Marsaglia Revisited:
Rapid Generation of Fitted Random Numbers

Ferren Maclntyre

Graduate School of Oceanography
University of Rhode Island
Narragansert RI 02881 USA

Abstract

Source code is given for a fast hex-integer version of Marsaglia’s well-known method for
converting uniformly distributed pseudorandom numbers into any desired distribution.

A useful tool for developing programs which process complicated numerical data is a test
datasethaving properties similar to the real data. One way to obtain such a testset is by generating
pseudorandom (henceforth, simply “random”) numbers with the same distribution Y as the data.
But a typical random-number generator (RNG) produces a flat distribution U/ of numbers u; in
which all histogram bins are equally filled, within statistical fluctuations. Y can be easily found
from U only if it has an inverse, so that one can solvey; = Y~1(1;), and even this may involve slow
operations such as floating point or scaling. A Gaussian distribution can be obtained from
uniform pairs at the cost of a log, square-root, sine, and cosine calculation for each pair [BOX58].
Anything more complex requires special techniques.

Let p: be the point probabilities of a discrete random variable Y. [VONNS51] suggested the
. obvious method of generating Y by testing each number u; and incrementing ¥’s i-th bin yiif

pir+p2+ .. +pi-1<ui<pr+pr+..+pj €))]
but this is slow because it requires order of 7/ comparisons for each number, where n is the
number of bins.

Marsaglia’s approach [MARS62] requires a single comparison most of the time, and never
more than k — 1 comparisons, where k is the number of significant digits needed to describe the
distribution. According to its most accessible source ([ABRA65], p. 951), Marsaglia is “the best
all-around method for generating random deviates from a discrete distribution,” but they give
only a floating-point decimal version of the algorithm. Here we present a hexadecimal integer
version, better adapted for rapid use on microcomputers.

We follow the notation, argument, and binomial-distribution example, of [ABRA65]. For an
n-member distribution, let the probability of the i-th bin p; be expressed by the k hexadecimal
digits d as

pi=dudydsids ... dk,i=1,2,3,...,n
where k will ordinarily be 4 in a 16-bit environment and 8 in a 32-bit environment. The
representation of p; may be truncated by setting any number of the di; s to O from the right, but
it is a rare distribution which needs more than 4 significant figures.

Journal of Forth Application and Research Volume 6, Number 1

39

40 The Journal of Forth Application and Research Volume 6 Number 1

Define

n
Pr=Y djforr=12,...,k
j=1

S5 .
[Is=D10""*Pfors=1,2,..,k
r=1
Since these are obscure abstractions, we illustrate with the binomial example used in [ABRA65],
first in decimal integer so that the numbers, except for the decimal point, are identical to those
in [ABRAG5], and then in hexadecimal integer. Suppose the normalized binomial distribution
of Table 1 is required:

Xj pi

dec hex
0 3277 54A9
1 4096 8204
2 2048 . 2503
3 0512 0426
4 0064 0021
5 0003 0008
Sum 10000 OFFEFF

Table 1. Binomial distribution in decimal and hexadecimal.

To illustrate the meaning of the parameters defined above, we turn this format on its side in
Table 2: ‘

Value of random variable P, >Pr 107" kPr Ir 100~ kEPr 107~ kEPr ~TI-
r 0 1 2 3 4 5 - ’
1 3 4 2 0 0 0 9000 9000 9 9 9 0
2 2 0 0 5 0 0 0700 9700 7 16 97 81
3 7 9 4 1 6 0 0270 9970 27 43 997 954
4 7 6 8 2 4 3 0030 10000 30 73 1000 9920
1 5 8 2 0 0 0 FOO0 F000 F F F 0
2 4 2 5 4 0 0 0F00 FF00 F 1E FF El
3 A 0 0 2 2 0 00EQ FFEO E 2C FFE FD2
4 9 4 3 6 1 8 001F FFFF 1F 4B FFFF FFB4
Computed by: 4pis 4pis 4sigs d4sigs
Stored as: m.comp m.off

Table 2. Random integer distributions in decimal and hexadecimal format, and their associated parameters.

Py is the sum of the row digits, in unaltered magnitude. ¥ Py simply sums Pr row by row.
107~ P, shifts these digits to the right, and [T, sums them by rows. 10" ~ k >Pris ¥ Prsimilarly
shifted right, and 10"~ k > Pr —]]r is the difference of these last two, which when subtracted
from the processed random number, reduces it to an index into the table described below. The
bold entries are calculated and used by the program shown in Listing 1.

Next, create an array a{m} of at least Size = [[x — 1 locations, which we will call a
“marsaglian table.” Fill it from the outlined hex portion of Table 1: five Os, eight 1s, two 2s, four
0Os, two 1s, five 2s, four 3s, etc. The desired distribution will be drawn from this table. Memory
dumps of the decimal and hexadecimal versions of a{m} look like:

Marsaglian Rapid Generation of Fitted Random Numbers 41

0600011112 2 0033333
00000O0OO01 11111111
22 223444 4 4400000
00111111 222222722
33 44445°5 5
00000111 11111220
6 00112 22 22333300
00 0O0O0O0OO0OCD 33440000
00000111 122 23333
33455555 555

Now generate uniform random numbers u; with digits
u; = diid2; d3jd4i,
and test each number u; against P;. Then — the crux of the operation — if

s~1 s
zPiSui<2Pi
i=1 i=1

chose the value in memory location
{didz ...ds + s — 10" “¥ P, }.
In terms of our example, this last decision appears in decimal as:
IfO0<u<9000 put y=ads

9000 < u < 9700 y = adydy — 81

9700 < u < 9970 y = adidads — 954
9970 < u < 10000 y = adidadads — 9927

and in hex as:
KO=<u<F000 put y=ad

F000 < u < FE00 y = adidz — E1
FEQ0 < u < FFEQ y = adidyds — FD2
FFEO < u < FFFF y = adidadads — FFB4

Thus 15 times out of 16, only the first comparison and one bit-shift are required.

As a cautionary note, marsaglian extraction makes extreme demands of the uniformity of
the underlying RNG. The reason can be seen by noting the difference between the frequency of
a number in the distribution itself, and in the marsaglian table from which will be drawn. Thus,
4 appears oftener than S in the binomial distribution (64:3), yet more rarely in the table (3:8), a
20-fold difference in ratios. Thus any flaw in the RNG which biases the manner in which it selects
from the table may be greatly amplified. Caveat utor!

As an example of a common distribution which has no inverse, imagine a need to test (or
perplex) a cryptographic-analysis program, where the starting point is the letter-frequency
distribution of English text. The approximate distribution is given in 1etters in Block 6 of the
source code below. The space is included as an alphabetic character (in the sequence : space zy
X ... ¢ b a count) to approximate the average word length of English (4.5 letters), but it may be
removed if the count at the end of Tetters is also reduced to 1A. Random text drawn from this
distribution has the single-letter frequency count of English, as seen in Fig. 1, and differentiating
it from a transposition cipher might be difficult. If encrypted by simple substitution, it could be
distinguished from a meaningful text only by digraph (letter-pair) and higher-order correlations.

The point is not that we have made an inadequate attempt to produce literature with a
monkey at a marsaglian typewriter. (The most coherent thing this version produces are oc-
casional sequences like “seamd base,” “taste near,” “digtle sails,” and “sleet and.” If you are after
“words” that sound more like English, one approach that yields a greater harvest with less effort

42 The Journal of Forth Application and Research Volume 6 Number 1

.table
! aeot abbhccccdddddddddeeeeeeeeeffffggggghhhhhhhihhhhhhhiiidiiiii

uvwwwwwyyy aabbbbbbbbcccccdddddddddddeeeeffffffghhhiijjkkkkkkkkk
k11111111 Tmnnnnannnnnno000000000000PPPPPPPRPRPPPYqTYrrrsssssstitt
tttunuuuuUUUUUUUUUVVVVVVVVVVVVVVWRWWWXXYYYYYYYYYYYYYYYZZZZ a

kkkkk11T1T1T1111T1mmmmummmmmmmmmnnnnnnnnnooooooooooqqdqqqqqyqaqqqrrr
rrrrrrrrssssstttttttttttttvvvvvwwwxxxxxxxyzzzzzzzz
flat.text
emxoghzbyjhcjjuybl obl aysqovrrlzdvdjbevyuplmkifepkoobqlppvhlbf
usugrnafadyepebl1fujepicymzxyfu oligk kgxosefanthbfhuxyj 1puzhnc
efbjcs vsb omwg yaasekrfeyrkfhgxkatinca rbpcdznoqfewcyvmhluppyz
itjmbzbvjyfeevhurmqoyqhwf bfmgs vnakjbbikyvmnsxhbfm ytfvfmzxggox
ygrrevckowocdoufezgqjchtnhaxxdedes itusvtnwzwvlkumgudenttxmusymcu
ouzepkdymcinnhqqenasixfxj hmvdofilgb kvwnctvvwdbxexhktqjznkprurr
xhgzprdikxvxvaylqyfunrcrl mdlpyicyyawuuljdklmch ihjl1pzj anpzrzfo
hvobsctgqvauvunkyol ipxtnygvcqmlinkfdi tarvqbdjgwgdhlgepjbnuq ggl
shape.text
o nrinedao asnseeoataohci e eu o dhat g tuaebmheid aat emnlpec
acamdsaso th a hta ha st ht p toetdtprnleea ckaw t dhho oseee
nb seaelr heot tcwvhift ddtu nautthia aor agc et oseor oe o drm
hyed b roe ia sht t hcb vaan dakmdh e oobndncho acomdkete fkod
h o latka dshel a ao shnhstccedn eawcahm a n oep tnetdnleh co
rhfn codntp 1t tm aah e y ait szona oocaawsfhw cooee itg rh
t alaedg ehot mttt tteatihheht dcowaich vgdoethooesd faoawpor
oat nihise a mdbas eetet 1 m ataa sn kteebo hthhno ca eou r

Fig. 1 Random distribution of letters. Top: the array from which mafsaglian extraction is made.
Center: Random text with a uniform distribution of letters. Bottorn: Random text with the
normal English letter distribution.

than a complete 27x27 digraph frequency table is to include the phonetic digraphs — ng, th, wh,
sh, etc. — as alphabetic characters.)

The point is that any chosen distribution can be used by writing a single word like Tetters.
Thave been known to draw samples for homework assignments from random distributions: the
answers are all supposed to come out the same (e.g, 42), but the questions are sufficiently
different to keep students honest.

Source Code

The code, for good but irrelevant reasons, is written in National Instrument’s IBCL, a dialect
of Jim Callahan’s HS/Forth™ V2.1, once compatible with Forth-79, but considerably reworked
and cast in silicon. It differentiates typographic case, but all of its own vocabulary is in lower case.
It lacks quans or other multiple-cfa structures, so I use constants with ' instead of littering the
code with @ from variables (storing being rarer than using). Constants, like German nouns, begin
with a capital letter.

Its * is the old state-smart tick which always does the same thing (from the user’s point of
view), does not require thinking about, is easy to test, and takes up less room on the line than its
idiot child in Forth 83.

Non-standard words in the source code include the defining words array and carray (no
apology: I didn’t leave them out of the Standard!), which want a size on the stack at compilation

Marsaglian Rapid Generation of Fitted Random Numbers 43

and an index at execution. dump (address count -») dumps count bytes of memory from address.
It may help in reading the assembler code to know that TOS is always in register bx for fastest
access. 0! and 1+! (address -) zero and increment address, respectively. execute@ and 10/ are
simply optimized versions of @ execute and 10 /.

The dialectlost its case statement somewhere, so I make do with arrays holding the execution
address (' <name> cfa) of the suite of choices. This provides a choice of operators selected by an
index value — adequate for present needs — with nearly no overhead cost.

Block 1 sets up the requisite storage (but beware of overrunning the arrays with longer
distributions!), and some debugging words to print out various intermediates. If random numbers
larger than FF are needed, ran,tab (which is the a{m} mentioned above) must be an array
instead of a carray.

Block 2 extracts single digits from 4-digit hex numbers and either leaves them in place or
moves them far right. This could all be done with masks and division in high level.

Block 3 sets up vectored execution of the words on Block 2, and adds a general right-shift-
digit utility.

4pis and 4sigs on Block 4 calclulate the various functions described above, while !tahle
fills the table from which the random numbers will be drawn. !offset , which calls 4pis and
4sigs, also puts a minimum value for the size of ran.tab into Size.

Block 5 shows one way around the RNG problem. The dialect having lost its own RNG, I
had to build one. Since both high- and low-order bits of a linear congruent RNG are nonrandom,
these are discarded. To extend the range, two independent RNGs are added together. I make no
claims about this one except that it works better than some 30 related attempts. An RNG must
be at least this good to work with marsaglian extraction: If you have a better RNG, by all means
use it, or better yet, send me a copy.

shaper on Block 6 does the real work, taking a random number and converting it into a table
entry. The rest of the block, except form. setup, is utilitywords. h.binomial m.setup reproduces
the binomial example from [ABRAG65]. .text emits an ASCII character instead of a number.
.table prints the marsaglian table, which for illustrative purposes only we show with the letters
which it will later produce. The possibly curious nature of the printing words comes from using
a Macintosh™, which knows nothing about columns or tabs, as a front end to a National
Instrument’s MacBus™ (over a SCSIlink with Creative Solutions/Pixelwerk’s BusTalk ™) running
an NEC V50™ (IBM-AT™/80286™ clone) which is actually doing the work — all this, again, for
good but irrelevant reasons.

Acknowledgement

This research was supported by a grant from A/S Pixelwerks Ltd, which is gratefully
acknowledged.
References

[ABRAG65] Abramowitz, M and Stegun, LA., 1965. Handbook of Mathematical Functions.
(Dover, NY).

[BOX58] Box, G.E.P, and Muller, M.E,, 1958. A note on the generation of random normal
deviates. Ann. Math. Inst. 10:610.

[MARS62] Marsaglia, G., 1962. Random variables and computers. Proc. 3rd Prog. Conf. on
Probability Theory. Also Math. Note #260, Boeing Scientific Res. Labs.

[VONNS1] VonNeumann,J., 1951. Various techniques used in conjunction with random digits,
Monte Carlo method. Nat. Bur. Stds, (US) Appl. Math. Series 12:36.

44 The Journal of Forth Application and Research Volume 6 - Number 1

Ferren Maclntyre, a high-school dropout with an eventual PhD in Physical Chemistry from MIT,
was a research professor of Chemical Oceanography at the time this article was written. Finding the
“Peer Review” process - on which salary and research money depended —to be an operational
oxymoron’”, he is now active in Forth-and-Macintosh-based image analysis with Imaging Norway,
Postboks 1008, Bergen, N-5001 Norway. The pay is no better, but time is better spent now and the
aggravation level is a whole lot lower.

*That is a polite way of saying that the number of peers (who understand his intentionally obscure
specialty) is very small, and reviews seldom went to them.

Listing 1. Source code for Marsaglian random numbers.
(1.Constants, arrays, examples, printers) : it ; (940188 FM)

100 array dist (4-digit table of the random distribution)
4 array m.offs (Index-corrections) _
4 array m.comp (Table of comparison values)

800 carray ran.tab (Table from which random #s are drawn)
@ constant Cnt (# of entries in distribution)

@ constant Indx (Running index into random table)

@ constant Size (Minumum size for ran.tab)

: h.binomial hex 3 40 200 809 19008 CCD 6

: ldist dup ' Cnt ! @ do i dist ! Toop ;

: Jdist @ dist 40 dump ;

s Joff 4 9§ do i m.offs @ 5 u.r loop ;

: .comp 4 9 do i m.comp @ 5 u.r loop ;

: %cr (i cnt -> | cr every cnt entries) mod not if cr then ;

(2.Digit extraction) (049188 FM)
{ Move digit to right: 1234 -> 1, 2, 3, 4)
code rd4 (dld2d3d4 -> d4) bx @80F iw and. end-code
code rd3 (dld2d3d4 -> d3) bx @6FF iw and. cx 4 iw mov.
ax bx xchg. ax 4 shr. ax bx xchg. end-code
code rd2 (dld2d3d4 -> d2) bx OFGF iw and. cx 8 iw mov.
ax bx xchg. ax 8 shr. ax bx xchg. end-code
code rdl (dld2d3d4 -> d1) bx F9@8 iw and. cx OC iw mov.
ax bx xchg. ax @C shr. ax bx xchg. end-code

{ Leave digit in place: 1234 - 1000, 2008, 30, 4)

code od3 (dld2d3d4 -> @9@d3@) bx @PFF iw and. end-code
code od2 (dld2d3d4 -> @9d2@@) bx OFP0 iw and. end-code
code odl (dld2d3d4 -> d100@) bx FO9@ iw and. end-code

(3.Execution vectors. r.shift (949188 FM)
create rs.vec ' rdl cfa , ' rd2 cfa , ' rd3 cfa , ' rd4 cfa ,
create ns.vec. ' odl cfa , ' 0od2 cfa , ' od3 cfa , ' rd4 cfa ,
(Instant death to execute from outside the range, so enforce)
: digit.extract (dddd i-> ...000di)

@ max 3 min 2* rs.vec + execute@ ;
: digit.isolate (dddd i-> ..@dig..)

@ max 3 min 2* ns.vec + execute@ ;

code [r.shift] (n.-> n/18) cx 4 iw mov. ax bx xchg.
ax 4 shr, ax bx xchg. end-code

: r.shift (n i -> n/16%*i)
dup if 8 do [r.shift] loop else drop then ;

Marsaglian Rapid Generation of Fitted Random Numbers

(4.Calculate and ! m.offs, m.comp, marsaglian table 940188 FM)
tdpis (>)0 40do o
Cnt @ do i dist @ j digit.extract + loop + dup dup 5 u.r
negate i m.offs ! loop ' Size ! ;
4sigs (->) 6 40 do @
Cnt @ do i dist @ j digit.isolate + loop + dup dup 5 u.r
dup i m.comp !
swap 3 i - r.shift i m.offs +! Toop drop ;
loffset 4pis cr 4sigs cr .off cr ;
it (n ->) Indx ran.tab c! ' Indx 1+! ;

ttable ' Indx 8! 4 @ do (over the digits)
Cnt @ do (over the distribution)
i dist @ j digit.extract (# of locations to fill)
?dup if @ do j !it Toop then (Skip loop on 8 & Tims)
Toop Toop ;
(5.Inelegant random-number generator) (B4g188 FM)
9A constant Mull 1417 constant Seel
A7 constant Mul2 25A3 constant See2

rndml (n -> random# <= n)

Seel Mull * 5 + dup 2/ ' Seel ! swap

?dup if mod then abs ;
: rndm2 (n -> random# <= n)

See2 Mul2 * dup 2/ ' See2 ! swap

?dup if mod then abs ;

.rnl 100 @ do i 10 ?cr 8600 rndml 5 u.r loop
.rn2 100 @ do i 19 ?cr 2 rndm2 5 u.r loop
.ran 100 @ do i 10 ?cr 8006 rndml 2 rndm2 8000 * +

2 rndm2 + 5 u.r loop ;

m.random 8008 rndml 2 rndm2 8008 * + 2 rndm2 + ;

r.test 86 # do m.random dup rdl i 8 ?cr 5 u.r 5 u.r loop ;

(6.Text sampler) (940188 FM)
¢ shaper dup 4 m.comp @ u< if rdi else
dup 1 m.comp @ u< if 2 r.shift 1 m.offs @ - else
dup 2 m.comp @ u< if 1 r.shift 2 m.offs @ - else
3 m.offs @ -
then then then ran.tab c@ ;
.text i' 40 ?cr 61 + dup 7b = if drop space else emit then ;
.table Indx @ do i ran.tab c@ .text Toop cr ;
flat.text 208 1 do 360 m.random 20 / .text loop cr ;
shaped.text 200 1 do m.random shaper .text loop cr ;
m.setup (dist cnt ->) ldist loffset !table ;
letters 315C 48 3F1 27 553 1E5 5F@ 147D B65 B4B 2D 2Dg 1@DA
EB9 51E 79A 1AA 20 D29 E38 518 46D 1946 9B4 45A 381 1129 1B
letters m.setup

