Error-Free Statistics in Forth

Leonard E Zettel

Research Staff, Ford Motor Company
Dearborn, Michigan, USA

Abstract

Methods for the one-pass, error-free calculation of the mean and standard deviation of a set
of numbers are presented along with code for their implementation in Forth and an accuracy
analysis.

Introduction

The mean and standard deviation of a set of numbers are probably the most commonly used
statistics. Calculating them as rapidly and accurately as possible is not a trivial problem. The
methods presented here were selected after a review of the literature. Rodden [11] in particular
warned against the temptations to bad practice presented by the uncritical use of floating point
calculations invited by most FORTRAN compilers. Subsequent experience has confirmed his
fears. The routines presented here are designed for the case (believed by the author to be
relatively common) where the numbers to be summarized may be represented as suitably scaled
single precision integers without loss of accuracy. The imputation of an implicit binary point will
not affect the results as long as its location is the same for all numbers used in the computations.
This will be the case for enumeration data or data captured with a fixed level of accuracy (2
millivolts, 1 minute of arc, etc.). We agree with Rodden that, wherever possible, calculations
should be done in ways that involve no loss of information. The principles outlined here can often
be profitably used where high accuracy statistics must be calculated in floating point, although
in that case there will inevitably be some rounding error and therefore information loss.

Algorithms
In this work we follow the lead of [11] and for a series of integer values x1, x2... x, compute

the following statistics:

n, the number of values (x’s)
¢, an integer estimate of the mean (initially zero)

s, the value z(x -c)
t, the value ofz (x-c)2

n,s,and r are updated each time a new observation is added to the data set. In case of overflow
¢, s, and ¢ are recomputed as follows:

d=|5/n| &)
c'=c+d 2]
s'=smodn 3)
t'=t—d(s+s") 0]

This set of recomputations, a bit different from those recommended in [11], has been chosen
to take advantage of some of the operators of Forth while keeping the desirable information

Journal of Forth Apptication and Research Volume 5, Number 4
507

508 The Journal of Forth Application and Research Volume 5 Number 4

properties of Rodden’s recommendations. M/MOD lets us getd and s’ in one calculation, and +!
is handy for ¢’ and¢'. As weshall show below, at all timesd, s and t are exact, having no truncation
or rounding error.

Finally, when they are needed, the mean g and variance v may be computed to any desired
degree of accuracy using the formulas
u=5n+c)
and v=(t—s5*n)/(n—-1) (6)
with suitable scaling and operations on remainders.

The use of the offset ¢ (a statistician would call it a coding constant) allows us to accumulate
much larger sums without overflow than we could without it. This saves storage space, since ¢ is
effectively the high-order bits of several quantities simultaneously. We also avoid time consuming
multiple precision arithmetic on the individual updates.

Mathematics

Suitably recasting the work of Rodden [11], we note that, for arbitrary ¢ and c¢’, with
summations running from one to »,

S(x-c)y=Y (x—c)-n(c'—c))
2(x—c')2=2(x—c)2——2(c’—c)z(x—c)+n(c’——c)2)

also,

SE-EP=3 (x-c) - (14) (3 (x-0)) ©

where ¥ is the mean, <2 x) /n)

In the notation of the previous section, (7) is
s'=s—n(c" ~c)
and from (1) and (2)
s'=s—n|S/n| =smodn
Also, with a little rearrangement, (8) gives us
t'=1t~d(2s —ndy=1t-—d(s' +s),
so we see that the truncation of the floored division will not affect the accuracy of the
accumulated totals.

Forth

Screens 90 to 94 implement these ideas in Forth. To get a mean and standard deviation, three
things have to bedone: 1) Allocatestorage for the totals; 2) Accumulate the statistics; 3) Calculate
the mean and standard deviation from the accumulated totals. Since an application may need to
do statistics on more than one variable, we introduce a defining word that does 1) in the course
of creating a word that does 2). Screen 92 defines a defining word, COLLECT, that allocates
sufficient storage to carry ¢, #, and the coded minimum and maximum observed values in single
precision and the sum and sum of squares in double precision. C, n, s and ¢ are initially zero, while
the minimum is given the largest possible value and the maximum the smallest, insuring that the
first actual observation will set them to their proper values. Thus the phrase COLLECT VOLTAGES
would allocate and initialize the space in the Forth dictionary necessary for accumulating
information about the statistics of voltages.

When VOLTAGES is subsequently executed the DOES> part of COLLECT executes code for
updating the running totals with the number on the top of the stack (presumably a voltage). This

Error-Free Statistics in Forth 509

gives the routines the most general applicability, since in a particular application it may be neither
possible nor desirable to save the individual numbers either in computer memory or mass storage.
This could be the case in an elaborate simulation or in real time collection of large amounts of
data. For cases where the data are in memory, users can define a word to walk through the data,
put each value on the stack, and invoke the appropriate word defined by COLLECT, or they can
incorporate the principles outlined here in definitions tailored to fit their special circumstances.
The last line of the COLLECT DOES> checks for overflow of the sum of squares and if necessary
recalculates the appropriate quantities by invoking the word RECODE (shown in screen 91). Screen
90 defines the actions of the component parts of the DOES> of COLLECT.

Screens 93 and 94 are concerned with the output of statistics from information accumulated
by a word defined by COLLECT. AVERAGE.OF VOLTAGES will leave the floored integer average
voltage on the stack. SD.OF MAX.OF and MIN.OF work similarly for the standard deviation,
maximum and minimum. AVERAGE, VARIANCE, and SD have been factored out and set up to use
only stack values in their calculations. This allows their use in situations where the quantities
have been accumulated by a method other than a word defined by COLLECT. Words using /MOD
and */ that would compute the quantities to more significant figures should be fairly straightfor-
ward and are left to users and their particular applications.

CLEAR is useful in applications like simulation, where one wants to clear out statistics
gathered during a starting transient. Retaining the current value of ¢ here delays the time when
recoding becomes necessary.

Analysis and Limits

Individual numbers on which statistics are gathered are limited to the range -32768 to 32767
both before and after coding, so besides being in the range above, no number can differ from the
average of the set by more than 32,767. The memory locations reserved for n, s and ¢ can all
potentially overflow, so statistics can be collected for a maximum of 32,767 entries. The buckets
for s and ¢ are the same size, 32 bits. Since any given addition to 7 must be greater than the
corresponding addition to s unless they are both one or zero, ¢ will overflow first if overflow occurs
with less than 32,768 entries. Also, since ¢ is a sum of squares, all entries and therefore the total
will always be nonnegative. The largest possible single addition to 7 is 230 (hex 4000 0000 decimal
1073741824). Since overflow occurs for sums greater than 23! — 1 (7FFF FFFF or 2147483647),
overflow will always be signaled by a negative value for ¢’ because the sum after overflow will
have to lie between 232 and 23L

If the variance of the numbers is big enough, ¢ may overflow even after recoding. This
condition is not checked for and could lead to erroneous results. [11] sketches methods of
overcoming this problem that would require somewhat more elaborate algorithms than those
given here.

Instrumentation and Software

The screens shown here were coded in F83 [6] and compiled and run on an IBM PS2 model
80-111. Words not part of the Forth-83 standard and their meanings are as follows:

*D (nln2-dl) n1 and n2 are multiplied, giving a signed double precision result. [6]

.ID (addr-) The contents of name field address addr are displayed. [6]

R (nln2-) nl is converted using BASE and displayed in a field n2 characters wide. Forth-83
controlled reference word [1].

2+] (daddr-) Add signed double number d to the 32 bit memory contents starting at addr. [6]

b* (dld2-ql) q1 is the signed 64 bit product of signed double numbers d1 and d2.

DN* (dinl-d2) d2 is the signed product of signed double number d1 and signed number nl.

ERASE (addru-) U bytes of memory beginning at addr are set to zero. Forth-83 controlled reference

word [1].

510 The Journal of Forth Application and Research Volume 5 Number 4

H/M0D (dinl-n2=n3) n2 is the signed single remainder and n3 is the signed single quotient when signed
double number d1 is divided by signed single number nl. [6]

MU/HOD (dlnl-n2d2) n2 is the signed single remainder and d2 is the signed double quotient of signed
double dividend d1 and signed single divisor nl. [6]

qs/ (qln-qg2) g2 is the 64 bit signed quotient of 64 bit signed dividend q1 and signed single
number nl.

$>D (n-d) Convert signed single precision number to signed double precision. [6]

SQRT (dl-nl) n1 is the single number square root of double number d1. [13]

References

[1] Chan, Tony E and John Gregg Lewis, “Computing Standard Deviations: Accuracy,”
Comm ACM, Vol 22, #9, September 1979, pp 526-31.

[2] Chan, Tony E, Gene H. Golub and Randall J. LeVeque, “Algorithms for Computing the
Sample Variance: Analysis and Recommendations,” Amer. Statistician, Vol 37, #3, August
1983, pp 242-7.

[3] Cloutier, Mark J. and Matthew J. Friedman, “Precision Averaging for Real-Time
Analysis,” Comm ACM, Vol 26, #7, July 1983, pp 525-29.

[4] Deegan, John Jr., “A Test of the Numerical Accuracy of Some Matrix Inversion Algorithms
Commonly Used in Least Squares Programs,” J. Statist. Comput. Simul., 1976, Vol 4, #4,
Pp 269-78.

[5] Forth Standards Team, Forth-83 Standard, Mountain View Press, Mountain View CA 1983.

[6] Laxen, Henry and Michael Perry, F83. Available from Offete Enterprises, Inc., 1306 South
B St., San Mateo CA 94402,

[7] Ling, Robert E, “Comparison of Several Algorithms for Computing Sample Means and
Variances,” J. Am. Statistical Assn, Vol 69, #348, December 1974, PP 859-66.
[8] Marasinghe, Mervyn G., “A Note on Methods for Computing Tukey’s and Mandel’s
Interaction Sums of Squares,” Comm, Statist.-Simula., Vol 15, #3, 1986, pp 649-54.
[9] Neely, Peter M., “On the Use of Integer Arithmetic to Achieve Confirmably Correct
Computation,” Software-Practice and Experience, Vol 7, #2, 1977, pp 159-63.
[10] Neely, Peter M., “Comparison of Several Algorithms for Computation of Means, Standard
Deviations and Correlation Coefficients,” Comm ACM, Vol 9, #7, July 1966, pp 496-9.
[11] Rodden, B. E., “Error-Free Methods for Statistical Computations,” Comm ACM, Vol 10,
#3, March 1967, pp 179-80.
[12] Ryder, K., “Calculators — How to Get the Answers Right,” Expl Agric, Vol 19, #1, 1983,
pp 15-21.
[13] Suralis, Klaxon, “Square root routines in Forth,” Forth Dimensions, Vol. IV, #1, pp. 9-11.
[14] Thisted, Ronald A., Elements of Statistical Computing, Chapman and Hall, 29 West 35th
Street, New York NY 10001, 1988
[15] Welford, B. P, “Note on a Method for Calculating Corrected Sums of Squares and
Products,” Technometrics, Vol 4, #3, August 1962, pp 419-20.
[16] West, D. H. D., “Updating Mean and Variance Estimates: An Improved Method,” Comm
ACM, Vol 22, #9, September 1979, pp 532-5.

[17] Wilkinson, Leland and Gerard E. Dallal, “Accuracy of Sample Moments Calculations
Among Widely Used Statistical Programs,” American Statistician, Vol 31, #3, August 1977,
pp 128-31.

Error-Free Statistics in Forth

511

Sc

WooONOOMHEWNEHEEN-

#
\
\

.

e o~ S

9g

ADJUST INCREMENT SUM SUM.SQUARES MINIMUM MAXIMUM LFZ11Jul186

Words to update a statistics array.
ADJUST (nl addr - n2) @ - ;

INCREMENT (addr —-) \ Add 1 to the count of entries.
1 SWAP +! 3

SUM (nl addr —-) SWAP S>D ROT 2+! ; \ Update sum{x-c).

SUM.SQUARES (nl addr —-)
SWAP DUP *D ROT 2+! 3

\ Update sum(x-c)**2.,

MINIMUM (nl addr --) \ Update minimum.
SWAP OVER @ MIN SWAP ! ;
MAXIMUM (nl addr —-) SWAP OVER @ MAX SWAP ! ;

91

RECODE LFZ13Jul186

RECODE (addr —-) \ Calculate a new offset for the statistics
\ array at addr & adjust the entries accordingly.

DUP >R 4 + 2@ \ sum

2DUP RG 2+ @ \ number entries

M/MOD DUP R@ +! \ new offset.

OVER & RG 4 + 2! \ new sum.

DUP NEGATE DUP R@ 12 + +! \ new minimum.
R@ 14 + +! \ new maximum.

>R @ D+ R> DN* DNEGATE R> 8 + 2+! ; \ new sum of squares.

92
COLLECT CLEAR LFZ
COLLECT CREATE HERE 16 ALLOT DUP 12 ERASE

32767 OVER 12 + ! \ minimum.

-32768 SWAP 14 + | \ maximum.
n ~-) DOES> SWAP OVER ADJUST

SWAP DUP 2+ INCREMENT

2Dup 4 + SUM

2Dup 8 + SUM.SQUARES

20up 12 + MINIMUM

SWAP OVER 14 + MAXIMUM

DUP 8 + @ 86< IF RECODE ELSE DROP THEN ;

CLEAR (—-- <name>) \ Reset the named statistics

' >BODY >R R@ 2+ 10 ERASE \ Clear count, sum, sum of squares.
32767 R@ 12 + ! \ New minimum.

-32768 R> 14 + | ; \ New maximum.

512 The Journal of Forth Application and Research Volume 5 Number 4

Ser # 93
g \ AVERAGE VARIANCE SD ZETTEL LFZ24Ju186
: AVERAGE (n1 d1 n2 — n3) \ N3 = The average of the sum sum dl
\ count n2 and offset nl.
M/MOD SWAP DROP + g

\ squares dl, sum d2 and count nl. Return -1 if count too Tow
DUP 2 < IF DROP 2DROP 2DROP -1

1
2
3
4
5 : VARIANCE (d1 d2 nl —- d3) \ D3 = the variance of sum of
6
7
8 ELSE >R DABS 2DUP D* R@ QS/ 2DROP D- R> 1- MU/MOD

9 ROT DROP
16 THEN ;
i1
12 : SD (dl1 d2 n1 —- n2) \ n2 is the standard deviation of the
13 \ sum of squares dl sum d2 and count nl.
14 \ Return -1 if count too Tow.
15 VARIANCE DUP 8< IF ELSE SQRT THEN ;
Scr # 94
\ AVERAGE.OF SD.OF MIN.OF MAX.OF LFZLFZ
: OFFSET.SUM.COUNT.OF (—- <name> nl dl n3)

g

1

2 ' >BODY DUP >R @ R@ 4 + 2@ R> 2+ @ ;

3 ¢ AVERAGE.OF (—- <name> n1) \ N1 = average of the COLLECT
4 OFFSET.SUM.COUNT.OF AVERAGE ; \ statistics at addr.
5
6
7
8
9

SD.OF (—- <name> nl) \ nl = standard deviation of the
\ COLLECT statistics at addr.
' >BODY >R R@ 8 + 20 R@ 4 + 2@ R> 2+ @ SD ;

19 : MIN.OF (=~ <name> nl) \ nl = minimun of the COLLECT

11 * >BODY DUP @ SWAP 12 + @ + ; \ statistics at addr.

12

13 : MAX.OF (—- <name> nl) \ nl = The maximum of the COLLECT
14 * >BODY DUP @ SWAP 14 + @ + ; \ statistics at addr.

15

Mr. Zettel has a B.S. in Chemical Engineering. He received an M.B.A. from Canisius College in
1975. He has been actively involved with computers since 1962, and is currently a researcher at the
Ford Motor Company.

