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Abstract

After a Rip-van-Winkle nap of more that 20 years, the ideas of biologically motivated
computing are re-emerging. Instrumental to this awakening have been the highly publicized
contributions of John Hopfield and major advances in the neurosciences. In 1982, Hopfield showed
how a system of maximally coupled neuron-like elements described by a Hamiltonian formalism
(a linear, conservative system) could behave in a manner startlingly suggestive of the way humans
might go about solving problems and retrieving memories. Continuing advances in the neuroscien-
ces are providing a coherent basis in suggesting how nature’s neurons might function.

"This paper describes a particular model for an artificial neural system designed tointeract with
(learn from and manipulate) a simulated (or real) environment. The model is based on early work
at Sandia Laboratories by Iben Browning. The Browning model, designed to investigate computer-
based intelligence, contains a particular simplification based on observations of frequency coding
of information in the brain and information flow from receptors to the brain and back to effectors.
The ability to act on and react to the environment was seen as an important principle, leading to
self-organization of the system.

Introduction: A Perspective On Artificial Intelligence

The essence of Artificial Intelligence (AI) is an emulation of human intelligence and
intelligent performance at a high functional level. Early on, any detailed model of natural
intelligence was abandoned as either too complex or too restrictive. Creativity in Al centered
around more tractable, but nonetheless, fascinating problems of mimicing the conceptual
abilities of human intelligence (e.g,, problem solving, theorem proving, knowledge manipula-
tion) as well as devising algorithms and conceptual paradigms to make the life of computer
scientists easier (multi-tasking; word processing; rule-based systems; semantic nets, frames and
scripts; expert systems). A compelling reason for this choice was the restriction imposed by
available hardware generally subsumed under the generic phrase, “The von Neumann Bot-
tleneck.” Brain-like functions (parallel and distributed processing, associative memory recall)
were extraordinarily difficult to map directly onto existing computer hardware architectures;
simulation of these functions, while interesting, proved to be impractical. There were a few
researchers whose overriding interest was in the functioning of the human brain and mind and
of means for simulating such behavior. These dedicated few were intent on seeing an artificial
intelligence (ai) arise which overcame the semantic barrier of AL Classical Al is primarily
concerned with the manipulation of symbols, exploring syntactical relationships while ignoring
meaning. A parallel would be the field of experimental psychology under B. F. Skinner’s influence:
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enormous strides in a narrow direction were made by ignoring or even denying the existence of
the mind. Similarly, the laws of syntax and symbol manipulation can be studied and applied (very
profitably, too, as expert systems prove) without any reference to the underlying meaning
(semantics). However, the era of great conceptual and computational advance is probably
over—AI needs to become ai and consider meaning just as psychology needed to turn from a
pure behaviorist paradigm and acknowledge the mind. Recent important advances in the
cognitive sciences [ANDS5] are illustrative of the fruitfulness of this particular paradigm shift.

Background: What are Neural Nets?

If we tend to blame von Neumann for his infamous computational bottleneck, we must also
remember that he pointed the way out: cellular automata [NEU66] made up the first neural nets
and are directly responsible for the several connectionist architectures available in hardware form
today [e.g., HIL85]. Probably any collection of coupled, similar, and even simple computing
elements may be labeled as a “neural network,” with apologies to those dedicated neuroscientists
who have studied and wrestled with the complexities of real neurons and real neural networks
over the past three quarters of a century.

The field of artificial neural networks is large, encompassing the simplest models with
behavior described by linear non-stochastic summing networks [HOP86] to systems with stochas-
tic connectivity and non-linear behavior modeled closely on our current understanding of
nature’s neural networks and their complex interactions with perception and learning [GRO81}].

The goals of neural network research are perhaps as diverse as the models used. Certainly,
some neuroscientists wish to see a research tool for refining queries about real neurons and their
possible range of behavior. Associative memories for rapid recall of large information sets and
dynamic pattern recognition are worthy goals, as is the application of statistical mechanics models
to the important problems of scheduling and routing. The promise of storing very large
(terabytes) amounts of information in a single device is a driving force for some researchers.
Should artificial neural networks exhibit emergent properties (“spontaneous production of new
things” [POP77]), the psychological and philosophical implications would provide other com-
pelling reasons for study. A particular application of the unique properties of the pulse-coded
model may extend scheduling into the time domain. A real neural network can develop plans in
response to a changing and complex environment, not just respond as a deterministic sequence
of stable system states. Will an artificial one be as flexible?

Goals of Current Research

The goals set for this current research into artificial neural systems are both practical and
theoretical. They are:

1) to develop a methodology for treating the difficult (impossible?) problems arising from
complexity that is found in most advanced systems (e.g., power plant control, control of
space-based weapons),

2) to demonstrate the control potential offered by a neural system in an intelligent
autonomous robot, and

3) to demonstrate the properties of self-organization and emergence. A self-organizing
system is one that modifies its own behavior in response to external influences. It is not
programmed for adaptation to specific external inputs, but rather it is given a generic
prescription for incorporating new information. Initially, such a system can do nothing;
as it interacts with its environment, it will learn to cope successfully as it is guided by
stimulus and response conditioning. Eventually, complex behavior (hopefully
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appropriate) will emerge from such a system. We will have reached the goal of artificial
intelligence, as intelligence may be defined as capacity for generating an appropriate
response to unforeseen circumstances.

The Browning Model — A Frequency-Coded Network

A large part of the neuroscience literature is concerned with the nature of the “spike” or
pulse activity of neural messages, its effects on cell membranes, its transmission properties, and
its biochemical interactions. The computational properties of networks of neurons and the
properties of information flow through the network are generally too speculative for the
neuro-laboratory. However, it is evident that neuroscientists are fascinated with the information-
al aspects as well as with the problem of emergence of mind [POP77] and [PRI86]. The work of
neuro-psychologist Karl Pribram at Stanford University is a notable exception to the rule of
saving information-theoretical notions for the future.

Even as Pribram was developing his theory of junctional micropotentials, set forth in Pribram
[PRI71], Browning was designing and experimenting with a computer model based on the idea
of the brain as a frequency-response system that was capable of acting on its environment and
receiving information in the form of pulse trains with instantaneous frequency-coded meaning.
His efforts are summarized in a report [BRO64], wherein we learn that both frequency coding
and environmental interaction were key concepts in his frequency-based model.

An example of the Browning network written in Basic is to be found in Winkless and
Browning [WIN78]. Essentials of the network are described and an example given shows how
the pulses flow through the network and that the node firing the fastest will soon dominate all
network activity, inhibiting all outputs except one. Inhibition is manifest even though the model
contains no specifically inhibitory mechanisms. The model developed in the present work is an
extension of the one cited above. A personal computer with a mouse, menu system, windowing
capabilities, and the dynamically modifiable and extensible Forth language created a develop-
ment environment ideal for experimenting with neural networks. Experimenting in this area is
essential because any viable network has numerous parameters of unknown value, such as
network connectivity, node refractory period, node threshold, etc. There are two approaches to
the determination of these variables: random trial and error (based on a genetic algorithm
approach) and random trial and error (based on best guess observations).

In the late 1950s there was no such choice, the genetic approach was taken of necessity.
Actually, a genetic approach is more systematic and not subject to the experimenter’s biases.
Browning’s work was done in Fortran on a batch machine (and we think we have it rough!).
Without the interactive ability, the experimenter had to visualize the network’s behavior from
the output of a stream of numbers on a paper printout. Today, graphical representations can
evolve and “behavior” be rewarded or punished as it occurs. The danger is in laziness, as it is
easier to modify a piece of code and try it again in a matter of minutes than to really think about
it (when you had days to weeks between computer runs, you “tend to think a lot,” as Browning
noted). The scheme for an artificial neural network exhibiting self-organizing properties includes
an environment, a means to sense it, and a means to manipulate it. A brain needs to have sensory
input; without sensory input the brain is in a pathological state called catatonia. Can a network
operate without the ability to manipulate its environment? Of course, it operates very nicely, but
it never learns anything. This is dramatically illustrated in both Pribram [PRI71] and Popper and
Eccles [POP77], where the work of R. Held and A. Hein is described. A kitten deprived of the
opportunity to interact with its environment other than by passive sensory means is a seriously
learning-impaired animal.

Figure 1 illustrates how a neural network might interact with an environment. The sensory
inputs (labeled afferents in the figure) are essential to learning and may be essential to the
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operation of the network if spontaneous cell firing is not allowed [PRI7 1]. The environment may
be as simple as a set of muscles controlling the motion of a simulated finger on the computer’s
display screen. Feedback from the environment may be added by injecting a high frequency pulse
train into one or more of the network’s inputs (pain) when the finger approaches the screen’s
boundaries. The system quickly learns to avoid the boundaries and avoids the “painful” regions
by allowing the finger to hover in the middle region of the screen.

Afferent Pathways

Network

Figure 1. Interaction pathways between the network and an environment, showing net receptors (sensors) as black dots
and effectors as arrows.

Note the similarity of this diagram to those of adaptive control theory [e.g., HARS81]. The
network illustrated above reacts to and acts on the environment. As it does so, certain patterns
of node firings stabilize and others disappear. When a change in inputs is made, certain learned
pathways are selected, and the network is then responding to a supplied stimulus.
Description of the Model

The fundamental unit of the Browning network (and the modified version developed in the
course of this work) is the node or neural cell. Each cell has a set of properties:

1. List of input synaptic junctions

2. List of output synaptic junctions

3. A refractory period when the cell cannot be made to fire

4. A threshold value that is compared to the sum of active inputs

5. A cell potential which slowly charges, allowing inputs to become more effective in
overcoming the cell’s threshold

6. Spontaneous firing when the cell’s potential reaches a maximum
7. A “differential permeability” for modeling cell fatigue and certain pathologies
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8. A cell status and an identification number.

The data structure schematic, shown in Figure 2, illustrates the relationships between the
nodes and synapses. The node structure indicates those data needed to model a neuron, and is
used for recording the state of each node as the system evolves.

A 1024-node system with an average of 10 synapses into and out of each node would require
24 Kbytes and perhaps 16 Kbytes in a streamlined version. A 1 Mbyte computer has capacity for
perhaps a 50,000-node network as well as an operating system and the code for running the
network (including code for controlling external sensors and effectors, and for graphics).
Technically, the network is operated in a synchronous fashion, but logically it supports
asynchronous operations. A (simulated) system clock effectively freezes network activity of each
cycle. During this time, the state of each cell is altered according to the following algorithm:
1. Check each of the network receptors and adjust the instantaneous firing rates of any
affected network input cell,
2. Set each synapse on the output list of a node that fired the previous cycle (“pulse state”)
to its active state,

3. Add a small amount of “noise” by randomly selecting a few cells for spontaneous firing,

4, For each node in the network, check if it has waited for its refractory period (nominally a
few system cycles),

List of Synapses

Node Data .
Structure Input List
Status '+ Cntr

Cell} ID Weight Synépse =

Potential R-cntr Ado:ress
DiffPerm
Status | Cntr
#in #out T
We};ght _____l_._.l.%t____

| _Address of _ | Terminator

Outputs i

Addréss of Status ! Cntr Synapse
Input List Weight w\Data
: i Structure

Key: | Byte

Figure 2. Data structures for representing the nodes and synapses in the model. “R-cntr” is the counter for
the refractory period where a node may not fire; “DiffPerm” denotes the current differential permeability
of the cell. The present model allows 16 bytes per cell (this could be reduced to 10 in a streamlined version
by eliminating No. 8 and consolidating others). The synaptic junctions consist of a status, a weight, and a
delay counter, which is not presently used. In addition, each synapse has an associated address that is used
to identify a2 node’s input, making a total of 8 bytes per synapse.
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5. If it has, allow the cell potential to increase exponentially toward saturation,

6. Sum the cell’s active inputs, add the cell’s potential and compare to the system-wide
threshold,

7. If the threshold is exceeded, fire the cell by,
a. resetting its potential and refractory period to initial values,
b. setting each synapse on the cell’s output list to “pulse state,”

8. Reset all the cell’s input synapses to the inactive state,
9. Check any network output nodes, and send messages to the appropriate effectors.

Pulse transit time is presently one system clock tick and the pulses persist for one system
clock, making for a tightly coupled network (in the time domain) and imposing a severe
restriction of simultaneity on a cell’s inputs. This process could easily be made more realistic by
using the synapse counter indicated above to simulate pulse delay as a function of distance
between nodes. Persistence over a few system cycles could be easily added.

Memory, Learning, and Knowledge

Information in the model is distributed along various dynamic pathways. There is no
idealized location for data (as in a von Neumann machine with its storage cells containing either
definite data or prescriptions for controlling the machine). As pathways interact, information is
modified, and all distinction between data and program disappears. Important questions for
consideration are:

1) where and how is information stored? and
2) what is the information capacity of the network?

Only qualitative answers to these questions may be given at this time. Other network models
have supplied definite answers to the capacity question [AMI85].

The network establishes certain pathways of node firings as it interacts with its environment.
This behavior may be viewed as self-organization in response to environment or learning. Specific
mechanisms of learning are being explored by modifying thresholds, cell permeability, and
synaptic efficacy. A promising mechanism has been proposed [LYN84] describing structural
changes taking place in response to certain types of stimuli. A more general theory of learning
and memory is discussed in a recent paper [THO86]. Thompson examines forms of habituation
and associative learning and recall from a neurobiological viewpoint. Another recent paper
[KLOS6] incorporates neurobiological findings into a computer model that can account for a
wide spectrum of learning methods.

The Hardware Connection: Running Neural Nets

One of the problems of the early days is still with us: running a neural network on a serial
machine can be painfully slow, too slow for interaction with the real world. There are several
hardware fixes to be mentioned:

1) use a faster serial processor;
2) use some of the newer parallel machines such as hypercube architectures, connectionist
architectures, distributed architectures; and
3) design specialized neural computing elements.
Each of these possibilities is being pursued at laboratories and businesses around the country.

We are pursuing all three possibilities at Oak Ridge National Laboratory. Transferring the
code to the Novix NC4000 and later NC6000 development systems is a straight forward activity.
The result should be 50 to 100 times faster (based on preliminary studies with the NC4000) than
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the present high-level Forth code. Access to a distributed processing system now under develop-
ment at the Laboratory should show further improvement. This parallel machine has a Forth
kernel running on each of its processors, so the port of the present network code should pose no
problems. Either of these approaches would allow a modest network of a few thousand nodes to
operate with a time constant of a few tens of milliseconds. This would be on the order ofahuman’s
response to certain situations and be quite acceptable for a certain class of real-time control
problems (e.g., robotics).

The third approach, that of designing specific neuron-like cells in silicon, is being pursued
at a number of places [MARS6]. At Oak Ridge, we are beginning a design based on the network
described here.

Discussion

The collection of nodes and synapses may be viewed as a set of coupled oscillators. Certain
momentary phase relationships become established and may persist or be disrupted as informa-
tion flows through the network. If one set of pathways is momentarily persistent (even in the
presence of noise), the affected outputs will continue to fire in aquasi-periodic manner. However,
if one or more input cells change their firing rate, the established pattern of pathway firings may
be disrupted and a new set will become stable. A formal description of this behavior can be made
byidentifying the persistent states with attractors in a dynamical system (defined on a phase space
based on the nodes’ properties). A change in pathways is then identified with an orbital
perturbation. A rigorous treatment of these ideas depends upon a formal description of the
network dynamics and may well be an intractable problem. It is often difficult to give formal
meaning to such vague and intuitive ideas, especially ones describing the behavior of a complex
system; however, Babloyantz has come remarkably close in Chapter 14 of her book [BABS6],
wherein she develops a system of nonlinear equations along the lines of Nicolis and Prigogine
[NIC77]. The resulting system of coupled neural-like elements (each having a membrane
potential and delayed response times to input activity) undergoes bifurcation from stable to
oscillatory states as excitatory membrane potential is increased. When the excitatory population
parameter starts to oscillate, it closely resembles EEG traces of onset of epilepsy.

Toward Formal Description

The network is constructed on a stochastic model of connectivity with both feedforward and
feedback allowed, making any rigorous mathematical description both complex and difficult.
Even though the individual network elements and their transfer functions can be taken as linear,
the interaction of the net as a whole with the environment is reminiscent of a system of
transformations (reactions) wherein information (chemical species) undergoes changes. The
resulting system can exhibit self-organization if interactions are at least of cubic order [NIC77].

If the computational field of the network is abstracted to the set of connections describing
the network’s connectivity, the nodes (network neurons) may be taken as simple pulse-summing
junctions with a two-state (binary) transfer function. The information processing (aquisition,
storage, modification) is contained in the synaptic field and its self-modification is mediated by
sequential patterns of firing of the nodes. Two synapses (a and b) are said to be connected if
synapse a terminates on a node that can send output pulses to synapse b. In Figure 3, synapses
a, b, and ¢ are connected to synapses a’, b’, and ¢'. This connectivity is neither associative nor
reflexive, thus @’ is not necessarily connected to a if @ is connected to a’; a is not necessarily
connected to itself. This type of connectivity is denoted as a—na’, where n is the length of the
connection (number of nodes traversed from a to a’). Note that # is not necessarily unique as
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there may exist several paths from one node to any other node, and not all need be of the same
length. A modified form of transitivity holds across nodes: If a-» nx and x-» mb, then a-» kb, where
k = n+ m is the (non-unique) composite length.
‘We may now make a few definitions:
1. If a- 4’ then a is said to be causally connected to a’.

2. A causal path 7 is an ordered set of causaily connected elements, each adjacent pair
obeying transitivity with length 1. Thus = = {a, b,c, ...,z} is a causal path iff a-> 15,
b-=1c,c»1...,=1z

3. A firing sequence or a pulse sequence is an ordered set of node firings, each separated by
one system clock period.

Theorems may be developed describing how each causal path has a unique length, and a
causal path of length >1 may be broken into subpaths of length minimally 1. Causal paths have
loops and branches pruned off. A branch is a unique and different causal path, connected to the
original one, while a loop is a closed causal path. The formalism describing loops, subpaths, and
branches belongs to a branch of graph theory and will not be further discussed.

Note that the time dimension has not yet appeared explicitly. Time is the basis for the
functioning of this model network, and obviously it is related to the notion of a causal path. The
key is to note that path length is a measure of the time required for a pulse to traverse the path:

Path Length times System Clock Period = Duration of Pulse Sequence

A chain of node firings traversing a causal path does not necessarily have to traverse the path
completely. If each node in the path is past its refractory period and the sum of active inputs
(synapses) is greater than the node threshold, only then will the firing continue down the causal
path. Of more than passing interest is a theorem which says that if a pulse sequence is on a causal

()

Figure 3. Network connectivity showing nodes as open circles and synapses as black dots. The complete
network is made up of many such nodes or cells interconnected via the synapses. Efferent synapses of cell 2
are labeled a’, b’, and ¢’; and Z's afferent synapses are labeled a, b, and c.
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path, each member (synapse) of the path must become active in a sequential fashion, activity
being separated by onesystem clock period. Proof follows direcily from definition 3. This theorem
leads to several important consequences about path interactions and path effectiveness.

A theorem of Browning’s concerns path length: the shortest active path between nodes
carries the information. Any paths that are longer have no effect and may be ignored. The proof
considers the causal path lengths compared with the time it takes for the end node to recover 1o
its firing potential. Of course, if the shorter causal path is too weak to pass the pulse, then it can’t
support a pulse sequence, and no information is transmitted.

A theorem describing typical network behavior states that if pulse sequences traverse two
intersecting causal paths, the first sequence to reach the intersection will branch at the junction
and prevent the second sequence from propagating past the junction if the lengths of the paths
are less that the system recovery time. Thus certain paths (and hence information flows)
dominate.

Continuation of this formal development will be deferred to a subsequent paper. Interested
readers wishing to pursue similar ideas on connectivity and inheritance (of properties, not
necessarily pulses or information) are referred to Touretzky [TOU86]. Another approach toward
formalization may be followed using the language of directed graphs. The dynamics of the
network (messages) would be reflected in the dynamics of the connections on the graph.

Summary and Future Directions

Neural nets are starting to show great promise in doing real-world computations, acquiring
knowledge, storing information, and generating complex behavior in response to external
conditions. The set of complex problems awaiting computer science in the 1990s is so vast that
neural nets will continue to be studied until their success is unequivocally demonstrated or failure
becomes evident. The simple model described above has already demonstrated learning and
self-organization in response to a rather simple environment. The demonstration of emergence
will probably involve a more sophisticated environment and more than one modality oflearning
[POP77].

Addition a real voice input based on the ideas of Gabor [GAB46] and Browning [BROS6],
is planned for the near future. The network will then be given simulated visual input to correlate
with real-time voice input. The speculation is that the environment will become rich enough to
elicit emergent behavior. From a practical viewpoint, this may well lead to a form of computer
voice recognition which goes a step beyond simple pattern matching to a speaker-independent
system that exhibits fault tolerance and makes the usual perceptual errors.

Note added in proof:

This paper was written in early 1987. In the following year, the ideas presented above evolved
into a neural network with added sensors (for vision, taste, and touch). The ensemble was called
an “Adaptive Synthetic Insect.” This insect lived on a computer screen and learned about its
environment via self-organization of information received from the sensors due toits interactions
with the environment. A genetic algorithm allowed the bug to follow evolutionary pathways in
a genetic state space, thus optimizing its behavior over many generations. The latest bug has
solved a problem imposed by its environment in a surprising way. The insect is penalized for
touching the edges of the screen (walls) with its feelers, and rewarded for finding and consuming
food in its environment. Instead of becoming sensitized to the walls, as I fully expected, the bug
evolved the capability to walk backwards at a fast pace, and turn around occasionally to eat when
food was located. If a property of intelligence is the ability to solve a problem in a surprising
fashion, then this insect (computer program) has demonstrated both unsupervised discovery and
a modicum of intelligence. Future evolution may contain more surprises!
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