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Abstract

'The Forth programming Janguage has often been criticized as a write-only language, ie., a
difficult language to read due mainly to the postfix syntax and the implied operands on the stack.
In this article we describe two meta compiler implementations written in Forth-79 and Forth-83
respectively that enhance the language so that it supports a user defined syntax and semantics. The
language is defined in conventional Backus-Naur notation with semantics written in Forth em-
bedded within the definitions.

Introduction

The Forth compiler uses a simple postfix syntax whose words are separated by “white-space.”
The words are the functional entities of the language. Data, in whatever form, is typically passed
to-these functions on a stack. Named entities such as variables and constants are organized in a
tree structured vocabulary. Access is not controlled by ALGOL scope rules, but rather through
a path search mechanism similar to that used to access files in the UNIX programming
environment.

In our view, these characteristics of Forth together form an error prone programming
environment. A programmer easily loses sight of a function’s operands; they are no longer explicit
entities, but rather implied locations on a stack. Forth programs contain a number of stack
manipulation functions (e.g., DUP, OVER) that are incidental to the programming task, thus
obscuring the underlying algorithm. Lisp, like Forth, is a difficult language to read; Lisp has a
prefix syntax and Forth a post-fix syntax. However, Lisp, unlike Forth, has the merit that
parameters of a function are passed explicitly.

On the other hand, Forth provides an extremely compact, efficient and extensible program-
ming environment. Our purpose was to design and implement a meta compiler for a user defined
language that would address the aforementioned difficulties. This environment provides a
mechanism for a programmer to create new language and data structures; building up Forth to
the application, rather than cutting the application down to suit Forth.

The meta compiler can also be used to generate new compilers, and also application
programs such as data base inquiry parsers. The data base primitives could be written using
standard Forth definitions and the function generated by the metacompiler would parse a request
as specified by the input language definition and call specific functions as a result of the input
language semantics. It is possible to write a pre-processor that accepts an input source, and
generates Forth engine code or the native code for the processor. Other applications-include the
enhancement of the existing Forth compiler; for example, with an infix to postfix expression
analyzer. The meta compiler could construct an “immediate” execution word that parses the
incoming definition and inserts the appropriate Forth function addresses into the dictionary.
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This article describes two approaches to implementing a meta compiler, one using Forth-79,
and the other meta compiler, Forth-83; the latter method utilizes more sophisticated
mechanisms. Both methods will accept a language definition written in Backus-Naur form. The
meta compiler will generate a new function, whose purpose is to accept a source input in the
given language and to execute the appropriate semantic actions associated with the given
constructs of the language.

The first method constructs a new Forth word which is the compiler that implements the
given language definition using a recursive descent technique.

The second method does not create a new Forth word as the compiler. It uses a common
parser and semantic interpreter combined with parser/semantic tables that together, implement
the compiler for a given language definition. In this case, the compiler kernel and the tables
contain the syntactic and semantic elements of the new language.

The two methods (based upon a recursive descent or table driven system) will accept the
source input and generate new Forth words as the semantics of the language definitions dictate.
The compiled programs are directly executed by the Forth engine without any further processing
by the Forth compiler.

Notation

In order to generate the new compiler, it is first necessary to describe the syntaxand semantics
of the language. This list of definitions is used by the meta compiler to create the target compiler.

The language is described by a set of production rules. A production rule is a definition of a
non-terminal symbol and is made up of a left-hand-part and right-hand-part. The left-hand-part
is the name of the non-terminal symbol and the right-hand-part consists of a series of terminal
and nonterminal symbols. -

The non-terminal symbol represents a phrase in the grammar (e.g., <STATEMENT>) and a
terminal symbol represents a single lexical entity typically returned by the lexical analyzer (e.g.,
IF). It may be helpful to consider the non- termmal symbol as a function and the terminal symbol
as an action within that function.

A non-terminal definition can contain several alternative right hand parts. Each alternative
is either a completely defined rule each with the same goal symbol, or one production rule with
each alternative separated by an “|”. As a simple example of parsing consider:

<ifstatement> ::= IF <condition> THEN <statement> |
IF <condition> THEN <statement>
ELSE <statement>
<statement> ::= EXIT | ADD
<condition> ::= NOT <condition> | ‘ZERO

This definition describes an <ifstatement> as a series of symbols starting with IF, followed
by some <condition>, a THEN, followed by another <statement>, and finally an optional ELSE
<statement>,

Given the previous definitions, consider the following language string:
IF NOT ZERO THEN ADD ELSE EXIT N

The leading lexical symbol IF indicates that it is necessary to parse an <ifstatement>and
that this requires that <condition>be considered. At this point we have:

i_F <condition> ...

A <condition> can be either of the lexical entities NOT or ZERO. The language string symbol
NOT indicates the use of the first alternative for <condition>. The parser accepts NOT and
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recursively calls for a parse of <cond it on>which results in the recognition of ZER0. At this point
the parser will unravel back to the initial call of <condition>and accept THEN. The next symbol
ADDis a <statement>. As the following symbolis ELSE the parse would continue with the alternate
path in which another <statement> is expected. The symbol EXIT satisfies the second statement
and the parse is complete.

BNF describes a rule with an indefinite number of like elements or phrases throu ¢h
recursion. The following set of rules describes the syntax of a <block>:

<hlock> s$:= BEGIN <declaration> <statelist>
<statelist> s:= 3 <statelist>

<statelist> t:= END

<statelist> s:= <statement> <statelist>

In the Forth-79 implementation, we augment the meta-grammar with support structures for
cyclic, optional and factored phrases however these are not supported in the Forth-83 implemen-
tation. The following example illustrates the use of these structures:

<block> ::= BEGIN <statement> $( ; <statement> ) END

A block structure is defined as starting with BEGIN, followed by one or more statements
separated by a semicolon, and finally END. The dollar sign ($) modifies the phrase delimited by
parenthesis so that it becomes a cyclic structure that repeats zero or more times. The specific
details and grammar of the language definition will be discussed later.

Parsing Techniques

The meta compilers accept the LL(1) [ATIO77] class of grammars. The Forth-79 implemen-
tation generates a predictive recursive descent parser [GRIE71] while the Forth- 83 version
implements an equivalent table driven parser.

The LL(1) class of parsers was chosen over the more powerful LR class primarily because
they can incorporate semantic constructions within the production rule between any two
components. LL(1) parsers chose the appropriate production rule based on the current state in
the parse as well as the incoming token. Once made, the choice cannot be undone (i.e., no
provision exists to backup and attempt another alternative). To allow backup would severely slow
the parse down but more importantly, create difficulties in “undoing” any semantic actions that
have been performed during the parse. Semantic actions represent the compile time actions of
the compiler. These compile time actions include code generation for the program being
compiled.

On the other hand, LR grammars [DERE7 1] do not choose the production rule until all of
its components have been completely parsed. Holding off the production decision to this stage
allows the parser to recognize a larger class of grammars and it allows LR grammars to be defined
in a more flexible manner; for example it eliminates the need to factor productions and also
permits left recursion. However, the semantic actions can only be executed at the end of any
production. Stratification techniques which break down a large rule into smaller rules, are used
to overcome this obstacle but result in a grammar that is less readable.

Further discussion of parsing techniques is beyond the scope of this article. The brief
introduction presented here is simple intended to explain why we restricted the meta-compilers
to the LL(1) class of grammars. . .

The Forth-79 Meta Compiler

The strategy of the Forth-79 meta compiler is to generate a word (or Forth definition) for
each non-terminal symbol of the language description. This word is responsible for parsing the
corresponding phrases and for execution of the requisite semantic actions.
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Figure 1. The META-79 version is a Forth program that, when loaded generates the META-79 compiler. Similarly,
input of the language definition to the META-79 compiler generates.the language compiler as another Forth
program. Finally, input to the Language Compiler of a source program written in the defined language generates the
User Program.

The interactions between the various elements are shown in Figure 1. The Forth source for
the meta compiler is loaded into the Forth-79 system to generate the meta compiler. The
BNF-like definitions are loaded by the meta compiler thus generating a language compiler as
another Forth definition or function. Then, in order to create the user program, a source program
written in the new language as defined by the previous definitions is parsed by the compiler. This
compiler executes actions as defined by the semantics of the language definition. It creates the
Forth function that implements the semantics of the user program.

An example of a language definition accepted by the META-79 compiler is shown in Figure 2.
The meta-language is a modified Backus-Naur notation. The meta compiler generates a recursive
descent compiler that constructs a new Forth word given a source program written in that
language. The meta compiler accepts near LL(1) grammars but does not check for LL(1)
conditions.

A language definition starts with the Forth word LANGUAGE. The name of the compiler is
defined after the word MAIN which is the last production of the language definition. The example
in Figure 2 creates a recursive descent compiler called SMALLALGOL; its production goal is
<STATE> (a statement). The goal symbol represents the eventual goal of the parser; once satisfied,
the parsing is considered complete. :

Each production definition starts with the symbol DEFINE whose first element is the non-ter-
minal being defined followed by its definition. The definition is composed of a list of alternative
phrases separated by the symbol “|”. Alternatives may be grouped within “()” symbols. If the
group list is preceded with a “$”, the group is repetitive. Each phrase is composed of terminals
(the reserved words of the language) and non-terminals.

The first production of Figure 2 defines a non-terminal <VALUE> which contains three
alternatives starting with <NUMBER>, <VARIABLE>, and “-” respectively. The last alternative
consists of a further list of alternatives that includes <NUMBER>, <VARIABLE> and <EMPTY>. The
non-terminals, <NUMBER> and <VARIABLE> have been predefined by the meta compiler. In most
compilers, these are handled by the lexical analyzer as it can perform this particular task more
efficiently than the parser.

The <EMPTY> serves to make the entire list of alternatives optional as the parse is satisfied in
all cases where an alternative is not selected.

The definition terminates with a “3” symbol. The compiler generator completes the current
definition and includes that non-terminal symbol in its symbol list. ‘ :

A terminal symbol is defined in the grammar by enclosing it in single quotes as illustrated
in the definition for <IF> by its terminal symbols IF, THEN, ENDIF and ELSE. During the parse,
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these terminal symbols are identified as string constants and string comparisons are performed
with the lexical entities of the source code.

LANGUAGE
DEFINE <VALUE> <NUMBER> {[ #~ [LITERAL] 1}
| <VARIABLE> {[ ID~, 1} { @ }
| *-* (  <NUMBER> {[ #~ MINUS [LITERAL] 1}
| <VARIABLE> {[ ID~, 1} { @ MINUS }
| <EMPTY>
) s
DEFINE <PRIMARY> <VALUE> | '(* <TERM> ')' ;
DEFINE <FACTOR> <PRIMARY> § ( '*' <PRIMARY> { * }
| '/' <PRIMARY> { / } ) ;
DEFINE <TERM> <FACTOR> $ ( '+' <FACTOR> { + }
| *-* <FACTOR> { -} ) ;
DEFINE <COND> <TERM> ( '=' <TERM> { =}
| '#' <TERM> { = 8=} ) ;
DEFINE <ASSIGN> <VARIABLE> {[ ID™ 1} ':=' <TERM> {I.1y{!'};
DEFINE <IF> 'IF' <COND> '"THEN' { @BRANCH } {[ HERE ]} { ABORT }

<STATE>
( "ENDIF' {[ HERE SWAP ! ]}
| "ELSE' { BRANCH } {[ HERE ]} { ABORT }
{[ SWAP HERE SWAP ! 1}
<STATE> {[ HERE SWAP ! ]}
"ENDIF®
) s
DEFINE <STATE> <ASSIGN> | <IF> | <BLOCK> ;
DEFINE <BLOCK> 'BEGIN' <STATE> $ ( ';' <STATE> ) 'END' ;
MAIN SMALLALGOL <STATE> ;

Figure 2. Definition for the META-79 Small-Algol Compiler. Terminals are enclosed in single quotes,
non-terminals in angle brackets, a subphrase in parens, alternative phrases are separated by a vertical bar. Words
enclosed by braces are runtime actions while ({[ 1}) enclose compile time actions.

The ability of a top-down parser to incorporate semantics into its syntax definitions
[KNUT?71], and the intuitive nature of top-down parsing, explains its popularity. Semantics in
this META compiler are written in native Forth code and surrounded by braces “{ }”. A number
of META words have been defined to support semantic construction such as described in Table 1.
There is nothing magical about these words; they are simply support definitions created along
with the meta compiler. Anyone is free to create new definitions or use existing Forth compiler
support functions such as BBRANCH to support the language compiler under development.

The definition of value illustrates semantic use and how its close relationship to syntax can
be exploited. The first alternative, ' ‘

DEFINE <VALUE> <NUMBER> {[ #~ [LITERAL] ]}

describes the semantic action when a numeric value is found in the source code. Theé first Forth
word, #” places the numeric value of <NUMBER> on to the stack. The second word, [LITERAL]
encodes the value on the top-of-stack into the program code being generated.

Figure 3 gives an example of the main compiler word generated by the META compiler (i.e.,
the output of the second stage in Figure 1) for SMALLALGOL.
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Symbol Explanation

{[ Start the beginning of a compile time block of semantic code. This code will be executed when a
parse is completed to this point in the sourse code. These actions are performed during the
compilation of the source code.

1} _End the semantic code block started by {[. The semantic code blocks are NOT recursive.

{ Start a block of run time semantic code. The words within these definitions are stored directly
into the user program currently being compiled and hence are only executed when the user
program is executed.

} End the block of run time semantic code.

I~ Place the address of the last found symbol onto the stack. This function is fypically used when
variables are found in the user program; for example in the use of the <VALUE>. When
<VARIABLE> is parsed, the semantic code will insert the <VARIABLE>s symbol table address onto
the stack where the Forth word “,” will insert it into the current user program definition.

Table 1. META-79 Semantics Construction Support Words.

The phrase GETOKEN MAKE creates a new word in the Forth dictionary and names the user
program. The code for a statement is parsed by calling the word generated by META called
<STATE>. On return, the status is checked and if <STATE> was successfully parsed, the semantic
code between the IF ... ENDIF is executed. Finally the definition for the user program is completed
with CLOSEDEF.

¢ SMALLALGOL GETOKEN MAKE
<STATE> ?STATUS
IF ENDIF
CLOSEDEF

Figure 3. Forth Code Generated for SMALLALGOL.

An example of a non-terminal symbol is shown in Figure 4. From the SMALLALGOL definition,
an <IF>phrase is

IF <COND> THEN <STATE> ENDIF
or
IF <COND> THEN <STATE> ELSE <STATE> ENDIF

The word definition generated by the META compiler for <IF> (see Figure 4) determines if
the user program starts with IF. This recognition is performed through the word SYMBOL in a
fashion similar to that of the standard Forth word ." (dot quote). If the input source does not
start with IF, a failure would be returned to the caller of this phrase, in this case, <STATE>;
otherwise it attempts to parse <COND>. If the phrase fails here however, 2CHKERR will print an
error message and stop the entire parse process. It is not sufficient to report an error to the caller
as there is no alternative to <COND> in the language definition of Figure 2 and therefore the input
source must be wrong. In not finding an IF keyword, it is necessary to report back to <STATE>
and let <STATE> determine what action to take as there may be an alternative to <IF>.

After a successful parse of <COND> and <STATE>, it expects cither an ENDIF or ELSE. If neither
is found it prints an error report and ends.

The code generated by <IF> for the program of Figure 5 is shown in Flgure 6. As the sample
input is parsed for <IF>, the compiler constructs code for the user program, DEMONSTRATE.
Following the <COND>, the first action is to insert a @BRANCH into the user program code (see
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Figure 4) and save this location so that the branch target can be resolved later in the parse as the
address cannot be determined until the first <STATE> has been constructed. Code following ENDIF
resolves this address so that the branch target follows <STATE>. The ELSE semantics are more
complicated in that the end of the first <STATE> contains an unconditional branch to the
instruction that follows the <IF> phrase. The target of the first branch is set to be the location of
the second <STATE>. The code generated by the program is shown in a stylized form by Figure 6.
This branch example relies heavily on the already existing support structure for the conventional
Forth branch words.

The Forth Meta-83 Compiler

A different system was developed under Forth-83 and Pascal. It was based on a table driven
LL(1) grammar. Tables containing syntax and semantic descriptions generated by a Pascal
program are fed to the Forth-83 based table driven syntax interpreter. The interpreter generates
a Forth executable program when given a input in the language defined by the tables. Figure 7
shows the interrelationships between the various phases of system.

s <IF>
SYMBOL IF ( Is the token an 'IF' Terminal?)
DROP ?STATUS ( Drop the Code Field Address and check result)
IF <COND> ?CHKERR ( Yes, Parse for <COND> and check result )
SYMBOL THEN ( Is the token a 'THEN' )
DROP ?CHKERR ( Check result, report an error if required )
INSERT @BRANCH ( Generate BRANCH if T0S=@ code )
HERE ( Store the BRANCH operand location )
INSERT ABORT ( Place an ABORT destination here temporarily )
<STATE> ?CHKERR ( Parse for <STATE> and report error )
SYMBOL ENDIF ( Is the token an 'ENDIF' )
DROP ?STATUS ( Drop CFA and check result )
IF HERE SWAP ! , ( Yes, resolve prev. branch operand )
ELSE
SYMBOL ELSE ( No, check for and 'ELSE' )
DROP ?STATUS ( Is it an ELSE ) '
IF INSERT @BRANCH ( Yes, Insert another @BRANCH )
HERE INSERT ABORT ( Save Tocation and set ABORT target)
SWAP HERE SWAP ! { Resolve the first branch to here )
<STATE> ?CHKERR { Parse <STATE> and report an error )
HERE SWAP ! ( Resolve the second branch to here )
SYMBOL ENDIF ( Check for and 'ENDIF' ) ,
DROP ?CHKERR ( And report and error if necessary)
ENDIF ( No 'ELSE' )
?2CHKERR ( Report any errors )
ENDIF
ENDIF

we

Figure 4. Forth Code Generated by META for the Non-Terminal <IF>

SMALLALGOL DEMONSTRATE
BEGIN v

IF A= @ THEN A := 1 ELSE A := @ ENDIF
END .

Figure 5. User Program for the SMALL-ALGOL Language.
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¢ DEMONSTRATE
AGg=1IF
1A!
ELSE
g A!
ENDIF

Figure 6. Stylized Forth Code Result of Compiling the User Program.

META ] META User / User ;
Forth-83 Tbl Load Execution | - Program Output

META Lang . Source User .
Pgm Tables Pgm Input

Pascal Table
Generator

Lang
Def”

Figure 7. META-83 Compiler Flow for a Table Driven Compiler:

The language description is fed to a Pascal based table generator that generates two language
tables: the parse syntax/semantics and (non)terminal symbols of the target language. After the
code for the META-83 system is loaded into the Forth engine, the META-83 system is instructed
to load the tables and initialize the various data structures required for compilation.

Unlike the META-79 system, META-83 does not create new Forth definitions that together
form the new target compiler. Instead the target compiler is simply the META-83 system
combined with the language unique tables already generated. The META-83 system can be used
for as many different languages as tables exist. It typically generates as part of its semantic
structure, the user program as a conventional Forth word that is executed as if the word where
defined in Forth source code.

An example language definition for a more complete Algolis given in Figure 8. Thislanguage
description is in a strict Backus-Naur Form. It must conform to LL(1) grammar restrictions; it
must be factorized, devoid of left recursion and the director symbol sets for each phrase must be
disjoint. The director symbol set represents those terminal symbols that can start a production
rule (or definition).

The language format consists of a series of production definitions separated by semicolons.
The language description ends with a period. A non-terminal may be defined by multiple rules
each representing an alternative. The definition may be empty but there cannot be any direct or
indirect left recursion within the grammar. A left recursion is a situation where the first item of
a production rule is the non-terminal being defined (direct recursion) or through other rules can
be the nonterminal being defined (indirect recursion). To do so would violate the precondition
that the director sets of all alternatives be disjoint and could lead to a state table with circular
definitions.



A User Definable Language Interface for Forth 23

The two special terminal symbols, IDENT and NUMBER are predefined. As in the META-79
system, these symbols represent the lexical entities <IDENTIFIER> and <NUMBER> respectively.

<PROGRAM> = IDENT { TOKEN DEF -1 BLOCK ! -1 LEXLEVEL ! }
<BLOCK> . { COMPILE UNNEST } H
<ID> = IDENT { LEXLEVEL @ TOKEN SEARCHIDLEX DUP
IF DUP NIL =

IF FATAL" ID NOT IN SCOPE" THEN
ELSE FATAL" UNDECLARED ID" THEN }

<VALUE> = <ID> { [COMPILE] LITERAL [ @VAR] }
<VALUE> = NUMBER { TOKENVAL @ [COMPILE] LITERAL } :
<PRIMARY> = <VALUE> :
<PRIMARY> = ( <TERM> ) :
<PRIMTAIL> = * <PRIMARY> { [ * ] }<PRIMTAIL> :
<PRIMTAIL> = / <PRIMARY> { [ / ] }<PRIMTAIL> :
<PRIMTAIL> = :
<FACTOR> = <PRIMARY> <PRIMTAIL> :
<FACTAIL> = :
<FACTAIL> = + <FACTOR> { [ + ] } <FACTAIL> :
<FACTAIL> = - <FACTOR> { [ - ] } <FACTAIL> ;.
<TERM> = <FACTOR> <FACTAIL> :
<DECLARATION> = IDENTIFIER <DECLIST> :
<DECLARATION> = :
<DECLIST> = IDENT { TOKEN ENTERID } <NEXTDEC> :
<NEXTDEC> = , <DECLIST> 3
<NEXTDEC> = ' :
<BLOCK> = BEGIN { 1 LEXLEVEL +! 1 BLOCK +! } <DECLARATION>
<STATELIST> :
<STATELIST> = s <STATELIST> :
<STATELIST> = END { LEXLEVEL @ 1- LEXLEVEL ! } :
<STATELIST> = <STATEMENT> <STATELIST> :
<STATEMENT> = <BLOCK> :
<STATEMENT> = <ASSIGN> :
<STATEMENT> = <IF> s
<STATEMENT> = EXIT :
<STATEMENT> = OUTPUT <TERM> { [ CR . ] } :
<STATEMENT> = FOR <ID> =
<TERM> { DUP [COMPILE] LITERAL [ !VAR ] }
TO { HERE }
<TERM> { SWAP DUP [COMPILE] LITERAL
[ @VAR >= ?BRANCH ] HERE & , '}
DO ‘
<STATEMENT> { SWAP DUP [COMPILE] LITERAL
[ @VAR 1 + ] [COMPILE] LITERAL
[ 'VAR-BRANCH ] SWAP , HERE SWAP ! };
<ASSIGN> = <ID> = <TERM> { [COMPILE] LITERAL [ IVAR ] }:
<IF> = IF <COND> THEN
{ COMPILE ?BRANCH HERE ., } <STATEMENT> <ELSEPART>;
<ELSEPART> = ELSE { COMPILE BRANCH HERE @ , SWAP HERE SWAP ! }
<STATEMENT> { HERE SWAP ! } :
<ELSEPART> = { HERE SWAP ! } 3
<COND> = <TERM> '= <TERM> { [ =] } : .

Figure 8. Language definition used to generate the tables used by the META-83 compiler.
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Meta symbols such as “=” can be part of the language when they are preceded by a single quote.
The semantic descriptions containing the Forth-83 words required to implement the language,
are enclosed in braces, (“{” and “}”) and are executed when the structure associated with it is
parsed. Within the semantic description, code within brackets (“[” and “]”) is inserted into the
program being generated.

Table Formats

The META-83 parser uses two tables generated by a Pascal program. The first table contains
the keywords or reserved words of the language to direct the lexical analyzer. The analyzer built
into the meta system returns unique values for each of these tokens when they are found in the
input as defined by the table. '

An <IDENTIFIER>is predefined by the lexical analyzer, however its semantic actions are the
responsibility of the semantic constructions within the language definition. It is possible for one
language to interpret identifiers within a FORTRAN:-like flat scope structure, or a ALGOL-like
static block structure, or a LISP-like dynamic structure. Thus, the semantic actions must define
symbol table structure and construction, search techniques, access techniques, data-storage
mechanisms and so on. Of course, these semantic actions could be predefined Forth definitions
that are simply called upon by the semantic analyzer at compiler time.

Parsing Action Table

A parsing action table is read by the META-83 system in order to direct the syntax and
semantic actions. It is composed of mode lines followed by semantic actions each consisting of a
mode, production number, its action fields and a director list.

The mode field describes the contents of the other fields. There are four modes:

¢ “3”, End of Parsing Table.

¢ “2”_ Definition for non-terminal whose index entry is in fields. A third field, fields is a flag

that defines error actions, e.g., 2 8 8. This defines non-terminal referenced as “0” with no
error actions. ‘

¢ “1”. Defines the beginning of a production rule for the non-terminal and the actions for the
first grammar symbol of this alternative. It contains the three action entries for the grammar
symbol (either terminal or nonterminal) of field, in fields through fields. These fields are
followed by a list of director symbols. The special value 255 signifies the end of the director
list: By definition, the director list references only terminal symbols. A non-terminal may
have many definitions representing alternative production rules. The director list and the
current input symbol in the source language select the appropriate production rule during
a parse. The rule may.also contain semantic actions that are to be taken whenever the current
grammar symbol is recognized and parsed.

¢ “0”. Defines the action for the next grammar symbol (field2) within the alternative
production. This contains the same information as the previous mode selector. This item is
place in order of occurrence within the production definition and is essentially the same as
mode 1 but does not begin a new production rule.

The entry field, in modes 0 and 1 can represent either a unique terminal or non-terminal
grammatical symbol. The interpretation depends on the action fields. For instance the action
STACK or JUMP can only apply to non-terminals. The action ACCEPT applies only to terminal
symbols. ' ,

Consider the production rules for <PRIMTAIL>. Its unique non-terminal representation is 6
as seen in Figure 9. The relevant production rules are:
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<PRIMTAIL> ::
<PRIMTAIL> ::=
<PRIMTAIL> ::

= *<PRIMARY> <PRIMTAIL>
/<PRIMARY> <PRIMTAIL>

An example parse table is illustrated in Table 2.

Directors

Mode Symbol Action Semantics | Code
Define <PRIMTAIL> No Error 2649
Alternative * Accept * 152559885 255
Action <PRIMAR> CALL [*] ;SEM | @ 4 @ 255 255
Action <PRIMTAIL> JUMP 960 255 0
Alternative / Accept / 16 255806 255
Action <PRIMARY> CALL [/]1 ;SEM @ 4 g 255 255
" Action <PRIMTAIL> JUMP , ' 96825580
Alternative € ' Accept ) + - END = 12300080647 811
TO DO THEN ELSE 13 17 18 19 21 22 255

Table 2. A portion of the parse table for the language defined in figure 8.

The three action fields represent the functions ACCEPT, JUMP and STACK respectively. An
ACCEPT action applies to terminal symbols. The parser will ACCEPT the current input symbol if it
is the same as the given symbol in field,. On a successful match, the next input token is read in.
Otherwise an error message is printed and it may attempt to synchronize to a synchronization
symbol if the table defines the error action code. The JUMP and STACK action only apply to
non-terminal symbols. If a phrase needs to be parsed, the JUMP field is set and when called as a
subroutine, the STACK field is also set. This supports an efficient implementation of tail recursive
parsing. The last non-terminal symbol of a production rule does not have to stackits return parse
location so long as semantics do not follow the action.

TERMINALS

IDENT
NUMBER

[ N S =

IDENTIFIER

*

BEGIN
END
EXIT
OUTPUT
FOR

TO
DO
IF

THEN
ELSE

WOoONMTNHELWNEFE®

Non-TERMINALS
PROGRAM 2
BLOCK 1
B ¢ 2
VALUE 3
PRIMARY 4
TERM 5
PRIMTAIL 6
FACTOR 7
FACTAIL 8
DECLARATION 9
DECLIST 19
NEXTDEC 1
STATELIST 12
STATEMENT 13
ASSIGN 14
IF 15
COND 16

ELSEPART

Figure 9. Parser Values for Terminal and Non-Terminal Grammatical Symbols.
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A list of director symbols is given for each alternative entry. They is used by the parser to
identify the proper production rule given the current input token. If none of the alternatives
contain a director symbol that matches the current token, an error is flagged.

An empty production rule has a special value, in this case 230, encoded into field,. If any of
the director symbols for the rule is found as an input token, they will be accepted, but the input
token is retained.

‘Semantics

Semantics are defined in the native code of the parser support system, here, Forth-83.
However, the code is not in the form of a Forth definition but rather as a segment of a Forth
definition. Whenever a symbol has been correctly parsed, the semantic actions that follow the
production symbol are executed. These actions may be symbol table management, code genera-
tion of the user program, code management (such as forward address resolution) and so on.

An example is shown for the FOR statement of Figure 8. Given the source in Figure 10, having
parsed the phrase <ID>, the semantic code will place the identifier’s address onto the semantic
stack after searching the symbol table. The phrase <TERM> will generate code that evaluates a
term into the user program. The identifier address is duplicated and placed into the user program
as a LITERAL along with !VAR. The address duplication is necessary for future use of <ID>. To this
point we have generated the following code:

1A!VAR

Following the second <TERM>and its code generation, the address of the identifier is compiled
into the code along with @VAR >= ?BRANCH #. The @ is placed as a temporary position holder for
the GBRANCH target address. A HERE instruction is used to save this location for later resolution.

Finally, after <STATEMENT> and its code is generated, the final identifier increment code
A GVARL + A !VAR

is generated. Another branch instruction is inserted so that the process will branch to the start
of the loop retained by the initial HERE instruction. The first branch address is resolved so that
its target follows the FOR loop.

The Block Environment

As previously alluded to, the mechanism of identifier storage is left up to the discretion of
the language designer. It is not necessary 1o use the standard Forth dictionary scheme; instead it

GENERATE TEST
BEGIN
IDENTIFIER A;
FOR A = 1 TO 3+4 DO OUTPUT A;

OUTPUT A
END
SEE TEST
¢ TEST (LIT) 1 (LIT) 28998 !VAR ( Initialize A )
(LIT) 3 (LIT) 4 + ( Calculate Timit )
(LIT) 28998 @VAR >= ( A >= 1imit? )
?BRANCH 32 ( Yes, branch over code )
(LIT) 28998 GVAR (R . ( No, print value )
(LIT) 28998 GVAR 1 + (LIT) 28998 !VAR ( Increment A )
BRANCH -50 ( Branch to 1imit check )
(LIT) 28998 GVAR CR . ; ( Print final value of A )

Figure 10. Source Program and User Code Produced by the META-83 Compiler.
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is possible to design other access mechanisms. In the META-79 version, identifier access was
merely an extension of the Forth dictionary and no measures were take to create new access
mechanisms. Here we define a new structure that implements a more sophisticated form for the
purposes of illustration.

The identifier “A” is not in the program as a Forth word but instead it is an address of a
descriptor block. In this illustration, a simple nested environment structure has been constructed
in Forth to closely mimic that of ALGOL. This set of definitions includes symbol table main-
tenance, variable access, and environment maintenance.

This environment generates descriptors for each occurrence of a variable in the program
along with a list of values that it can take (for the purposes of recursion). Separate variables have
a common symbol table entry that points to this list of descriptors. The general format is shown
in Figure 11. '

Symbol Entry for A Block List Value List
ID NAME: A . A NEXTBLOCK - A A NEXTVALUE
A PREVSYMBOL / A VALUELIST = . VALUE
VAR INTERPRETER RECLEVEL: ¢ REC LEVEL:
A BLOCKLIST 7 BLOCK NUMBER: 2
LEX LEVEL:

A CURRENT VALUE

S (| >

[

Figure 11. META-83 AL.GOL Environment Block structure.

‘The compiler, when given a variable, will search the symbol table for the given name and
return the correct descriptor based on a lexical analysis. The example in Figure 12 generates the
block structure of Figure 11. The position pointed to by the arrow would allocate a value block
at run time and insert itself into the value list for block 2, lexical level 1. If it had not been found
at the current lexical level, the search would have continued at the next lower level. If 4 were
referenced in the second block (lexical level 1), the search would find 4 in the parent block at
lexical level 0. This block address would be inserted into the code generated for this program.

Discussion

These meta compiler systems offer significant advantages over hand coded techniques of
Forth compiler extension. They automate the construction of the parser system, leaving the
programmer to define the syntax of the language in a well known notation (BNF) and its
semantics. Forth provides a strong environment to implement these semantics. In particular, the
Forth compiler functions are available for the semantic descriptions and the stack provides a
simple mechanism to implement nested structures such as expressions and declarations of block
structured languages.



28 The Journal of Forth Application and Research Volume 6 Number 1

BEGIN
IDENTI A;
BEGIN
END
BEGIN
IDENTI A;
A =13 -
END
END

Figure 12. META-83 ALGOL Language Block Environment. This structure permits resolution of a unique object
within the scope environment.

Possible Applications and Extensions

The Forth-79 implementation provides a very simple way to implement extensions to the
Forth compiler. For example, we have defined a Forth immediate word, “{” (a Forth word, not
a lexical entity), whose purpose is to implement an infix arithmetic phrase compiler that can be
used within a conventional Forth definition, e.g.,

: DEMONSTRATE {A+B/C} .
This generates a definition equivalent to:
: DEMONSTRATEA@B@C@/ + . 3

This could be extended to construct ALGOLs FOR statements and so on using the simple
BNF like notation and semantic structures provided by the meta-compiler.

The techniques described here are not limited to compiler applications. It is possible to
generate a high-level language to machine code compiler (as opposed to the Forth engine code).
Instead of the semantics generating Forth code structures, it could produce binary structures or,
in a manner similar to the UNIX PCC compiler, assembler code. The system could also act as a
pre-processor, similar to that to the UNIX CPP preprocessor system. The pre-processed code
would then be processed by say, the Forth compiler. Simple front end application languages are
easily implemented using this mechanism. For instance, a data base application whose primitive
functions are written in conventional Forth code could implement the user input interpreter with
the meta compiler. The language would describe the acceptable forms of data base commands
and its semantics could describe the appropriate functions that would be invoked for these
commands.

~The META-83 implementation does not create new Forth functions that act as compilers,
but accepts tables with a common compiler kernel instead. This system is more flexible as many
tables can reside within the Forth vocabulary and improvements can be made to the table
generator independent of the kernel system.

A problem arose in the construction of the META-83 implementation. Specifically, the
vocabulary structure based on the stack is not a suitable environment for the simultaneous
generation of definitions. In our case, an allocation of vocabulary space was set aside for the
symbol table entries that were generated while the program was also being generated. If the
allocation proves inadequate, the only recourse is to abort the compilation. The META-79
implementation did not handle variable or constant declarations but left that to the programmer
to create beforehand. Of course it could have been extended to include such capabilities and the
same problem would have arisen.
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Lexical Analysis

The lexical analysis used by Forth using the function WORD delimits the lexical entities of the
language with “white-space.” Many languages use separators other than spaces or new-lines. For
instance, the ALGOL system uses special characters to delimit the keywords or operators in the
language. To complete this system, a new function similar to WORD should be constructed. Ideally
this system would accept a variety of different analyzers similar to that of LEX [SCHRS85]
[JOHN78].

Pascal?

The Meta-83 implementation relied on data structures generated by an external program
written in Pascal. We did this as we felt that Pascal was better suited than Forth to the generation
of our data structures. Forth provides an extremely extensible environment; Pascal supports
complex data structures that lend themselves well to the purposes of recursive structure analysis
using lists and non-homogeneous data sets. While this could have been duplicated in Forth, we
did not feel it necessary to pursue this option. However, having completed the first phase of the
metacompiler, it seems that an appropriate test of its power would be to implement some of the
more useful Pascal facilities into the basic Forth engine and then perform a port of the table
generation code to this system.

MLL

This work was targeted toward the implementation of a new engine MLL (Multiple Level
Language) whose internal structure was based upon list structures rather.than stacks. Yet it
implemented the simplicity of the internal Forth engine (i.c., threaded code with multiple
interpreters). It was our intention to learn from our experience with Forth and the meta- compiler
in order to generate a new language system where a number of interpreters were defined and
operating upon a single data structure (the list) just as Forth operates on stacks for both its data
structures and word definitions. We have been successful in constructing a simple prototype of
this engine.

Source Code

The source code for the META-79 implementation is given in Appendix A. The META-83
implementation (including the Pascal program) can be obtained by writing to the authors at the
above address or via email to:

“FS300022@sol.yorku.ca”
or
“tyler@stpl.ists.ca”.
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Appendix A. Forth-79 Meta Compiler Implementation

( Define a type SYMTABLE )
( Builds a SNUM sized table. The table is referenced with an )
( index. If it is -1, it adds to the next available location )

( otherwise it obtains the address of the given entry )
s SYMTABLE <BUILDS

(SE) DUP + 34 + DUP , ( SET B/SYM )
(S B/SYM) * g D0 g C, LOOP ( @ TABLE )
(SEA) DOES>  SWAP >R ( SAVE ENTRY )
(SA) DUP @ SWAP 2 + ( GET B/SYM )
(S B/SYMA') ROT 1 - ( ADJUST ROW )
( B/SYM A' S-1) ROT * + ( INDEX ROW )
(A'") R> DUP @< ( INDEX COLUMN ‘)
( A" E E=07 ) IF DROP ( RETURN NAME A)

ELSE

(AIIE)

( A" +{E-1}*2+34 )

VYW WR W
NN

50

15 :
SNUM SENTRY
' USE CFA @
't CFA @

' ABORT CFA

VARIABLE
VARIABLE
ARRAY

ARRAY

VARIABLE
VARIABLE
CONSTANT
CONSTANT
SYMTABLE
CONSTANT
CONSTANT
CONSTANT

DUP IF 1- DUP + 34 + + ( RETURN ENT )
ELSE DROP 32 + ( RETURN #ENT )
ENDIF
ENDIF ;

ARRAY <BUILDS ALLOT DOES> ;

VAL ( Current token value )
OLDVAL ( 01d token value )
TOKEN ( Current token string )
OLDTOKEN ( 01d token string )

UNT® ( Unit for a forward ref. )
SWITCH

SNUM ( Number of entrys )

SENTRY ( Size of an entry )

FTABLE ( Create the table )

DOVAR ( Save address of key interpreters )
DocoL

DOABORT

ENTERNAME ( NAMEADD SNUMBER — ) -1 FTABLE 32 CMOVE ;
ENTERVAL ( VALUE SNUMBER - )

DUP @ FTABLE DUP DUP ( GET # ENTRIES )
@ 1+ SWAP ! @

FTABLE !

3 ( PLACE THE NEW VALUE )

GETNAME  ( NAMEADD SNUMBER ~ ) -1 FTABLE SWAP 32 CMOVE ;
GETVAL { SNUMBER SENT — VALUE ) FTABLE @ ;
GETENTRIES ( SNUMBER — NUM ENTRIES ) & FTABLE @ ;
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VARIABLE FLAG
String Compare )

L? ) UNTIL SWAP DROP ; ( FORGET THE NAME ADDRESS )
CE SYMBOL & VALUE INTO TABLE )

o
bt b b b S~ 0 B b e e

g

(

: COMPARE ( A B — ? | ?:=0 UNSUCCESSFUL; =1 SUCCESSFUL )
(AB) 1 FLAG ! ( SET COMPARE FLAG TRUE)
(AB) DUP C@ 1+ @ ( SET DO LIMITS )
(ABH®) DO

(AB) OVER OVER ( CcoPY TOS, TOS-1 )
(ABAB) I+Ce ( GET BYTE 1 )
(ABAB') SWAP T + C@ ( GET BYTE 2 )
(ABB'A") = FLAG @ AND FLAG ! ( FLAG:=B'=A'=FLAG )
(AB) LooP

(AB) DROP DROP FLAG @ ( DROP ADDRESSES AND )
(7) ; , ( RETURN COMPARE FLAG )
( SEARCH FOR NAME IN FORWARD TABLE )

: SEARCH ( N-I | I:<@ ABS{I}= EMPTY ENTRY;=¢ EOT;>Z FOUND @ I)
(N) 1 ( START AT ENTRY 1 IN TABLE)
(NI) BEGIN

(NT) OVER OVER -1 FTABLE ( ADDRESS ITH SYM NAME )
(NINS) COMPARE ( ARE THE TWO NAMES EQIV )
(NI ?) IF 1 ( YES..EXIT LOOP )
(NI) ELSE DUP SNUM @ = ( IS THIS THE LAST ENTRY? )
(NI I=SNUM) IFDROPG1 ( YES..RETURN EOT. FLAG )
(NT) ELSE DUP -1 FTABLE C@ ( IS THIS AN EMPTY NAME)
(NI?) IF 1+ @ ( NO..INCR INDEX AND LOOP )
(NI) ELSE MINUS 1 ( YES..RETURN -I AS FREE )
(NIL?) ENDIF

(NIL?) ENDIF

(NIL?) ENDIF

(N

(p

: FORWARD ( VALUE - )

(v OLDTOKEN SEARCH ( LOOK UP TOKEN NAME )
(V1) -bup :

(V1) IF DUP @< ( IF PARTIAL SUCCESS )
(VII<e) IF MINUS DUP ( IF NOT FOUND I=FREE ")
(VIiI) OLDTOKEN SWAP ENTERNAME  ( STORE NAME )
(V1) ENDIF

(V1) ENTERVAL . = - ( AND ALWAYS STORE VAL )

ELSE DROP ." FORWARD TABLE FULL" CR QUIT -
ENDIF ;
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( RESOLVE the symbol table value )

: RESOLVE ( - )

SNUM 1+ 1 ( FOR ALL NAMES )
(H1) DO I GETENTRIES -DUP ( GET ENTRY/NAME )
(EE) IF TOKEN I GETNAME ( COPY NAME INTO TOKEN )
(E) TOKEN CONTEXT @ @ (FIND) ( & DO A LOOKUP )
(EPFAL ?) IF DROP CFA ( IT'S FOUND, GET CFA )
( ECFA) ELSE DOABORT
( ECFA) TOKEN COUNT TYPE ."™ - NOT FOUND" CR
( ECFA) ENDIF
( ECFA) I ROT 1+ 1 { RESOLVE EACH ENTRY )
(CFAIE+1 1) DO OVER OVER I GETVAL ! ( RESOLVE ADDRESS)
(CFAI) LOOP DROP DROP { CLEAR UP THE STACK )
() ELSE LEAVE ( NO MORE ENTRIES )

ENDIF

LoopP
s ?CHKERR SWITCH @ &= IF ." ERROR IN SYNTAX AT: "

TOKEN COUNT TYPE CR QUIT ENDIF ;
¢ SELF LATEST PFA CFA » 3 IMMEDIATE ( Recursion )
: INSERT R>DUP 2 + >R @ , ; ( Insert the next symbol in defn )
+ SET 1 SWITCH ! ( No error )
¢ RESET @ SWITCH ! ; ( Error )
¢ NEXTBLK 1 BLK +! @ IN ! ; ( Read in the next block )

( Get the next token from the input stream )
¢ GETOKEN TOKEN  OLDTOKEN 32 CMOVE
BEGIN 32 WORD HERE 1+ ce
IF 7]
ELSE BLK @
IF NEXTBLK
ELSE QUERY CR
ENDIF, 1
ENDIF
WHILE
REPEAT HERE TOKEN 32 CMOVE H
( Is it a digit? )
¢ NUM pup 47 > SWAP 58 <
AND H
( Is it a letter? )
¢ LETTER 95 AND pup 64 > SWAP
91 < AND H
( Is it a letter or digit? )
¢ LETNUM pup LETTER SWAP NUM OR H
s SETSWITCH pup SWITCH !
IF GETOKEN ENDIF H
¢ ?STATUS SWITCH @ = H

( Insert a branch on true condition )

¢ BRANCHTRUE INSERT ?STATUS INSERT @BRANCH ;

( Insert a branch on false condition )

¢ BRANCHFALSE INSERT 7?STATUS INSERT @= INSERT @BRANCH :
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( Predefined non-term <VARIABLE>, looks a variable up in the vocabulary )

s <VARIABLE> TOKEN  DUP 1+ ce LETTER
IF 1 SWAP COUNT @
DO pup I + co
LETNUM ROT AND SWAP
LOOP DROP

IF TOKEN CONTEXT @ @ (FIND)
IF DROP CFA @
DOVAR =
ELSE TOKEN COUNT TYPE ."™ NOT FOUND" @
ENDIF v
ELSE @
ENDIF
ELSE DROP @
ENDIF  SETSWITCH ;

( Lookup a non-terminal )

: NONTERMINAL TOKEN 1+ ce 69 =
IF TOKEN  COUNT 1 - + ce
62 =
IF TOKEN CONTEXT @ @ (FIND)
IF DROP CFA 1
ELSE 9 -1
ENDIF
ELSE [
ENDIF
ELSE %)
ENDIF  DUP IF GETOKEN ENDIF ;
( Construct a <NUMBER> )
: <NUMBER> a. TOKEN
(NUMBER) ce - BL -
IF DROP DROP %] .
ELSE DROP VAL pup @ OLDVAL ! ! 1
ENDIF
SETSWITCH H
( An empty production )
: <EMPTY> SET 3
( Print an error message )
: ?ERR SWAP
IF DROP 1
ELSE- CR " ILLEGAL SYNTAX:"
." FOUND AT:" TOKEN COUNT TYPE
QUIT

ENDIF 3
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( Support function that matches an input token with the )
( String that follows this entry in the program definition )

0 o, we

.o = os

(
(
(
(
(
(
(

(SYMBOL)
TOKEN R COUNT + R> SWAP
>R DypP ce 1+ 1 SWAP O
DO ROT ROT
OVER OVER .
I + ce SWAP
I + ce =
: >R ROT R> AND
LOOP
ROT ROT DROP DROP
bDuP SETSWITCH 3
SYMBOL
COMPILE (SYMBOL)
32 WORD HERE ce 1+ ALLOT
IMMEDIATE
Obtain a string )
STRING
TOKEN 1+ ce 39 =
IF TOKEN COUNT 1 - + ce
39 = IF 1
ELSE %]
ENDIF
ELSE ]
ENDIF
DUP IF GETOKEN ENDIF
Predefined non-terminal for <STRING> )
<STRING> STRING DUP SWITCH !
CPYSTG OLDTOKEN ce 2 - c,
OLDTOKEN COUNT 1 - DUP 1 -
IF 1 :
: DO bup I + C@ ¢C,
LOOP
DROP
ENDIF H
TSTSTG INSERT (SYMBOL)
CPYSTG
INSERT DROP H
}s

Build semantic code into the current non-terminal definition )

{

R>
A) BEGIN DUP DUP
AAA)
A A CFA=} )  @= WHILE
AR) e , 2+
A) REPEAT
AA) DROP 2 + >R

Insert a Titeral constant )

[LITERAL] INSERT

LIT ,

( =) ( INSERTS CODE WORDS BETWEEN { AND } INTO WORD )

( OBTAIN 1ST ADD PAST })

@[ '} CFA ] LITERAL =

( WHILE NOT } DO )
( INSERT CODE INTO WORD)
( AND MOVE PAST IT )
( RESTORE PAST THE } )
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Insert a double sized literal )
[DLITERAL] SWAP [LITERAL] [LITERAL]

Insert a function or number into the definition )
TRANSLATE ( — ?:=@ NUMBER; <> & CFA )
TOKEN CONTEXT @ @ (FIND)
IF DROP CFA DUP R
ELSE = TOKEN NUMBER DPL 0 1+
IF [DLITERAL]
ELSE DROP [LITERAL]
ENDIF '
[}
ENDIF H

1} 5
Place the token value onto the stack )
#” VAL @
Place the code field address onto the stack )
I~ OLDTOKEN CONTEXT @ @ {FIND)
IF DROP CFA ]
ELSE ." IDENTIFIER:" OLDTOKEN COUNT TYPE
." NOT DEFINED" CR
DOABORT
ENDIF

( Store the definition into the compiler for execution at compile time )
PERFORM ( — ? | :=9 NUMBER :<>@ WORD )
BEGIN
TRANSLATE DUP
IF [ ' 1} CFA ] LITERAL =
ENDIF
GETOKEN
UNTIL
1 H
Store the semantics into the compiler for inclusion into the )
user program at compile time )
STORE (- ? | :=@ ERROR; :=-1 }; :=1 0.K. )
INSERT {
BEGIN
TRANSLATE DUP
IF [ "} CFA ] LITERAL =
ENDIF
GETOKEN
UNTIL :
1 . s .
( Store the semantics in the definition for execution at compile time )
¢ SEMANTICS

ey e

oo 00 e te = o0

o0~

SYMBOL {

IF STORE 2 ?ERR

ELSE symBoL {[ X
IF PERFORM .3 ?ERR
ELSE ]
ENDIF

ENDIF
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Parse a UNIT of a definition, including a cyclic structure ) -
UNIT NONTERMINAL -DUP
IF -1 = IF HERE FORWARD ENDIF , 1
ELSE STRING
IF TSTSTG 1
ELSE SYMBOL $
IF HERE SELF DROP BRANCHTRUE , INSERT SET 1
ELSE SYMBOL (
IF [ HERE UNT' ! ] SELF 4 ?ERR DROP
SYMBOL ) 5 ?ERR

(

ELSE &
ENDIF
ENDIF
ENDIF
ENDIF ;
( Parse a section of the alternative )
¢ SUBPHRASE UNIT IF INSERT 7?CHKERR 1
ELSE SEMANTICS
ENDIF
( Parse an alternative )
¢ PHRASE UNIT IF BRANCHFALSE HERE @ ,
BEGIN  SUBPHRASE
WHILE
REPEAT
HERE SWAP !
1
ELSE SEMANTICS
’ ENDIF
( Parse a definition )
¢ EXP  PHRASE IF SYMBOL |
IF BRANCHTRUE HERE
g , SELF 6 ?ERR DROP
HERE SWAP = !
ENDIF
1
ELSE a
ENDIF

EXP CFA UNT' @ ! ( Forward reference to EXP resolved )
Enter a word into the vocabulary )

o .~

MAKE CURRENT @ CONTEXT !
HERE - CONTEXT @ @ (FIND)
IF DROP NFA ID. 4 MESSAGE SPACE THEN

HERE DUP C@ WIDTH MIN 1+ ALLOT
DUP 128 TOGGLE HERE 1 - 128 TOGGLE
LATEST , CURRENT @ ! HERE 2+ ,
DOCOL LATEST PFA CFA ! GETOKEN ;

( Complete the word definition )

¢ CLOSEDEF [ ' 3SCFA] LITERAL , ;

: INITIALIZE 1 -1 FTABLE ( SET UP START ADDRESS )
(A) SNUM SENTRY DUP +

(AS E*2) 34 +* g

(AB @) DO DUP I + @ SWAP C! LOOP DROP ;
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( Define a non-terminal )
: DEFINE MAKE EXP CLOSEDEF DROP ;

( Define the main compiler )
¢ MAIN MAKE

INSERT GETOKEN
INSERT MAKE

EXP
INSERT CLOSEDEF
CLOSEDEF
DROP ;
( Define a language )
¢ LANGUAGE INITIALIZE GETOKEN
BEGIN
SYMBOL DEFINE
IF DEFINE GETOKEN &
ELSE SYMBOL MAIN
IF MAIN 1
ELSE ." ILLEGAL KEYWORD" 1
ENDIF
ENDIF

UNTIL RESOLVE ;



