Data Structures for Scientific Forth Programming

J.V. Noble
Department of Physics
University of Virginia
Charlottesville, VA 22901

Abstract

This article describes methods for defining typed data (REAL, COMPLEX, REATL*S,
COMPLEX*16, etc.), and for defining scalars and 1- and 2-dimensional arrays of such data. Also
a method is given for run-time binding of data types that automates mixed-mode arithmetic,
thereby incorporating one of FORTRAN’s best features.

1. Introduction

Data structures are the soul of any computer program in any language. Some languages, most
notably FORTRAN and BASIC, pre-define some data structures but require extensive contor-
tions to define others. This straitjacket approach has virtues as well as defects:

e The pre-defined structures are what most users need to solve standard problems, so meet
80-90% of the cases in practice. That is, they are not terribly restrictive.

* Because the most-needed structures are predefined and have a standard format, they do not
have to be invented each time a program is written. Standardization facilitates the exchange
and portability of programs.

e Standardization of data structures also facilitates the modularization of program
development, and enables subroutines written by different persons or teams to interface
properly with minimal tuning.

Forth pre-defines a minimal set of data structures but permits unlimited definition of new
structures. How is this different from PASCAL, ADA or even C? Forth not only permits extension
- of the set of data structures, it permits definition of new operators on them. Thus, e. g., Forth
permits simple implementation of complex arithmetic,

This article proposes protocols for arrays and typed data that will increase the portability of
code and encourage the exchange of scientific programs. The keys to this are generic operations
that recognize the data type of a scalar or array variable at run-time and act appropriately.

2. Typed data structures

One of the virtues of FORTRAN or BASIC is that the programmer does not have to keep
track of what type of data he is fetching and storing from memory. In fact, the user does not even
have to program such operations explicitly-the compiler takes care of everything including the
bookkeeping. Compiling mixed-arithmetic expressions such as ~

= —372E-17*CEXP(CMPLX(R**2,W)/32)/DSIN(W)

requires a great deal from a compiler. The compiler must tabulate the types of the variables and
literals in the expression, and then decide which run-time routines to insert. With two types of
integers and four types of floating-point numbers (REAL*4, REAL*8, COMPLEX*8 and

Journal of Forth Application and Research Volume 6, Number 1

47

48 The Journal of Forth Application and Research Volume 6 Number 1

COMPLEX¥*16) a typical binary operator such as exponentiation (**) offers 36 possibilities.
No wonder FORTRAN compilers are slow.

Forth sacrifices automation, opting for a small, fast, flexible compiler. The traditional Forth
style gives each type of data its own operators. However, if a program demands all the standard
REAL*4, REAL*8, COMPLEX*8 and COMPLEX*16 data types (not to mention IN-
TEGER*2 and *4), having to remember them all and use them appropriately is a chore. This
problem has led me to experiment with generic access operators, 6@ and G!. These let Forth keep
track of which words to use in fetching and storing the “scientific” data types to the floating point
stack (the fstack often resides on a co-processor like the iapx87 or MC68881 chips). Similarly,
generic unary and binary floating point operators GDUP, G*, etc. keep programs general. At the
suggestion of one of the referees of an earlier version of this paper, I have lately further modified
the scheme to permit more complete automation. The kernel of the method is an “intelligent”
Jstack, or ifstack, that records the type of each number on it. The generic arithmetic operators
and library functions decide from the information on the ifstack how to treat their operands.

An ifstack-based scheme for floating point and complex arithmetic has drawbacks and
advantages. A major drawback is the run-time overhead in maintaining the ifstack, and in
choosing the appropriate operator for a given situation. In other words we trade convenience for
a nonnegligible execution speed penalty. To some extent this can be mitigated by computing
decisions and by vectoring rather than branching (i.e. no Eaker CASE statements or
IF..ELSE..THEN’s). Moreovet, although the definitions are given in high-level Forth-79 for por-
tability, the key words should be hand-coded for the target machine. Again, my definitions have
plenty of error checking that could be dispensed with were speed an issue.

The chief advantages of the ifstack are:

¢ Unlike FORTRAN, this scheme permits generic routines that will accept several types of
input. Hence, e.g., a matrix inversion routine will happily invert REAL, DREAL,
COMPLEX and DCOMPLEX matrices.

o A FORTRAN - Forth translator [1] becomes very simple using generic operators.
o The ifstack permits recursive programming a la LISP.

2.1. Type descriptors

To decide at run-time which @ or ! to use for a particular datum, Forth needs to know what
type of datum it is. The scheme described here wastes a little memory by attaching to each variable
a label that tells G@ and G! how to get hold of it.

Here is how we label types:
\ Data type identifiers

CONSTANT REAL \ 4 bytes long
CONSTANT DREAL \ 8 bytes long
CONSTANT COMPLEX \ 8 hytes Tong
CONSTANT DCOMPLEX \ 16 bytes long

LN W

\ a simple version of #BYTES

CREATE <#bytes> 4 C, 8 C, 8 C, 16 C,

¢ #BYTES (type — #hytes) <#hytes> + (@ ;
2.2. Typed scalars

We want to have the machine remember for us the data-specific fetches and stores to the
co-processor. To accomplish this, the typed variable has to place its address and type on the stack.

Data Structures for Scientific Forth Programming 49

Thus we need a data structure that we might visualize diagramatically in Fig. 1 below (in such
figures a cell | represents 2 bytes):

start of data

—

«+s ™ to higher memory

Fig. 1. Structure of a typed scalar

We implement a scalar through the defining word

: SCALAR (type —~) CREATE DUP , #BYTES ALLOT
DOES> DUP@ SWAP 2+ SWAP ; (— adr t)

2.3. Defimng several scalars at once

One aspect of the Forth method of handling vanables that seems strange to programmers
familiar with Pascal, BASIC or FORTRAN is that VARIABLE, CONSTANT or a new defining word
like SCALAR need to be repeated for each one defined, as above. That is, such defining words
generally do not accept name-lists.

This idiosyncracy is not mere caprice, but follows from Forth’s abhorrence of variables. Easily
read (and maintained) Forth code consists of short definitions with few (generally <4) numbers
on the stack. Such programs have small use for variables, especially since the top of the return
stack can serve as a Jocal variable.

In Forth as in BASIC, variables tend to be global and hence corruptible. The variables in a
large program can have un-mnemonic names or names that do not express their meaning simply
because we run out of names. Experienced Forth applications programmers therefore tend to
reserve named variables for such special purposes as vectoring execution. The standard Forth
kernel discourages named variables by making them as tedious as possible.

Most objections to variables can be resolved by making them local. Local variables are
relatively easy to define in Forth: a straightforward but cumbersome method for making “header-
less” words is given in Kelly’s and Spies’s book [2].

HS/FORTH [3] provides beheading in a particularly simple form:
BEHEAD' NAME , or BEHEAD" NAME1 NAME2 .

Used after NAME has been invoked in the words that need to reference it, BEHEAD' removes
NAME's dictionary entry leaving pointers and code fields intact and recovering the unused
dictionary space. The more powerful word BEHEAD" does the same for the range of dictionary
entries NAMEL .. NAME2, inclusive.

Beheadmg variable or constant names makes them local to the definitions that use them;
they cannot be further accessed — or corrupted — by later definitions. [Pountain [4] has given
another method for making variables local, using a syntax derived from “object-oriented”
languages such as SMALLTALK.]

Variables are essential for scientific programming. Since we must often have more than two
variables, it is silly to repeat SCALAR. A simple way to allow SCALAR to use a list is

: SCALARS SWAP @ DO DUP SCALAR LOOP DROP ;
\ Ex:

\ 2 REAL SCALARS A B

A\ 5 COMPLEX SCALARS XA XB XC XD XE

50 The Journal of Forth Application and Research Volume 6 Number 1

1find the use of SCALARs with modifiers and lists more convenient and readable than many
repetitions of SCALAR. Its resemblance to FORTRAN (thereby helping me live with my
FORTRAN:-inspired habits) is pure coincidence. Although possible to use a terminator (", e.g.)
rather than a count (to define the variable list) I feel it is desirable for the programmer to know
how many variable names he has supplied, hence the counted version.

2.4. Generic access

A major theme of Forth is to replace decisions by calculation whenever possible [5]. This
philosophy usually pays dividends in execution speed and brevity of code.

But there is an even more important reason to avoid IF..THEN decisions, especially when
working with modern microprocessors. Chips like iapx86 and MC680x0 achieve their speed in
part by pre-fetching instructions and storing them in a queue in high speed on-chip cache
memory. A conditional-branch machine instruction (the crux of IF..THEN) empties the queue
whenever the branch is taken. Branches should be avoided because they slow execution far more
than one might expect based on their clock-counts alone.

To replace decisions, we use the standard Forth technique of the execution array (analogous
to the familiar assembly language jump table). This lets us compute from the type descriptor which
fetch or store to use.

We now define G@ and G! as execution arrays using [6] an execution-array-defining word G:

: G: CREATE] DOES> OVER + + @ EXECUTE ;3 (t -)

G: G@ R320 R64@ X@ DXe ;

G: G! R32! Re4! X! DX! ;
assembled from components of the Forth compiler. For example, the ordinary colon might have
the high-level definition (shorn of error detection)

: : CREATE] DOES> @ EXECUTE ;

CREATE makes the new dictionary entry, and] switches to compile mode. DOES> specifies the
run-time action (recall any word created by CREATE leaves its parameter ficld address on the
stack at run-time, in addition to the other actions following DOES>): in the case of ¢ it is to fetch
the pfa of the new word and execute it. In the case of G: twice the type descriptor is added to
the pfa, to get the offset into the execution array, before fetching and EXECUTEing,.

Microprocessors like the MC680x0 and iap386 that can address large, level memories require
no further elaboration for G@ and G!. However, if large arrays are to be addressed within the
segmented memory addressing scheme of the 8086/80286 chips, we would have to define 6@ and
G! to use the “far” forms of addressing words. (For example, in HS/FORTH such words as R320L
expect a segment paragraph number and offset (32 bits total) as the complete address of the
variable being fetched to the 8087 stack.) In that case we modify the definition of SCALAR to
include the segment paragraph number (seg) in the definition (LISTS. is nonstandard-it is
HS/FORTH’s word to identify the portion of the dictionary containing the headers)

: SCALAR (t =) CREATE DUP , \ make header, type
#BYTES ALLOT \ reserve space
DOES> >R [LISTS @] LITERAL (- seg) .
R@ 2+ (— seg off) R> @ 3 (- seg off type)

\ Ex: REAL SCALAR X

2.5. The intelligent fstack

The ifstack is a more complex data structure than a simple fstack or the parameter and/or
return stacks. When a typed datum is placed on the ifstack its type must be placed there also. But

Data Structures for Scientific Forth Programming 51

the typed data have varying lengths, from 4 to 16 bytes. Two alternatives present themselves:
either ALLOT enough memory to hold a stack of the longest type, making each position on the
ifstack 18 bytes wide; or manage the ifstack as a modified heap, with the address of a given datum
being computable from the ifstack-pointer and the data type. A slight modification of the latter
scheme with run-time speed advantages is to maintain a stack of pointers into the heap parallel
to the type-stack. The 18-byte wide ifstack is extremely wasteful of memory, albeit easy to
implement. (In retrospect, this is exactly the method I used to program adaptive numerical
quadrature [7].) After several false attempts I settled on the last-described technique. The high
level Forth code for the ifstack is given below. The stack comments and comments should make
the code self-explanatory.

\ TYPED DATA STACK MANAGER COPYRIGHT NOBLEHOUSE 1989
TASK FSTACKS

FIND X@ ©@= ?(FLOAD C:\HSFORTH\COMPLEX.FTH)

@ CONSTANT REAL \ define data-type tokens
1 CONSTANT DREAL

2 CONSTANT COMPLEX

3 CONSTANT DCOMPLEX

CREATE <#bytes> 4 C, 8C, 8C, 16 C,
: #BYTES <#bytes> + (@ ; (type — length in bytes)

: SCALAR (type -) CREATE DUP , #BYTES ALLOT
DOES> DUP@ SWAP 2+ SWAP ; (— adr type)
¢ SCALARS SWAP @ DO DUP SCALAR LOOP DROP ;

\ definitions for the parallel stack of types and addresses
\ with thanks to L. Brodie, Thinking FORTH (Brady, NY, 1984) p. 207.

CREATE TSTACK 82 ALLOT \ 2 tos-pointer, 26 4-byte cells
HERE CONSTANT TSTACK>
TS.INIT TSTACK 2+ TSTACK ! g TS.INIT
?T.OVFLW (adr — adr or abort) DUP TSTACK> =
IF ." TSTACK OVERFLOW" TS.INIT ABORT THEN
> (adr t ~) 4 TSTACK +! TSTACK @ ?T.OVFLW D! ;
T.TYPE! TSTACK @ 2+ ! ;
T.UFLOW (adr =) DUPR 2- »>=
IF ." EMPTY TSTACK" TS.INIT ABORT THEN
Te (-adrt) TSTACK @ D@ ;
T.DROP TSTACK ?T.UFLOW -4 TSTACK +!
T (-adrt) T@ T.DROP
TSWAP T> T> DSWAP >T »>T

52 The Journal of Forth Application and Research Volume 6 Number 1

\ definitions for a multi-type fstack

CREATE FHEAP 80 8 * ALLOT
RERE CONSTANT FHEAP>

: FS.INIT TS.INIT FHEAP @ TSTACK 2+ D! s FS.INIT

FS.ABORT FS.INIT ABORT ;

?FS.OVFIW - (fsp — fsp | abort on overflow) DUP FHEAP> =
IF ." FSTACK OVERFLOW" FS.ABORT THEN

>FS (adr[x] t[x] = :: —x)

DUP TS.TYPE! \ put type on tstack
#BYTES (— src #bytes)
T@ DROP (- src #bytes old.fsp)
DDUP + ?FS.OVFLW (— adr #bytes old.fsp new.fsp)
g >T SHWAP (— src dest n)
CMOVE \ put number on fstack
:Fs$> (adrt-) T.ROP T@ (-t fspt')
ROT OVER <> \ check that dest has same type

IF ." ATTEMPT TO STORE TO WRONG DATA TYPE"™ FS.ABORT THEN
#BYTES (— dest src n) ROT SWAP- (— src dest n) CMOVE ;
FS.DUMP TSTACK ?T.UFLOW TSTACK @ TSTACK 2+
DO I D@ pup
BEGIN-CASE @ CASE-OF CR . R32@ F. ELSE
1 CASE-OF CR . R64@ F. ELSE
2 CASE-OF CR . Xe@ X. ELSE
3 CASE-OF CR . DXe X. ELSE
DDROP ABORT" BAD DATA TYPE" END-CASE
4 +L0OP
DCOMPLEX SCALAR TEMPO
DCOMPLEX SCALAR TEMPL
¢+ 'TYPE TSTACK DUP ?T.UFLOW @ 2- @
¢ FS.SWAP ‘TYPE [' TEMP@] LITERAL
'TYPE [' TEMP1] LITERAL
TEMP@ >FS TEMPL >FS ;

\ execution-array defining word

(HS/FORTH has the faster CASE:..;CASE pair for the same job)

: G: CREATE] DOES> OVER + + @ EXECUTE ; (t-)

G: G@ R32@0 R640 X@ DXe ;

G: G! R32! R64! X! DX! ;

\ move data from ifstack to/from FPU

: FS>F (~t::x-) T.DROP T@ UNDER G@ ;

: F>FS (t-::-x) TS.TYPE! Te DDUP G!
(- old.fsp t) #BYTES + { — new.fsp) ?FS.OVFLW (-new.fsp)
a>T1T

TEMPS FS>
TEMPG FS>

Data Structures for Scientific Forth Programming 53

2.6. Unary and binary generic operat(irs

We want to define generic unary and binary operators whose run-time action selects the
desired operation using information contained in the ifsfack. A unary operator such as FNEGATE
or FEXP expects one argument and leaves one result. With a floating-point coprocessor (FPU)
the only distinction is between real or complex. This distinction is contained in the second bit of
the type label, which we exhibit below in binary notation:

Type 16-bit Representation
REAL 00000000 00000000
DREAL 00000000 00000001
COMPLEX 00000000 00000010
DCOMPLEX 00000000 00000011

and can be extracted via the code fragment
(type — 0 = real | 2 = complex) 2 AND
Most unary operators produce results of the same type as their argument. Thus we write

¢ GU: CREATE] DOES> (- pfa)

FS>F (— pfa t) UNDER 2 AND + @ EXECUTE F>FS ;

When we use GU: in the form

GU: GNEGATE FNEGATE XNEGATE ; v
CREATE produces a dictionary entry for GNEGATE;] turns on the compiler so the previously
defined words FNEGATE and XNEGATE have their addresses compiled into GNEGATE’S parameter
ficld; and DOES> attaches the run-time code. The run-time code converts the real/complex bit
into an offset, 0 or 2 which is added to the address of the daughter word to get the address where
the pointer to the actual code is stored. This pointer is fetched and EXECUTEd.

A few unary operators like XABS (complex absolute value) return real values from complex
arguments. If we want to use GU: to define, say, GABS, we must remember to redefine XABS so it
zeros the second bit of the type descriptor left on the stack, before returning its result to the
ifstack. This is just a 1 AND so is fast.

A binary operator (one that takes two arguments) expects its arguments and their types on
the ifstack. There is no distinction between singleand double-precision arithmetic on most
numeric coprocessors. However, the result must leave the proper type-label on the stack. Here
is what we want to happen, illustrated in Fig. 2 as a matrix TYPE(arg a, arg b) (these assignments
were chosen to avoid assigning misleading precision to the result of a computation):

a\b R D X VDX
R R R X X

TYPEs, D R D X DX
X X X X X

DX X DX X DX

Fig. 2. Matrix of types resulting from 2-argument arithmetic operations

54 The Journal of Forth Application and Research Volume 6 Number 1

If we think of the indices and entries in this matrix as numbers 0, 1, 2,3 (so we can use them
as indices into a table) rather than as letters, a simple algorithm emerges: the first bit of the result
is the logical-AND of the first bits, and the second bit of the result is the logical-OR of the second
bits of the operands. Although we would program this in assembler for speed, the high-level
definition is

¢ NEW.TYPE (a b - az+h2+albl)
DDUP (-abab)
AND (-ab ab)
1 AND (-ab [ab]l)
-ROT OR (- [ab]l a+h)
2 AND (- [ab]l [a+b]2)
+ 3 (- a2+h2+albl)

Since only logical operations are used, NEW.TYPE is much faster than table lookup or
branching. Note that in programming this key word we have obeyed the central Forth precept:
“Keep it simple!” by choosing a data structure (the numeric type tokens 0 - 3) that is easily
manipulated.

We will also need a way to select the appropriate operator from a jump table of addresses.
Given that the precision (internal) is irrelevant, again all that matters is whether the number is
real or complex, i.e. the second bits of the numbers. The first operation must then be to divide
by 2 (right-shift by one bit). We thenhave the matrix of Fig. 3 below where RR stands for real-real,
etc. The numerical elements are generated as 2*J+1. This leads to the word

: WHICH.OP (ab—c) 2/ SWAP 2 AND + ;

0 1 ' 0 1
0 RR RX - -0 0 1
1 XR XX 1 2 3

Fig. 3. Operator selection matrix

Thus,
: GB: CREATE] DOES> (- pfa)
FS>F FS>F (- pfa to t1)
NEW.TYPE. UNDER (— t' pfa t') \ make result-type

WHICH.OP 2* + @ ‘EXECUTE F>FS- ;3 \ select binop
with the usage

GB: G* F* F*X X*F X* ;

The generic multiply picks out which of the four routines to use at run-time. By using only
logical or shift operations we have made even the high-level definitions fairly quick in comparison
with the times of floating point operations. The only instance where one might forego the
overhead penalty paid for the convenience of generic coding would be in nested inner loops, such
as occur in matrix operations. Here it might pay to code four inner loops, one for each type, and
then access them generically, e.g.

: RLOOP .real words ;

: DRLOOP .dreal words

¢ XLOOP _.complex words

s DXLOOP ..dcomplex words

G: GLOOP RLOOP DRLOOP XLOOP DXLOOP ;

Data Structures for Scientific Forth Programming 55

3. Arrays of typed data

Manipulation of numerical arrays represents one of the commonest categories of scientific
programming. Arrays per se are hardly new to Forth. Arrays of typed data are, however, worth
elaborating. Following Brodie’s advice [8] we first specify the “user interface” (matrix notation)
and only then proceed to the implementation.

3.1. Improved (FORTRAN:-like) array notation

The usual notation for array elements in high-level languages (since lineprinters and
terminals do'not recognize subscripts) is something like V(15) — the 15th element of V. The RPN
notation most natural to Forth, 15 V, is hard to read and unintuitive [9]. Forth’s idiosyncrasies
forbid saying V(15) because the parser recognizes it as a single word. Since we want the 15 to be
parsed, we must modify the FORTRAN (also BASIC) notation to V { 15) or V(15).
Unfortunately, (is a reserved word. While we might place the matrix definitions in a separate
vocabulatry, (is too useful as a comment delineator to dispensewith. This leaves the second form,
in which (becomes part of the array name, V(. To make V(15) work,) has to be an operator
(unless we want to leave postfix notation entirely, with all the complication that would entail
[10]). Since) is not a reserved word, nothing in principle prevents defining it as an operator. .
However, I feel such usage will lead to confusion with comments. The square braces, [] are
commonly used in matrix notation; however both are reserved Forth words, i.e. forbidden. This
leaves the curly braces { }, which are unused by Forth.

Of the two possible forms, V { 15 } or V{ 15 }, the latter has the advantage that the opening
brace, {, is only part of the name, but reminds us that the name V{ is an array, exactly as names
ending with $ are strings, etc. The notation suggests a further mnemonic refinement, namely to
place {{ and }} at the ends of 2-dimensional arrays, as in M{{ 3 5 }}.

How will this notation operate? Clearly, to place the (generalized) address of the n’th
element (of a 1-dimensional array) on the stack we would say

V{n},

while

M{{mn }}

should analogously place the address of the m,n’th element of a 2-dimensional array on the
stack.

3.2. Large matrices

The definingword SCALAR given in §2.2 above allots space in the dictionary — for most Forths,
code + data must fit here — or in the LISTS segment of HS/FORTH (part of the dictionary). This
is OK for variables, but not for arrays, since even a small matrix would exhaust the LISTS segment.

A filled IBM PC/XT clone has 640 Kbytes of memory. Even a generous Forth kernel (plus
DOS) takes up less than 150 K; hence at least 500 K is available to hold large arrays. Up to 8
Mbytes can be added as EMS storage, assuming a suitable memory management.scheme [11].

An AT/clone can address 4 Mbytes in “real” mode, and 16 Mbytes in “protected” mode. These
characteristics give moderately advanced PC’s the power to tackle immense systems of equations.
For example, the matrix and inhomogeneous term of 300 simultaneous linear equations (in
single-precision real format) take up 361,200 bytes. The time to solve them should be of order
10 minutes, on a 10 MHz machine with a co-processor. Thus it is. definitely worthwhile exploring
methods to use large segmented memories. Of course, level-memory machines based on e.g. the
Motorola CPU’s require nothing more than 32-bit addresses.

56 The Journal of Forth Application and Research Volume 6 Number 1

3.3. Using high memory
HS/FORTH permits accessing all the available memoty in a PC/AT in the following manner:
¢ Define a named segment of length 1 byte: this marks the beginning of available memory.
¢ Then tell both Forth and DOS how much memory you want.

As might be expected, HS/FORTH defines non-standard words (coded as DOS function
calls) to use the various DOS service routines that allocate memory, etc. [12]

MEMORY 4+ @ S->D DCONSTANT MEM.START \ beg. of free memory

40.960 DCONSTANT MAX.PARS \ 49968 = 655360 /16

¢ TOTAL.PARS ~ MAX.PARS MEM.START D- ;

\ # pars of memory available

1 SEGMENT SUPERSEG \ define named segment 1 byte long

TOTAL.PARS DROP FREE-SIZE \ tell DOS and HS/FORTH about it

Having allocated the memory, how can we address it efficiently? We would like the simplicity
of double-length integer arithmetic for computing an (absolute) array address, as in

abs.adr(4;) = (row.length*I + J) * #BYTES

However, although the absolute address referenced by a segment and offset is unique, i.e.
the absolute address in bytes is

abs.adr = 16*segment + offset

the reverse translation, of an absolute address (in bytes) to the segment + offset notation
expected by iapx86 processors is not unique. This naturally poses a problem when the processor
tries to prevent segments from overlapping (protected mode). In such cases, the only answer is
a memory management scheme that computes segments and offsets (by brute force) in a
non-overlapping fashion. But for ordinary (8086) PC’s and/or real-mode programming, we can
merely ignore whether segments overlap. Although this possibility may be well-known to most
PC programmers, it was unknown to me until very recently (I am indebted to Mahlon Kelly for
enlightening me. It is a disgrace that none of the standard assembly programming books [13]
explicitly discuss this possibility for addressing segmented memory.) That is, the PC permits
32-bit addressing as long as we translate 32-bit addresses to the segment + offset notation
(expected by the iapx86 processors) after a 32-bit address computation. A word that performs
this conversion is >SEG.OFF, defined as '
: >SEG.OFF (d — seg off)
OVER 15 AND -ROT (— off d) D16/ DROP SWAP ;

3.4. A general typed-array definition

For the new syntax to work the word } must compute the address of the nth element of V{
from the information on the stack, and }} must do the same for M{{. In order to €ncompass
matrices of typed data we specify that the results of the phrases V{ n } and M{{ mn }} be to leave
the generalized address on the parameter stack, i.e. to leave the stack picture (— seg off type),
exactly as with SCALARs.

Before we can define }, however, we must specify the data structure it operates on, i.e. the
array header. ’

Once again we begin with the user interface. We can opt for maximum generality or maximum
simplicity. My first attempt fell into the first category, permitting the user to define a named
segment of given length and to define an array in that segment. Lately I realized this generality
accomplishes little, so have abandoned it. All arrays will be defined in the heap, named SUPERSEG
as above. To define a length 50 1ARRAY of 4-byte numbers we will say

Data Structures for Scientific Forth Programming 7 57

50 LONG REAL 1ARRAY V{

Now, before we work out the mechanics of LARRAY, we imagine that an array will be stored
as in Fig. 4 below:

LISTS portion:
VHERE + SUPERSEG*16 (32-bit address)
T L :
IS Z 2] > tohighmemoyinlists
f .
adr
SUPERSEG portion:

r start of data = VHERE (from start of segment)

=> to high memory in SUPERSEG

Fig. 4. Structure of a 1-dimensional array in SUPERSEG

The proposed array structure consists of an 8-byte header (the array descriptor) in the
dictionary (LISTS in HS/FORTH). The header points to the absolute address of the array data,
which is not physically contiguous with the array descriptor.

The array-defining word 1ARRAY must perform the following tasks:

¢ place the length and type of the data in the first two cells (4 bytes) of the array descriptor.
e place the 32-bit address (start of data) in the next two cells (4 bytes) of the array descriptor.
¢ allot the necessary storage in SUPERSEG

e at run-time, place the generalized address, length and type on the parameter stack.

The start of data is handled by YHERE, a word that puts the next vacant address in SUPERSEG
on TOS.

We define VALLOT to keep track of the storage used by array definitions. VALLOT increments
the pointer in VHERE (and aborts with a warning if the segment length is exceeded).
We first define some auxiliary words:

MEMORY 4+ @ S->D - DCONSTANT MEM.START \ beg. of free memory
40.960 DCONSTANT MAX.PARS \ 46969 = 655360 /16
: TOTAL.PARS MAX.PARS MEM.START D- ; \ # pars avail. mem,

1 SEGMENT SUPERSEG \ define named segment 1 byte long
TOTAL.PARS DROP FREE-SIZE \ tell DOS and HS/FORTH about it

DVARIABLE VHERE>
: INIT.VHERE> @.8 VHERE> D! ; INIT.VHERE>
VHERE (— d.offset) VHERE> D@ ;

: D&/ D2/ D2/ ; : D16/ D4/ D4/ ;
: >SEG.OFF (d — seg off)
OVER 15 AND -ROT (- off d) D16/ DROP SWAP ;

¢ T00.BIG? VHERE >SEG.OFF @& AND TOTAL.PARS D>
ABORT" INSUFFICIENT ROOM IN SUPERSEG" ;

\ check whether new value of VHERE> passes end of SUPERSEG

58 7 The Journal of Forth Application and Research Volume 6 Number 1

: VALLOT (d.#bytes -) VHERE D+ VHERE> D! TO00.BIG? ;

\ Array-defining words
\ Ex: 58 LONG REAL 1ARRAY V{

\ v{ (- adr)

\ v{17 } eeL (:: - V[17])
: LONG DUP

FINDD, @= ?(:D, SWAP, , ;)

1ARRAY (11t -) CREATE

UNDER , , \ t,1 into 1st 4 hytes (-11t)
SUPERSEG @ 16 M* \ start of

SUPERSEG VHERE D+ D, \ abs. address into next 4 bytes
#BYTES M* (— #bytes to allot)

VALLOT "\ allot space in the segment

\ run-time action: (- adr)
We also need some words to go with 1ARRAY:
+} (adr n - seg.off[n] t)

SWAP DUP@ >R \ type -> rstack
4+ D@
ROT Re@ #BYTES M* D+ >SEG.OFF R> ; (- seg.off[n] t)

Finally, here is a useful diagnostic word

: ?TYPE (t =) \ it's ok for this to be slow!
DUP @ = IF DROP ." REAL*4" EXIT THEN
DUP 1 = IF DROP ." REAL*8" EXIT THEN
Dup 2 IF DROP ." COMPLEX"™ EXIT THEN

DUP 3 = IF DROP ." DCOMPLEX" EXIT THEN
." NOT A DEFINED DATA TYPE" ABORT ;
3.5, 2ARRAY and }}

We now want to define arrays of higher dimensionality. For example, to define a 2-dimen-
sional array we say

90 LONG BY 99 WIDE COMPLEX 2ARRAY XA{{

This leads to the definitions

: BY ; \ a do-nothing word for style
¢ WIDE * SWAP ; (1T1Tw-1*w1)

: 2ARRAY (1*w 1 t —) 1ARRAY ;
By correct factoring (putting some of the work into LONG and WIDE) we achieved an easy
definition of 2ARRAY.
Now let us define }} to fetch the double-indexed address:
: }} (adr mn - afm*1+n] t)
>R OVER 2+ @ (— adr m 1*w)
* R>+1} ;
Again, factoring has let us define }} in terms of }.

Data Structures for Scientific Forth Programming 59

3.6. Redefining G@ and G!

We defined G@ and G! using vectored execution. The fetch and store words in the execution
tables implicitly assume the variable is stored in the LISTS segment. To address other segments
we use the long form [14] of addressing. Thus we would define

G: GL R32@L R64RL XGL DXGL ; G: G!L R32!L R64!L X!L DXIL ;
for use with typed scalars and arrays. The ifstack words would be redefined accordingly.

4. Tuning for speed

Some of the words in our typed-data/matrix lexicons should be optimized or redefined in
machine code. Accessing matrix elements imposes a non-trivial overhead on matrix operations.
We can reduce the execution time with inline code, either in the traditional Forth manner via
selected assembler definitions, or with a recursive-descent optimizer such as HS/FORTH’s [15].
However, the best place to optimize is generally entire inner loops and other selected areas of
code, not the access words per se. By hand-coding the innermost loop in matrix inversion and
FFT routines, I have achieved programs that run in (asymptotically) minimum time on the
8086/8087 chip set. ‘

Significant speed increases in data access could perhaps be achieved using multiple code field
(MCF) words, as described by Shaw [16], and as implemented by HS/FORTH in the words VAR,
AT, IS, and variants thereof. Thus, an MCF-defined SCALAR — call 1t X—would fetch itself by
invoking its name alone

X (::-x)
would have its address placed on the stack by the usage

AT X
and would have the proper storage code selected and compiled via

IS X .

The disadvantage of MCF style is that compile-time binding, while faster in execution, loses the
flexibility of run-time binding. Thus a lexicon would have to be recompiled in order to run it
with a data type that would - as with FORTRAN - be specified at compile-time. The run-time
binding of the code given above enables a previously compiled routine to handle all four
standard scientific data types.

5. Conclusions

Forth isa protean language. Thisis atonceits strength and its weakness. The bulk of scientific
programming can be carried out with a few standard data structures. Only venerable FORTRAN,
among the more readily available compiled languages, provides the one scientists and engineers
find most necessary, complex floating point numbers. This, and the fact that FORTRAN is
quasi-algebraic, account for its popularity.

The Hewlett-Packard RPN calculators have weaned many scientists from infix notation;
however, the plethora of access commands and arithmetic operators, and the problems of keeping
track of data types (demanded by a standard Forth program containing mixed data types) daunts
would-be Forth converts. My aim in this article has been to ease this situation with a standard
format for typed data, and a standard array notation in Forth. In addition to promoting a more
FORTRAN-like programming style (thus easing the transition to Forth) these extensions permit
a simple FORmula TRANSslator into immediately executable Forth code [1]. A FORTRAN -
Forth compiler providing access to the enormous library of tested FORTRAN subroutines then
becomes an attractive possibility. My hope is that Forth’s great potential for scientific program-
ming might thus be recognized more widely.

60

The Journal of Forth Application and Research Volume 6 Number 1

References

[1]
[2]
3]
[4]
[51
[6]
7]

8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

I have written the germ of one, namely a FORmula TRANslator. See J.V. Noble, JEAR
(to be published).

M.G. Kelly and N. Spies, Forth, a Text and Reference, Prentice-Hall, NJ, 1986, p. 324 ff.
®Harvard Softworks, P.O. Box 69, Springboro, Ohio 45066. Tel: (513) 748-0390.

Dick Pountain, “Object-oriented Forth”, Byte Magazine, 8/86; Object-oriented Forth,
Academic Press, Inc., Orlando, 1987.

Leo Brodie, Thinking FORTH, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1984, p. 118ff.

HS/FORTH uses a word pair CASE:..; CASE that performs the same task as G: .. 3 below.
The definition of G: was inspired by an- article by Michael Ham (Dr. Dobb’s Journal,
October 1986).

J.V. Noble, Scientific Forth: A New Language for Scientific Computation (in preparation);
écwnuﬁo Computation in Forth,” Computers in Physics, Sept./Oct. 1989.

Leo Brodie, Thinking FORTH (op. cit.), p. 481f.

Other authors have noted this and proposed more readable matrix notations. See, e.g.,
“Forth and the Fast Fourier Transform” by Joe Barnhart, Dr. Dobb’s Journal, September,
1984, p. 34. Also Dick Pountain’s book Object-oriented Forth (op cit.) uses an array naming
convention with brackets.

I have found that scientists and engineers simply will not use a native Forth syntax like m
n M; this has, I feel, been the biggest single obstacle to wider adoption of Forth.

See, e.g., L. Brodie, Thinking FORTH (op. cit.) p. 113ff.

See, e.g., Ray Duncan, “Forth support for Intel/Lotus expanded memory,” Dr. Dobb’s
Journal, August 1986; also, John A. Lefor and Karen Lund, “Reaching into expanded
memory,” PC Tech Journal, May 1987.

See, €.g., D.N. Jump, Programmer’s Guide to MS-DOS, rev. edition, Brady Books, New
York, 1987.

C. Morgan and M. Waite, 8086/8088 16-bit Microprocessor Primer (Byte/McGraw-Hlll
Peterborough, 1982);

L. Scanlon, IBM PC & XT Assembly Language: A Guide for Programmers, Brady/Prentice-
Hall, Bowie, Md., 1983;

R.Lafore Assembly Language Primer for the IBM PC & XT. Plume/Waite, New York, 1984.

Consult, e.g., L.J. Scanlon, op. cit.; or R. Lafore, op. cit.

HS/FORTH defines “far” access operators 8L and !L of all types, that expect a “long”
address on the stack. For example,

CODE R32@L DS: POP. FWAIT. DS: [BX] DWORD-PTR. FLD. END-CODE

J.S. Callahan, Proc. 1988 Rochester Forth Conference, Inst. for Applied Forth Research,
Inc., 1988, p. 39.

G. Shaw, “Forth Shifts Gears, 1,” Computer Language, May 1988, p. 67; “Forth Shifts
Gears, I1,” Computer Language, June 1988 p. 61; Proc. 9th Asilomar FORML Conference,
JFAR 5 (1988) 347.

Dr. Noble received his B.S. from Caltech in 1962, his M.S. from Princeton in 1963 and his Ph.D.

from Princeton in 1966, all in Physics. Beginning with Fortran Lin 1960, he has programmed in Basic
and Assembler; but almost exclusively in Forth since 1985. His interests include theoretical physics
(nuclear, particle and astrophysics), theoretical biology (epidemiology and chaos), and science and
public policy. Dr. Noble's major use of Forth is in number crunching.

Data Structures for Scientific Forth Programming

61

\ TYPED DATA STACK MANAGER COPYRIGHT NOBLEHOUSE 1989
TASK FSTACKS
DECIMAL

FIND X@ ©= ?7(FLOAD C:\HSFORTH\COMPLEX.FTH)

@ CONSTANT REAL \ define data-type tokens
1 CONSTANT DREAL

2 CONSTANT COMPLEX

3 CONSTANT DCOMPLEX

CREATE <#bytes> 4 C, 8C, 8¢C, 16 C,

: #BYTES <#bytes> + C@ ; (type — length in bytes)

\ ¢ #BYTES 3 AND DUP 1 AND- 4* 4+ SWAP 2/ SAL
\ definitions for the parallel stack of types

CREATE TSTACK 82 ALLOT \ 2 tos-pointer, 20 4-byte cells
HERE CONSTANT TSTACK>

¢ TS.INIT TSTACK 2+ TSTACK ! 3 = TS.INIT

?T.OVFLW (adr — adr or abort) DUP TSTACK> =
IF ." TSTACK OVERFLOW" TS.INIT ABORT THEN

: T.TYPE! TSTACK @ 2+ ! ;
T.UFLOW (adr -) DUP@ 2- >=
IF ." EMPTY TSTACK" TS.INIT ABORT THEN
: T@& (-adrt) TSTACK @ D& 3
T.DROP TSTACK ?T.UFLOW -4 TSTACK +!
T> (-adrt) T@ - T.DROP ;
TSWHAP T> T> DSWAP >T >T

definition of typed variables
SCALAR (type —) CREATE DUP , #BYTES ALLOT
DOES> DUP@ SWAP 2+ SKAP ;

e

: SCALARS (nt-) SWAP @ DO DUP SCALAR LOOP DROP ;

>T (adrt-) 4 TSTACK +! TSTACK @ '?T.OVFLW D! s

62 The Journal of Forth Application and Research Volume 6 Number 1

\ definitions for a multi-type fstack

CREATE FHEAP 83 8 * ALLOT
HERE CONSTANT FHEAP>

: FS.INIT TS.INIT FHEAP @ TSTACK 2+ D! ; FS.INIT

FS.ABORT FS.INIT ABORT ;

?FS.OVFLW (fsp — fsp | abort on overflow) DUP FHEAP> - =
IF ." FSTACK OVERFLOW" FS.ABORT THEN

>FS (adr[x] t[x] - :: - x)

DUP T.TYPE! _ \ put type on tstack
#BYTES (— src #bytes)
T@ DROP (- src #bytes old.fsp) .
DDUP + ?FS.OVFLW (- adr #bytes old.fsp new.fsp)
@ >T SHWAP (- src dest n)
CMOVE \ put number on fstack
: FS$> (adrt-) T.DROP T@ (-t fspt")
ROT OVER <> \ check that dest has same type
“IF .™ ATTEMPT TO STORE TO WRONG DATA TYPE™ FS.ABORT THEN

#BYTES (— dest src n) ROT SWAP (- src dest n) CMOVE ;

FS.DUMP TSTACK ?T.UFLOW TSTACK @ TSTACK 2+
DO I De DUP
BEGIN-CASE @ CASE-OF CR . R32@¢ F. ELSE
1 CASE-OF CR . R64@ F. ELSE
2 CASE-OF CR . X@ X. ELSE
3 CASE-OF CR . DXe X. ELSE
DDROP ABORT" BAD DATA TYPE"™ END-CASE

s

4 +LOOP

DCOMPLEX SCALAR TEMP@

DCOMPLEX SCALAR TEMPL

: FS.SWAP TSTACK DUP ?T.UFLOW @ 2- @
[* TEMP@] LITERAL !

TEMPG FS>
TSTACK DUP ?T.UFLOW @ 2- @
[* TEMP1] LITERAL ! TEMP1 FS>

TEMPB >FS TEMPL >FS ;
CASE: G! R32! Ré64! X! DX! ;CASE
CASE: G@ R32@ R640 X@ DX@ ;CASE
\ CASE: ... ;CASE define unary operators

FS>F (-t x-=) T.DROP T@ UNDER G@ ;

F>FS (t-::-x) T.TYPE! T@ DDUP G!
(- old.fsp t) #BYTES + (— new.fsp) ?FS.OVFLW (— new.fsp)
g>T ;

¢ NEW.TYPE DDUP AND 1 AND -ROT OR 2 AND + ;

\ CODE NEW.TYPE AX POP. CX AX MOV. CX BX AND. CX 1 IW AND.
\ BX AX OR. BX 2 IW AND. BX CX ADD. END-CODE

(t1t2 -t')

Data Structures for Scientific Forth Programming

: WHICH.OP (tl t2 —n) 2/ SWAP 2 AND +
CODE WHICH.OP AX POP. BX 1 SHR. AX 2 IW AND. BX AX ADD. END-CODE

GB: CREATE] DOES> FS>F FS>F (— adr tl t2) |\ get args

DDUP NEW.TYPE >R \ compute new type
(- adr t1 t2)

WHICH.OP 2* + EXECUTE® \ compute new value
R> F>FS \ put it away -

defining word for binary operators 1eaving‘1 argument

\
\ test example
: F*X F-ROT X*F ;

GB: G* F* F*X X*F X* ;

\ LARGE ARRAY PACKAGE
TASK MATRIX

MEMORY 4+ @ S->D . DCONSTANT MEM.START \ beg. of free memory
40.9680 DCONSTANT MAX.PARS \ 40968 = 655360 /16
: TOTAL.PARS MAX.PARS MEM.START D- ; .\ # pars avail. mem.

1 SEGMENT SUPERSEG -\ define named segment 1 byte long
TOTAL.PARS DROP 1- FREE-SIZE \ tell DOS and HS/FORTH about it
DVARIABLE VHERE>

INIT.VHERE> ©.8 VHERE> D! ; INIT.VHERE>
VHERE (— d.offset) VHERE> D@ ;

D4/ D2/ D2/ ;
pl6/ b4/ D4/ ;

>SEG.OFF (d — seg off)
OVER 15 AND -ROT (— off d) D16/ DROP SWAP ;

: T00.BIG? VHERE >SEG.OFF @ AND TOTAL.PARS D>
ABORT" INSUFFICIENT ROOM IN SUPERSEG" ;
\ check whether new value of VHERE> passes end of SUPERSEG

: VALLOT (d.#bytes -) VHERE D+ VHERE> D! T00.BIG? ;

64 . The Journal of Forth Application and Research Volume 6 Number 1

\ Array-defining words
\ Ex: 50 LONG REAL 1ARRAY V{

\ v{ (- adr)
\ v{ 17} GeL (:: - V[17])
: LONG DUP ;

FIND-D, @= ?2(:D, SWAP, , ;)
CREATE <#bytes> 4 C, 8 C, 8 C, 16 C, OKLW
: #BYTES (t — #hytes) <#bytes> + C@ ;

: 1ARRAY (1T 1 t-) CREATE

UNDER , , \ t,1 into 1st 4 bytes (-11t)
SUPERSEG @ 16 M* \ start of SUPERSEG

VHERE D+ D, \ abs. address into next 4 bytes
#BYTES M* (— #bytes to allot)

VALLOT OKLW \ allot space in the segment

\ run-time action: { — adr)
:} (adr n - seg.off[n] t)

SWAP DUP@ >R \ type -> rstack
4+ D@
ROT R@ #BYTES M* D+ >SEG.OFF R> ; (- seg.off[n] t)

TYPE (t =) \ it's ok for this to he slow!

DUP @ = IF DROP ." REAL*4™ EXIT THEN
DUP 1 = IF DROP ." REAL*8" EXIT THEN
DUP 2 = IF DROP ." COMPLEX" EXIT THEN
DUP 3 = IF DROP ." DCOMPLEX" EXIT THEN
." NOT A DEFINED DATA TYPE" ABORT ;

\ 2ARRAY and }}
\ Ex. 90 LONG BY 99 WIDE COMPLEX 2ARRAY XA{{

BY ; \ a do-nothing word for style
WIDE * SWAP (TTw-T*1)

2ARRAY (1*w 1t —) 1ARRAY ;

3} (adrmn-afm1+n] t)
>R OVER 2+ @ {(— adr m T*w)
* R>+ } o

