr' =eerr' rr')

FOVER FOVER 3

.

F+!  ( r addr --- )
pupP >R F@ F+ R> F! 3

:D>S (d---n) \d=n if d < 32768
DROP
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\ Scr# 3 Constants and variables NG 87/27/86

VARIABLE #HOR ( #pixels horizontally) 88 #HOR !
VARIABLE #VER ( #pixels vertically ) 21 #VER!

@E FCONSTANT F@

FVARIABLE X1 ( bracket left )
FVARIABLE X2 ( bracket right )
FVARIABLE XNOW ( current x )
FVARIABLE YMAX ( max y[x] )

FVARIABLE YMIN ( min y[x] )
FVARIABLE DELTAX ( x step )
FVARIABLE DELTAY ( y step )

\ Scr# 4 Floating point arrays| deferred function NG 87/27/86

: FARRAY
CREATE (n --- ) \ allot and initialize for n reals
g ?2D0 FO F, LOOP
DOES> ( n --- addr_of_nth )
SWAP F#BYTES * +

#HOR @ FARRAY Y-VALUES \ holds f[x] for y-scaling

DEFER FUNC \ completion: ' <function> IS FUNC
\ but handled later by gerunds

\ Scr# 5 Bracket handling NG 88/82/86
\ Adjust first guess for interval containing root.

\ Inspired by HP SOLVE protocols, but works fully only when

\ the stack contains ONLY the guess{es): the HP user stack

\ always has depth exactly 4

: NO_GUESSES? (2 ———2)
\ change in depth by pushing real is F#BYTES/2
DEPTH ( Forth-83 DEPTH ) F#BYTES 2/ <
IF \ not at least one real on stack
CR CR
ABORT" : SPECIFY AT LEAST ONE BRACKET BOUND AND RERUN!"
THEN :
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\ Scr# 6 Bracket handling, cont. NG #8/82/86

: ONE_GUESS? (2 [r] --- [r1] [r2])
\ compare HP-15C Handbook, p. 192
DEPTH F#BYTES 2/ = \ exactly one real r on stack
IF \
FDUP F@=
IF 1E-7 \ [8,1e-7]
ELSE  FDUP 1.6906601E F* \ [r,r(l+le-7)]
THEN
THEN 3

\ Scr# 7 Bracket handling, cont. NG 98/82/86

: X1=X2? (rlr2 ---r3 rd)
F2DUP F=
IF
FDROP ONE_GUESS?
THEN

: BRACKETED? ( ? --- 2?2 )
NO_GUESSES? \ prompt for a guess or two
ONE_GUESS? \ concoct a second guess
X1=X2? H \ concoct two distinct guesses

\ Scr# 8 Bracket handling, cont.| make x-axis NG 97/27/86

: MAKE X1<X2 ( rl r2 ---rl' r2')
\ swap if necessary so that rl < r2
F2DUP F< NOT
IF FSWAP THEN

: X-STEP  ( x1 x2 --- )
FSWAP F- #HOR @ 1- S>F F/
DELTAX F!

: MAKE X-AXIS (  --- )
#HOR @ & DO

I 11 TAB ASCII - EMIT
LooP
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\ Scr# 9 y-scaling NG g7/27/86

¢ Y-EXTREME? (r --- 1)
FDUP
YMAX F@ FMAX YMAX F!
FDUP
YMIN F@ FMIN YMIN F! H

: Y SCALE ( --- )

\ NOT protected against the identically-zero function, but why

\ are you trying to graph that and machine-seek its roots?
YMAX F@ FABS YMIN F@ FABS FMAX \ Tlargest excursion

#VER @ 1- 2/ S>F F/ \ scaled vertical step
DELTAY F! 3
\ Scr# 10 Fill scaling array NG g7/27/86
: FILL Y-VALUES ( --- )
\ compute FUNC[x] along x-axis, track max and min, fill array
#HOR @ 9 DO
XNOW F@ DELTAX F@ XNOW F+!
FUNC
Y-EXTREME?  \ update extreme for later y-scaling
I Y-VALUES F!
LOOP 3
\ Scr# 11 Lores screen plotting words NG g7/27/86
: PLACE* ( --- ) \ run thru array, plot to screen
BELL  ( call operator's eyes back to screen )
#HOR @ & DO

I Y-VALUES F@ DELTAY F@
F/ FIX ( truncates toward & ) D>S \ pixel y-offset

#VER @ 1+ 2/ SWAP - \ screen y-offset from x-axis
I SWAP TAB ASCII * EMIT \ plot a *
LOOP :

¢ .[X1,X2] \ print bracket values in brackets below plot
g #VER @ 2+ TAB
ASCII [ EMIT SPACE
X1 F@ E. ASCII , EMIT SPACE X2 Fe@ E.
ASCII ] EMIT H
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\ Scr# 12 Initialize lores plotter NG 97/28/86

: SKETCH_INIT ( x1 x2 --- )
BRACKETED?
X1=X2?
MAKE X1<X2
-1E196 YMAX F! 1E16@ YMIN F! \ impossible starting values
F2Dup X2 F!
FDUP XNOW F! X1 F!
X-STEP \ scale x-axis
DARK
MAKE_X-AXIS
g 11 TAB

\ Scr# 13 Lores function sketcher NG 97/27/86
\ syntax: a b SKETCHING <function>

: SKETCHING ( x1 x2 --- )
' IS FUNC \ ' is NOT a misprint for [']
SKETCH_INIT
FILL Y-VALUES

Y_SCALE
PLACE_*
. [X1,X2] :
\ Scr# 14 Inverse parabolic interpolation NG 97/31/86

\ Ajtkin-Neville scheme, value at # of the parabolic function
\ taking values real XA,XB,XC at real arguments FA,FB,FC

FVARIABLE P/Q FVARIABLE PEE FVARIABLE QUE

FVARIABLE XA FVARIABLE XB FVARIABLE XC
FVARIABLE FA FVARIABLE FB FVARIABLE FC

: XAB XA Fe : XAl XA F! H
: XB@ XB F@ : XB!  XB F! :
: XC@ XCFe : XC! XC F! H
: FA@ FAF@e : FAl  FA F! :
: FB@ FB F@ : FB!  FB F! 3
: FC@ FC Fe : FC! FC F! 3
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\ Scr# 15 Inverse parabolic interpolation, cont. NG 97/31/86
\ Aitkin-Neville scheme, value at @ of the parabolic function
\ taking real values XA-XB,d,XC-XB at real arguments FA,FB,FC

: INVPARAB ( --- ) \ Brent's algorithm defines p/q
FB@ XA@ XB@ F- F*
FB@ FAG F- F/
FCeé F*
FB@ XB@ XC@ F- F*
FC@ FB@ F- F/
FA@ F* F- FDUP PEE F!
FC@ FA@ F- FDUP QUE F!
F/ P/QFL

\ Scr# 16 Inverse linear interpolation NG 87/31/86
\ value at @ of the linear function taking the real values
\ XA-XB,d at FA,FB.

: INVLIN ( --- ) \ Brent's algorithm defines p/q
FB@ XA@ XB@ F- F*
FDUP PEE F! \ store p

FB@ FAQ@ F-
FDUP QUE F!  \ store q
F/ P/Q F!
: BRENT'SI ( =--=1r) \r=b+ p/q (= Brent's i)

XB@ P/Q F@ F+

\ Scr# 17 Root bracketer: variables, initialization NG ©7/28/86

VARIABLE ALAS?
VARIABLE #TRIES
VARIABLE MAX#TRIES

FVARIABLE BLOAT

¢ ROOT_INIT ( x1 x2 --- )
BRACKETED? X1=X2? MAKE_X1<X2
-1 ALAS? ! @ #TRIES ! 5@ MAX#TRIES ! 1.6E BLOAT F!
X2 FI X1 F!

¢ ALAS
CR CR ."™ NO ROOT BRACKETED AFTER " MAX#TRIES @ .
." TRIES" CR BELL ABORT
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\ Scr# 18 Interval expanders NG 97/28/86
: <Xt ( --- ) \ move x1 to left
X1 Fe FDUP
X2 F@ F-
BLOAT F@ F* F+ \ x1+BLOAT*(x1-x2)
X1 F! H
1 X2-> ( --- ) \ move x2 to right
X2 Fe@ FDUP
X1 F@ F-
BLOAT F@ F* F+ \ x2+BLOAT*(x2-x1)
X2 F! H
\ Scr# 19 Function comparisons NG 97/28/86
: ANTISIGNS? ( =---b)
\ true if FUNC takes different signs at x1 and x2
\ assuming that f(x1)*f(x2) is NOT &

X1 F@ FUNC X2 F@ FUNC
FDUP FABS F/  ( protection against underflow )
F* F8

¢ X1_NEARER T0 ROOT? ( -—-b)
\ true if FUNC(x1) is closer to 8 than FUNC(x2)
X1 F@ FABS X2 F@ FABS F< 3

\ Scr# 20 Root bracketer NG 67/28/86

: [ROOT] ( x1 x2 ==~ )
\ leaves root brackets, if found, in X1 and X2
ROOT_INIT
MAX#TRIES @ 4 DO
1 #TRIES +!
ANTISIGNS?
IF @ ALAS? ! LEAVE THEN \ cue warning, leave loop
X1_NEARER TO_ROOT?
IF <-X1 ELSE X2-> THEN
Loop
ALAS? @
IF ALAS THEN ; \ cued warning
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\ Scr# 21 Machine epsilon NG #8/02/86
FVARIABLE MACHEPS \ approx least machine r>@ so 1+r > 1

: MACHEPS? (  --- ) \ find macheps
1E
BEGIN
1E F2DUP F+ F<
WHILE
g.5E F*
REPEAT
MACHEPS F! H

\ Scr# 22 Tolerances, bounds NG @8/02/86

FVARIABLE TOL  \ desired length: interval of root uncertainty

.

: HALF-LENGTH ( ---r )
XC@ XB@ F- @.5E F*

:TOLL ( ---r ) \ r = 2*macheps*|b|+8.5%tol
2E MACHEPS F@ XB@ FABS F* F*
TOL F@ @.5E F*

F+ 3
: |PEEf] ( ---r) PEE F@ FABS ;
: |QUE| ( ---r ) QUE F@ FABS ;
Scr# 23 Interpolation flagger NG 98/91/86

The next approximate root will be calculated by interpolation
if that number is inside the latest bracketing interval and
"not too close" to the endpoints. Otherwise, hisection will
be called. The decision depends on the size of the change

\ p/q to be made in b.

e

: ACCEPT_INTERP? ( ---b)
\ 2|p| < min( [3*|half-Tength|-to11]*|q], |to11%q])
\ true -> inverse-interpolate false -> bisect
2E |PEE] F* \ 2]p]
3E HALF-LENGTH FABS F* TOL1 F- |QUE|] F*
TOL F@ FABS |[QUE| F*
FMIN
F< 3
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\ Scr# 24 Initialize from given root brackets NG 98/94/86

FVARIABLE NOW-LENGTH \ length of current bracketing interval
FVARIABLE PRE-LENGTH \ Tlength of previous bracketing interval

: INIT FROM A ANDB (ab --- )
FDUP XBI ~FUNC FB!
FDUP XA! FUNC FA! 3

:INITC (0 -—- )
XA@ XC!
FA@ FC!
XB@ XA@ F- FABS FDUP
NOW-LENGTH F! PRE-LENGTH F!

\ Scr# 25 Data cycler, quadratic-interpolator flag NG £8/64/86

: CYCLE_DATA ( --- )

\ Cycle: xa -> xc -> xb -> xa, fa -> fc -> fb -> fa
XA@ XB@ XC@
FROT
XC! XB! XAt
FAG FB@ FC@
FROT
FC! FB! FAl

s

: USE_QUADRATIC? ( --- flag)
\ true if now-approx and pre-approx are distinct
XAR XC6 F= 3

\ Scr# 26 Convergence, bisection flags NG 98/84/86

: CONVERGED? ( --- flag )

\ true if either |c-b|/2 < toll or fb =9
HALF-LENGTH FABS TOL1 F<
FB@ F@=
OR H

: BISECT? ( --- flag)

\ true if either |fa| < |fb]| or |pre-length| < toll
FA@ FABS FB@ FABS F<
PRE-LENGTH F@ FABS TOL1 F<
OR :
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\ Scr# 27 Endpoint updater NG 98/44/86

¢ ENDPOINTER ( --- )
\ now-data -> pre-data; new now-data
XB@ XA! FB@ FA!
TOL F@ NOW-LENGTH F@ FABS F<
IF NOW-LENGTH F@
ELSE TOL F@
@E HALF-LENGTH F< NOT
IF FNEGATE THEN
THEN
XB@ F+ FDUP XB! FUNC FB! 3

\ Scr# 28 Node renamers NG ©8/16/86

: INTER-SWITCH ( --- )
XA@ FDUP XC! FUNC FC!
XB@ XA@ F- FDUP
NOW-LENGTH F! PRE-LENGTH F!

: EXTER-SWITCH ( --- )
FC@ FABS FB@ FABS F<
IF CYCLE_DATA THEN

+ INTER/EXTER-SWITCH ( --- )
OE FB@ F< @E FC@® F< = ( true: both true or both false )
IF INTER-SWITCH ELSE EXTER-SWITCH THEN H

\ Scr# 29 Initialize the rootfinder NG 98/14/86

\ optional counters:

VARIABLE #FUNC \ to count # of function evaluations
VARIABLE #ITERS \ to count # of iterations in PRE-SOLVER
VARIABLE #LIN \ to count # of inverse linear interpolations
VARIABLE #QUAD \ to count # of inverse parabolic interps
VARIABLE #BIS \ to count # of bisections

\ should have #ITERS = #LIN + #QUAD + #BIS

: INIT SOLVER (a b --- )
g FLIN | @ #QUAD ! @ #BIS ! O #ITERS ! @ #FUNC !
MACHEPS?
INIT_FROM_A_AND B
INIT C 3
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\ Scr# 30 Select among hisct'n & inverse intrpltrs NG 08/16/86

: LINEAR/QUADRATIC_INTERPOLATION { -~ )
\ with optional counters
BISECT?
IF HALF-LENGTH FDUP 1 #BIS +!
NOW-LENGTH F! PRE-LENGTH F!

ELSE
FAG FC@ F=
IF INV_LIN 1 #LIN +!
ELSE INV_PARAB 1 #QUAD +!
THEN
THEN

\ Scr# 31 Set vars after interpolation performed NG 98/19/86
: INTERPOLATION_IF APPROPRIATE ( --- )

ACCEPT_INTERP?
IF P/Q F@ NOW-LENGTH F!
ELSE HALF-LENGTH FDUP
NOW-LENGTH F! PRE-LENGTH F!

THEN H
: SOOTHER
." Seeking root in " \ optional user
ASCII [ EMIT SPACE XA@ E. ASCII , EMIT \ soother
SPACE XB@ E. ASCII ] EMIT CR CR : \ message
\ Scr# 32 The solver: unadorned core NG 98/16/86

PRE-SOLVER ( a b --- r ) \ r approximates the root

INIT_SOLVER CR CR

SOOTHER

BEGIN
CONVERGED? NOT

WHILE
1 #ITERS +!
LINEAR/QUADRATIC_INTERPOLATION
INTERPOLATION IF_APPROPRIATE
ENDPOINTER
INTER/EXTER-SWITCH

REPEAT

XBe




