Parallel FORTH

John E. Dorband

Image Analysis Facility/Code 635
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

Abstract

The extension of Forth into the realm of parallel processing on the Massively Parallel Processor
[1] (MPP) is described. The extended language, MPP Parallel FORTH, is a derivative of Forth-83
[2-4] with extensions designed by the author as philosophically similar to serial Forth as possible.
This paper first discusses the MPP hardware characteristics, as viewed by the Forth programmer,
and then presents a description of MPP Parallel FORTH along with a detailed example developed
by the author showing how the bitonic sort [5] is implemented in this language.

Introduction

The parallelism that can be exploited on the MPP is of a single-instruction-stream multiple-
data-stream (SIMD) nature (Figure 1). The SIMD architecture contains one control unit, which
is a typical serial processor, and many arithmetic logic units (ALUs).

The SIMD machine is capable of two types of processing, occuring concurrently: serial or
scalar processing, and parallel processing. The parallel processing of a SIMD machine is the same
as the serial processing except it happens in many different places. The SIMD approach is very
different from the parallelism found in most multiprocessor systems which are typically multi-
ple-instruction-stream multiple-data-siream (MIMD) in nature:

o In a MIMD architecture, each processor has its own code to execute so each can execute
a totally different set of programs. The control of a SIMD machine on the other hand is
much simpler because there is only one set of control code.

o The processors and the languages to support a MIMD machine must include all the
necessary operating system routines to facilitate multitasking and network-like com-
munications. By contrast, neither the SIMD hardware nor its languages need to support
multitasking or network-like communications.

SIMD MIMD
CONTROL
UNITS) — P % % % %
ARITHMETIC yy y Yy
7R707 0/ R 7

Fig.1 Single-Instruction-Stream Multiple-Data-Stream (SIMD) vs.
Multiple-Instruction-Stream Multiple-Data-Stream (MIMD).

Journal of Forth Application and Research Volume 5, Number 4

459

460 The Journal of Forth Application and Research Volume 5 Number 4

MPP Environment

The MPP contains an array of 16,384 processing elements(PEs), the array unit, arranged in
a 128 by 128 square grid. Each PE (Figure 2) is a bit serial arithmetic logic unit (ALU) with 1024
bits of random access memory (RAM). Thus, the entire array contains 2 million bytes of memory
which can be viewed as 1024 bit planes of 128x 128 bits each. [In the general MPP design, both
the number of PEs and the number of bit planes are expandable depending on computational
needs and engineering considerations.] All PEs are given the same instruction at the same time;
thus computing in this array can be viewed by the programmer as serial processing on a single
PE. Yet, processing is actually happening on all 16,384 PEs at the same time. Because of this, the
MPP and the languages that are used to program it need not involve extremely complex
programing concepts, but only two nearly identical modes of operation, serial and parallel. This
similarity of modes is used extensively in MPP Parallel FORTH.

BIT-SERIAL
ALU

4

1024-BIT
RAM

Fig.2 MPP Processing Element (PE)

The difference between programming in serial and in parallel on a SIMD architecture is not
in programming thousands of processors but in communicating between thousands of processors
simultaneously. The PEs of the MPP array communicate with each other using a square mesh of
data paths (Figure 3(a)), where each PE can pass data only to its four adjacent PEs. The edges

128
OPEN
% Mesh of EDGES
8 16,384 PEs -
: CD CYLINDER
TORUS
2 Dimensional
Nearest Neighbor
Connection SPIRAL
(2) Communication among MPP PEs
is over a square mesh of data paths. (b) Data path Topologies.

Fig.3 Massively Parallel Communication.

Parallel FORTH 461

of the mesh can be connected in various ways to form topologies (Figure 3(b)), such as a simple
square, cylinders, a torus, or a helix. This communication arrangement allows the programmer
to move, simultaneously, as many as 16,384 bits of data, as far as 128 rows or columns away from
their original source PEs.

As well as having a main control unit (MCU) for scalar processing and an array unit for
processing 16,384 elements of data in parallel, the MPP has a staging memory (STG) (Figure 4).
This memory is in the path over which data is moved from the host computer (VAX-11/780) into
the array unit memory. The staging memory contains 32 megabytes of storage capacity, allowing
it to be configured as 16,384 bit planes of 1281238 bits each.

Array Unit < \ MCU)
(ARU)
l/ Main
Control

Unit

<
<
Staging
Memory
(STG)
\
VAX

Fig.4 MPP Overview.

Therefore, the MPP, as viewed by the Forth user, consists of three principal components:

ARU Array Unit for parallel processing of data
MCU Main Control Unit for scalar processing and control of the ARU
STG Staging Memory for I/O and as a large external bit-plane memory

A mask capability in each PE in the ARU allows the programmer to perform conditional
processing on a PE by PE basis. Conditional processing (such as the execution ofan IF ... ELSE
. .. THEN statement) on the array divides the ARU into two groups of PEs — those for which the
condition is true and those for which the condition is false. Since PEs can be individually told
not to execute the current instruction, the PEs for which the condition is true will only execute
those instructions between the IF and the ELSE and those processors for which the condition is
false will only execute those instructions between the ELSE and the THEN. Thus, through prudent
use of conditional statements, groups of processors can be programmed to perform different
functions within the same block of code.

462 The Journal of Forth Application and Research Volume 5 Number 4

Parallel FORTH Implementation

Parallel FORTH has been implemented by the author as simply and in as straightforward a
way as possible. Aserial Forth system is implemented on the MCU. Parallel extensions have been
added to the kernel under a new vocabulary called PARALLEL. Context switching has been
simplified so that the Forth word ‘{’ switches to the parallel vocabulary and ’}’ switches back to
the vocabulary that was in use before the switch to the parallel vocabulary. This allows the user
to redefine serial words as analogous parallel words in a parallel context, making it easier for the
user to remember the new parallel words, giving Parallel FORTH the facility to treat parallel
programming as though it were serial. For example, + normally means to add two numbers that
are on the data stack, but in the parallel context (eg. ‘{ +}’) + means add two 128 X128 arrays of
numbers on the array stack, which is in the ARU memory (Figure 3).

7

//’ ARRAY
DATA STACK

STACK MCU

» N

/| oa
< B> R
U
Mask Stack
T 128
D G
1
S
K 128
\), 128

Fig.5 Organization of MPP memories.

Two new stacks have been added to Parallel FORTH that are not in serial versions of Forth.
These two stacks are the array stack (A) and the mask stack (M). The mask stack is not normally
used or seen by the Parallel FORTH programmer. It is used to facilitate nested conditional
statements, such as ‘IF ... ELSE ... THEN’ or ‘BEGIN ... UNTIL’. The array stack is extensively
used by the Parallel FORTH programmer, since it is the parallel equivalent of a serial data stack.
Most operations that can be performed on elements of the serial data stack have corresponding
operations that can be performed in parallel on the array stack, such as +, *, DUP, DROP, and ROT.
There are a few other operations that are unique to the array stack. These primarily deal with
interprocessor communications and globally accumulative results.

The following sections discuss in more depth the parallel operations designed and imple-
mented by the author to extend Forth into the realm of parallelism.

Paraliel FORTH 463

Vocabulary and Data Definition

In Parallel FORTH there is a vocabulary called PARALLEL. All new parallel words are in this
vocabulary (Figure 6). As pointed out previously ‘{” and }’ are used to enter and exit the parallel
vocabulary. The following is a definition that will manipulate the MCU data stack:

: MULTADD * + ;
While the next definition manipulates the ARU array stack:
: MULTADD { * + } ;

Parallel variables can be allocated in either the array or the staging memory. If a user wants to
allocate a 128 x 128 array of 7-bit values named AR1 in the staging memory, the following is used:

7 STG VARIABLE AR1L

where STG designates the allocation of storage in the staging memory. If a user wants to allocate
a 128x128 array of 11-bit values in the array memory named AR2, the following is used:

11 ARU VARIABLE AR2

where ARU designates the allocation of storage in the array memory. The definition of parallel
constants is similar to defining variables, except the user puts an array on top of the array stack
and then executes the statement:

13 ARU CONSTANT CON1

to create a 128128 array of 13-bit constants. Likewise vectors and arrays of 128x 128 arrays
may be defined with VECTOR and MATRIX, respectively. A vector of 20 8-bit 128 x 128 arrays can
be defined with the following statement:

20 8 ARU VECTOR VEC1

Again parallel mode is very similar to serial mode. If a variable, vector, or matrix is allocated in
parallel mode, it is allocated simultaneously in every PE.

CONTEXT SWITCH ARRAYSTACK FIXED PRECISION VARIABLE PRECISION
OPERATIONS OPERATIONS ARITHMETIC ARITHMETIC
B — T OPERATIONS OPERATIONS
} DROP + ~
SHAP - ~-
1/O OPERATIONS poyd N -
OPEN ROT / ~/
GET PICK MOD ~MOD
pUT ROLL /MoD ~/MOD
MEMORY OPERATIONS ~NDROP HAX COMPARISON
NDROP HIN OPERATIONS
@ Ae ABS iuinluinisin
! SA NEGATE <
SCALAR Z2ERO 1+ =
GMAX EXTRACT 1- >
GMIN SLIDE 2/ g<
GOR TOPOLOGY 2* g=
AND g>
OR CONTROL OPERATIONS
XOR
HOT IF..ELSE..THEN

Fig.6 Words Implemented in MPP Parallel FORTH

BEGIN.UNTIL
BEGIN.WHILE.REPEAT

464 The Journal of Forth Application and Research Volume 5 Number 4

IMAGE
MATRIX 512 x 512
128 x 128
Fig.7 Matrix and image file formats.
Parallel 1/0

Parallel files can be stored on the host in either marrix or image format (Figure 7). Each
format allows for 8-bit, 16-bit and 32-bit values. A matrix format file contains multiple arrays of
128% 128 values. An image format file contains multipleimages of 512 x 512 values. The following
command:

CHANA IMAGES OPEN WHAT.DAT

opens the file ‘what.dat’ as an image file of images with 8-bit values. GET is then used to read
the matrix or image into a previously defined array variable. An image from an image file of
8-bit values should only be loaded into a VECTOR or MATRIX that has at least 816 or 128 bits
allocated to it. The command to read a matrix into a stager array is:

V13 GET

This loads the third matrix of the current file into variable V1. To store an image into a file, the
word PUT is used (i.e., V1 3 PUT).

Memory Operations

Memory operations are used to move data between the three MPP memories: the MCU, the
ARU, and the STG. The word ‘@ fetches arrays from array variables in the STG and the ARU
memory and puts them on the array stack. The word ‘1’ stores an array from the array stack into
an array variable in the STG or ARU memory. The word ‘SCALAR’ takes a value from the data
stack in the MCU memory, broadcasts it to all PE’s, and produces an array on top of the array
stack that has the same value for all elements of the array. Operations such as GMAX (global
maximum), GMIN (global minimum), and GOR (global OR) can reduce an array of values into a
scalar value that can be put onto the data stack.

Array Stack Operations

Most array manipulation occurs on the array stack. The PEs of the ARU are bit serial
processors. This means they can perform arithmetic on almost any size numbers, thus the
elements on the array stack can be almost any size in terms of bit lengths. A stack in the MCU is
used to keep track of the sizes and number of values on the array stack in the ARU. The
arrangement of data elements on the array stack is the same for all PEs. The array stack is
manipulated by operations very similar to those used on the data stack. These operations consist

Parallel FORTH 465

of words such as DUP, DROP, SWAP, OVER, ROT, PICK, and ROLL. In addition to the standard stack
operations there are also operations that are unique to the array stack. They consist of the
following words: -NDROP, NDROP, A@, >A, ZERO, EXTRACT, SLIDE, and TOPOLOGY.

NDROP drops the top n elements of the array stack. -NDROP skips the first n1 elements of the
array stack and drops the next n2 elements of the array stack. ‘A@” copies the descriptor from the
array stack onto the data stack. A parallel array descriptor consists of two values: the address of
the least significant bit plane of the array(LSB) and the number of bt planes in the array(LEN).
>A’ creates an array of n-bit data values on the array stack, where » is taken from the top of the
data stack. ZERO is the same as “>A’ except the n-bit data values are initialized to zero. EXTRACT
extracts a field of bits from the top element of the array stack and leaves it as the top element of
the array stack. SLIDE slides the top element of the array stack across the array of PE’s. The
TOPOLOGY operation changes the topology of the ARU.

Arithmetic, Logic, and Comparison Operations

All the operations in this section deal primarily with the elements on the top of the array
stack and are analogous to corresponding operations that operate on the top of the data stack.
The difference is that operations on the array stack perform 16,384 operations at the same time
instead of one at a time and values on the array stack can have variable numbers of bits instead
of a fixed number such as 8, 16, or 32.

Normally operations on the data stack are either single or double precision. On the array
stack, however, operations are classified as either fixed or variable precision. A fixed precision
operation requires that both operands and their result have the same length. A variable precision
operation may operate on operands whose lengths are different. The result of such operations
has a length that is dependent on both the specific operation and the length of the operands. All
basic operations discussed here have a fixed precision form. Some operations have both a fixed
and a variable precision form. These are +, -, *, /, MOD, and /MOD. Their variable precision forms
are ™+, V-, ~* ~/ ~M0D, and ~/MOD.

The result of a ™+ or a ™~ operation has a length equal to 1 plus the maximum of the two
operand’s lengths. The result of a ~* operation has a length equal to the sum of the length of the
two operands. The length of result of a ~/ operation is the length of the dividend operand. Note
that the length of the dividend must be larger than that of the divisor. The result of the “MOD
operation has a length equal to the length of the divisor operand. Since the result of the ~/MOD
operation is the result of the ™/ operation followed by the ~“MOD operation, the lengths of the
results are the same as described for ~/ and “MOD.

The fixed precision only operations are MAX, MIN, ABS, NEGATE, 1+, 1-,2/,1*, AND, OR, XOR, and
NOT. Three special operations find the aggregate result of all the top elements of the array stack
and place it on the data stack. These global operations are global maximum(GMAX), global
minimum(GMIN), and global OR(GOR).

Comparison operations differ slightly from the other operations in this section in that they
result in a value of length 1. These operations are <, =, >, #<, #=, and >,

Control Operations

Control operations cause certain portions of code to be executed on some data and not on
others. Parallel control is quite different from serial control. In serial control, condition evalua-
tion determines whether or not a certain piece of code will be executed. In parallel control, the
code corresponding to both the true condition and the false condition may have to be executed.
Some of the PEs must be turned off during the execution of the code for the true condition, then
turned on for the execution of the code for the false condition. This is accomplished with a mask
bit. It is set to one in PEs whose data satisfy the condition, and 1o zero in those whose data does

466 . The Journal of Forth Application and Research Volume 5 Number 4

not. Thus only those PEs that satisfy the condition execute the code for the true condition. The
mask bit is then complemented and only those PEs that did not satisfy the condition will execute
the code for the false condition. As with execution of serial conditions, parallel conditions can
be nested. Therefore, there is a mask stack. Mask stack primitive operations are used to
implement the operations in this section.

The basic conditional structure is the IF ... ELSE ... THEN statement. The IF word takes
the least significant bit of the top element of the array stack and puts it on the top of the mask
stack. Then it takes the AND of the top two bits of the mask stack, and puts it on the top of the
mask stack. The ELSE word drops the top bit of the mask stack, complements the top element of
the mask stack, then it takes the AND of the top two bits of the mask stack, and puts it on the top
of the mask stack. The THEN word drops the top two elements of the mask stack.

The parallel conditional loop structure is also somewhat unusual. It continues to execute as
long as there is a PE that has not met the condition to terminate the loop. The two types of loops
are the BEGIN ... UNTIL and the BEGIN ... WHILE ... REPEAT. The BEGIN word duplicates the
top element of the mask stack. The REPEAT word marks the end of the loop. The WHILE word ANDs
the least significant bit of the top element of the array stack to the top element of the mask stack
and terminates the loop if no PE has the top element of the mask stack equal to one. The UNTIL
word is the same as WHILE except the least significant bit of the top element of the array stack is
complemented before it is ANDed to the top element of the mask stack.

Note that only certain operations are maskable. Therefore, one should be aware that
operations may execute when the processor was masked because the operation was not maskable.
Generally, only operations that do not change the number of elements on the array stack or the
order of the elements on the array stack are maskable. Thus, most stack manipulation operations
and two operand operations are not maskable.

A Bitonic Sort using Parallel FORTH

The following example shows Parallel FORTH code that runs on the MPP. There are two
sorts: one that sorts data into shuffled row major order and one that sorts data starting in the
northwest corner toward the southeast corner of the array in progressively larger square regions.
These sorts sort the top two elements on the array stack across all processors (see Listing).

Conclusion

The development of Parallel FORTH has demonstrated how easy and straight forward it can
be to extend a serial language (i.e. Forth) to support parallel processing on a SIMD processor
such as the MPP. A more detailed description of MPP Parallel FORTH [6] can be obtained from
the MPP User Support Office, Code 635, NASA/Goddard Space Flight Center, Greenbelt, MD
20771, phone (301) 286-9412.

Acknowledgements

Iwould like to express my appreciation to Dick Fahey, Arne Henden, Dan Klinglesmith, and
Archie Warnock for their advice and consultation on the Forth philosophy and to Lisa Hamet
for her help in the coding and implementation of the UNIFORTH™! kernel on the MPP.
References

[1] Potter, J.L., ed., The Massively Parallel Processor, MIT Press, Cambridge, MA, 1985.
[2] Brodie, L., Starting Forth, Prentice-Hall, Inc., Englewood Cliffs, NJ., 1981.
[3] Brodie, L., Thinking Forth, Prentice-Hall, Inc., Englewood Cliffs, NJ., 1984.

1 UNIFORTH is a trademark of Unified Software Systems.

Parallel FORTH 467

[4] Henden, A., UNIFORTH User’s Guide, Unified Software Systems, Columbus, OH, 1985.

[5] Nassimi, D. and Sahni, S., “Bitonic Sort on a Mesh-Connected Parallel Computer,” IEEE
Trans. on Computers, C-27,1 (January 1979), pp. 2-7.

[6] Dorband, J.E., MPP Parallel FORTH User’s Guide, September 1986.

SCR # @
g
1
2
3 A SHUFFLE ROW MAJOR BITONIC SORT (SORTSH)
4 AND A SORT THAT SORTS TO THE NORTHWEST
5 CORNER OF THE MPP ARRAY (SORTCR)
6
7
8
9
19 NOTE: THESE SORTS ONLY SORT THE TOP 2 LAYERS
11 ON THE ARRAY STACK.
12
13
14
15
SCR

#1
(SORTF — MASK ALLOCATION AND INITIALIZATION)

g

1

2 14 VECTOR NS 14 VECTOR HE

3 14 VECTOR SN 14 VECTOR EW

4 { 15 1 ARU VECTOR MSK 1 ARU VARIABLE OF }

5 ¢ INIT_MASK

6 140 D0 P IWE! INS! LOOP (CLEAR NS & WE)
7 146D0 0 IEW! SISN! LOP (CLEAR SN & EW)
8 114 6 DO DUP I WE ! 2* 2 +LOOP DROP (LOAD WE)
9 -114 ¢ DO DUP I EW ! 2* 2 +LOOP DROP (LOAD EW)
19 114 1 D0 DUP I NS ! 2* 2 +LOOP DROP (LOAD NS)

11 -1 14 1 DO DUP I SN ! 2* 2 +LOOP DROP (LOAD SN)

12 {1 ZERO 14 MSK ! } (BUILD MASK)

13 g 14 @ DO DUP { C 1 EXTRACT I MSK ! } 1+ 2 +LOOP DROP
14 g 14 1 D0 DUP { R 1 EXTRACT I MSK ! } 1+ 2 +LOOP DROP

468 The Journal of Forth Application and Research Volume 5 Number 4

[74d
o
=~

2
(SORTF — COMPARISON AND EXCHANGE ROUTINES)

: COMPARE (- A: <EXCHANGE FLAG>)
{ OVER OVER < } ;
SORT_EXG { IF OVER OVER @ INSERT
ROT ROT SWAP & INSERT THEN } ;
COM/EXG (A: <EXCHANGE ORDER> -)
COMPARE { OF @ XOR SORT_EXG }

WONITOBRWNER
o

: CROSS (S: NS WE MSK -)

16 { @ } OVER OVER { IF OVER OVER SLIDE & INSERT
11 ELSE ROT ROT SWAP } NEGATE SWAP NEGATE SWAP
12 { SLIDE @ INSERT THEN SWAP } ;
13 —>
14
15
SCR # 3
g (SORTF - SHUFFLE ROW MAJOR BITONIC SORT)
1
2 ¢ SORTSH (A: <VALUE> <VALUE> — <VALUE> <VALUE>)
3 INIT _MASK
4 g MSK { @ OF ! } COM/EXG
5 g Do
6 I1+MSK{@OF !}
7 I NS @IWER®TI MSK CROSS COM/EXG
8 I 1+ 96 DO
9 I NS @IWER®TI MSKCROSS COM/EXG
19 LooP
11 LOOP
12 H
13 —
14
15
SCR # 4
g (SORTF — SORTS INTO THE NORTHWEST CORNER)
1
2 : SORTCR (A: <VALUE> <VALUE> — <VALUE> <VALUE>)
3 INIT_MASK
4 g MSK { @ OF ! } COM/EXG
5 g Do
6 I1+MSK{GOF!}
7 g 1ID0
8 I NS @1IWE®@IMSK CROSS COM/EXG
9 I NS @TIWEG®@TMSK CROSS
19 -1 +L0OP COM/EXG
11 LooP
12 H
13 ;S
14

