Introduction

We close out Volume 5 of JEAR with an issue that offers some peeks at where we may be
headed in the Forth world, particularly with respect to hardware improvements. There is much
ado about new approaches to improving computer performance, but the extent to which it is
occurring in Forth based approaches is astounding.

Debaere’s paper, Language Coprocessor Boosting the Execution Speed of Threaded Code
Programs examines some of the special difficulties associated with executing threaded code on
traditional architecture machines and considers methods for improving performance in existing
environments. He proposes the use of a coprocessor as a means to accelerate the execution of
such programs in a standard environment with a relatively low cost. Such a solution is not meant
to replace specialized Forth architectures but rather serve as an additional option.

The use of Forth to power a massively parallel architecture is the subject of Dorband’s
Farallel FORTH. The paper examines the unique problems of language design in a parallel
environment and describes the features of the author’s solution — MPP Parallel FORTH. The
author illustrates the use of such an environment via a sample sort implementation. The
underlying architecture here certainly represents another approach to improving program
performance!

The next two papersdescribe processor architectures designed with Forth in mind. Goodman
and McAuley’s paper, An Arithmetic-Stack Processor for High Level Language Execution describes
the design of the ASP, a 32-bit building block for a computer optimized for high level language
execution. Of course, the native machine language for the ASP just happens to be FORTH.
Combined with the fact that the processor is running at 25Mips, this adds up to a rather powerful
Forth environment. Hayes and Lee describe the details of another powerful 32-bit miCroproces-
sor in The Architecture of the SC32 Forth Engine. The SC32 is also designed to run Forth as its
native machine language. In addition, the processor couples RISC techniques with two stack
caches to provide the potential for impressive performance executing Forth programs.

Zettel’s paper, Error-Free Statistics in Forth, is a fine illustration of the use of Forth to produce
statistical programs that minimize the loss of information during calculation. In particular, the
author employs scaling techniques and an implied binary point to compute the mean and
standard deviation for data captured with a fixed level of accuracy. The result is a set of methods
for a one-pass, error-free calculation of these statistics.

The issue also continues to present information about what’s going on around the world in
Forth. The ANSI standardization effort for Forth continues to go forward and we report the
minutes from Meeting 5 and Meeting 6 in this issue. The abstracts from 1988 EuroFORML keep
us abreast of what is happening with Forth in Europe. We also have the abstracts from the first
ASYST conference (held last fall in Rochester) to provide some insights into how that Forth-
based environment is being utilized as well as what techniques are being developed for problem
solving. Keep those cards and letters coming (I haven’t received one yet!) and let us know what
you think about the current state of the Forth world.

James D. Basile,

Editor-in-Chief

Journal of Forth Application and Research Volume 5, Number 4

449




