Handling Multiple Data Types In Forth

John J. Wavrik

Department of Mathematics
University of California at San Diego

Abstract

While originally developed for use in hardware control, Forth is, because of its flexibility, an
attractive language for developing software systems. In computer algebra, for example, it provides
a programmer with an unrestricted ability to choose the representation of a large variety of data
structures and the words needed to manipulate them. This paper deals with the problem of using
many data types while preserving a simple Forth syntax. We introduce a mechanism for mana ging
the storage of intermediate results of computation. This package takes advantage of special
features of Forth to handle the recovery of unused storage.

Introduction

Forth systems provide certain primary data types (integers, double precision integers, and
perhaps floating point numbers). It is often useful to compute with more complicated things:
arrays of various types, records in a database, strings, etc. Some languages have built-in proce-
dures for constructing certain types of complex structures but limit what can be built by limiting
the tools. Forth instead provides the user with a toolkit to represent virtually any type of data
and to add words to manipulate it. In some application areas this flexibility is enormously
advantageous.

A single application in computer algebra may require not only several primary data types,
but also types created by the user and types created by compounding several system and user
types. In a recent application, for example, the following data types were used (in addition to
integer and double precision integer): (1) extended precision integers up to about 100 digits;)
extended precision rational numbers; (3) strings; (4) the integers modulo a'; (5) polynomials
whose coefficients are arbitrary precision rational numbers and whose monomial parts are
strings; (6) polynomials whose coefficients are integers modulo p; (7) matrices whose entries are
integers modulo p. ,

A major problem facing a worker in a field like “modern” algebra is to provide a means for
creatingalarge and varied collection of new data types and integrating them into a system without

making the system more complicated, harder to use, or less efficient. This paper will discuss the
problem and some solutions.

We will use the word “object” in the broad sense of something we wish to manipulate.
“Objects” could be strings, arrays of integers, records, etc. They usually come in classes of similar
types with an appropriate set of operations. The user will often produce new defining words to
create objects in a given class.

While creating a new class of objects, the Forth programmer is aware of how they are
represented in memory. While defining the operations, the details of this representation are
needed. There is an enormous psychological (as well as portability) advantage to then be able to
suppress these details and think in terms of a collection of things with certain operations. Some
may see in this the flavor of “object-oriented programming”. It is actually the way that Forth

Journal of Forth Application and Research Volume 6, Number 1

65

66 The Journal of Forth Application and Research Volume 6 Number 1

programmers have been building their applications for years. In Forth, however, we are free to
return to the implementation details whenever necessary — they are not hidden or obliterated
— they are forgotten, but not gone.

After we generate these objects, we’d prefer to be able to use the same syntax as used to
manipulate other Forth objects:

(1) If A and B are names for strings, $+ is concatenation, $. is the word for printing strings
Then AB $+ $. should concatenate A and B and print the result

(2) If A and B are matrices, C*Mat has the stack diagram (¢ M- M') and multiplies a matrix by
a constant
Then
we should be able to get (nmA B — nA + mB) by ROT SWAP C*Mat >R C*Mat R> Mat+.

This means that we must decide how the Forth parameter stack should be used with the new
objects. We will examine several possibilities.

1. Placing the actual data for objects of varying size on the Forth parameter stack requires a
new set of data manipulation words for each data type. Suppose for example, we put strings
on the stack (in the form of a collection of characters together with a count). Strings occupy
a different amount of space on the stack than do integers — what is worse, the amount of
space depends on the string. So we must create special words to perform stack
manipulations on strings (e.g. $SWAP, $DUP, etc.). Now we face the problem that we might
want to swap a string on top with an integer below. Neither $SWAP nor SWAP will do what
we want — this requires a mixed operation like I$SWAP. If double precision integers are
used, we should also provide mixed operations to interchange various combinations of
strings and double precisions. The data types mentioned above in connection with
computer algebra occupy from 2 to several hundred bytes each. Some are of variable size.
Imagine the complexity if we want to add 7 new data types: we would need 9 versions of
DUP, 81 versions of SWAP, 81 versions of OVER and 729 versions of ROT.

2. Another solution is to equip each new data type with its own stack. This would still require

- a new sct of data manipulation words for each data type, but mixed stack operations are

not nceded. On the other hand, it exacts a psychological penality of requiring the
programmer to keep in mind the movement of several stacks all the time.

There is a very important truth that is ignored by both of these possibilities: if bulky data is
putonastack, the first step in using it will usually be to takeit off! These approaches can therefore
be quite inefficient.

3. The manipulation of data of varying size on a single stack would seem to require a typed
stack. The stack would not only include an object, but some information about how many
bytes it takes (and maybe even something which indicates what kind of object it is). No new
stack operations would be required, but the stack operations would use the size information
to perform their function (e.g. SWAP would know that it is swapping something 2 bytes in
size with something 30 bytes in size). Something like this is already done by those who use
a string stack: $SWAP does use the sizes of the strings. It is also used in the Forth-like page
description language, PostScript, found in some laser printers. The inclusion of information
about the type or size of each item on the parameter stack would, however, require a
modification of the underlying Forth system. Even integers would need a size indicator to
be put on the stack. Size information on an interactive system is usually available only at
run time, and so this approach would exact some penalty in execution time. We will
therefore consider a solution which is more efficient and requires no modification to Forth.

Handling Multiple Data Types in Forth 67

Pointers and Storage Structures

We begin by representing data on the stack by pointers. The data sits somewhere in memory
— only its address is put on the stack. The addresses are stack elements, so they can be
manipulated using the usual stack words. A programmer can just as well think “X is on the stack”
whether it is the data or just the address of X that is actually on the stack — so this does not make
conceptualizing any more difficult. The use of pointers solves the problem with stack operations
discussed previously. But it does yet quite reach the goal of allowing the use of customary Forth
syntax. We can see why by looking at how this works in practice.

Let’s look at the simplest way to represent polynomials. A polynomial in one variable is an
expression of the form:

ap + a1x + ax2 + ... + a,x*

(particular examples are 1 —x? and 1 + x + 3> — we usually don’t write any term that has a
zero coefficient). We will assume that the coefficients a; are integers. The highest power that
actually occurs in a polynomial is its degree. The main things of importance in describing a
polynomial are the array of coefficients and the degree. To make everything as simple and
efficient as possible, we will allow the same amount of space for each polynomial. Let us assume
that we will not need to deal with polynomials of degree bigger than 50. Each polynomial will
then look like this in memory:

deg[a0|a1 | laso

On a 16-bit system, there is a 2-byte slot for the degree followed by 51 2-byte slots for the
coefficients. Each polynomial occupies 104 bytes.

We now introduce a defining word POLY. POLY F will make a dictionary entry for a new
polynomial called F and set aside storage for it. When F executes, it puts the address of its storage
block on the stack.

5@ CONSTANT MAXDEG

¢ POLY CREATE MAXDEG 2+ CELLS ALLOT
(CELLS is found in the proposed new ANSI Standard, it converts cells to bytes. On a 16-bit system
it is 2*, on a 32-bit system it is 4 *)

‘We have, now a way of producing a block of storage that has a name. When we use that name,
the address of the block is put on the stack. What makes the block of storage a polynomial is the
additional words we define to act on it. We need words to access the degree and coefficients.
Words for input and output. Words to implement the arithmetic (using the methods taught in
high school), etc. For example we define the degree function, for our representation, by : DEG @
3. Eventually we reach the point where all the important features of a polynomial have been
defined in terms of our representation — and so we forget about the details of representation.
When we want the degree of F we say F DEG thinking “F is on the stack, and we apply DEG to it”.

A problem arises when we we perform an operation which has a polynomial result. We do
not have a way to produce a proper size block of storage for an object except to give it a name.
So we find ourselves forced to give the system a name for the place where the results are to be
put. This leads to the syntax A B C op for binary operations (it means that op is applied to A and
B with the result stored in C). There is no problem, by the way, with efficiency or speed in using
this syntax for operations. In many cases code is simpler to write and runs more quickly if the
operation word is explicitly told where the results should go. The issue is that we don’t usually
write Forth this way.

The problem cannot be solved just by producing a single temporary location where all
operations put their results: Suppose we assume two operations o+ and o* on the objects and we
want to perform (A o* B) o+ (C o* D). It is clear that the sum cannot be performed until the two

68 The Journal of Forth Application and Research Volume 6 Number 1

products are performed. To do this, the programmer must.create two.intermediate objects to
store the results of the multiplications. Thus the computation would look like this:

ABTlo* CDT2o0* T1T2 Result o+

Tl and T2 are “temporaries”. They are pointers to blocks of memory only used to hold
intermediate results. After the calculation is over, there is no interest in what they contain —
and they can (and must) be reused. At the moment we have placed on the programmer the
burden of explicitly managing temporaries. He must know which of them are used by what
words. It should be mentioned, by the way, that temporaries are a feature of any kind of chain
computation with any kind of data. Forth programmers are not usually aware of temporaries
because the stack provides a mechanism for automatically dealing with them for integer
computations.

A satisfactory solution to our problem involves producing an automatic mechanism for
temporaries which works in conjunction with the Forth parameter stack. We will set aside an
area in memory to hold the data for intermediate results. A mechanism is provided to supply the
address of an unused part of this'block whenever space for a temporary is needed. We call this a
storage structure.

Each data type (other than the primary types) will have its own storage structure, and each
storage structure will manage a pool of temporary locations for that data type (in the code below,
the storage structures each have a pool of 16 addresses). When we perform an operation, say 0P+,
on two objects A and B the code for 0P+ will ask for storage in which to put its result. The storage
structure will find the next available storage location and put its address on the stack (in the
process, that location will be marked as being in use). OP+ will put its result in that location —
and the address will be left on the stack. As a result, 0P+ will now follow the Forth conventions
for operations.

After performing 16 (or how many ever storage slots have been set aside) operations, the
storage structure finds that all ofits locations have been marked. It now must find out which of
these are still in use. It does so by examining the parameter stack. Any address still on the
parameter stack is regarded as in use (and is marked) all other addresses are unmarked. [In the
code below, there is a provision for the programmer to add additional places for the system to
check before it declares an address to be available.]

Since the number of addresses and the number of places to search are limited, this garbage-
collection process is very fast. Before going into more detail on the implementation and use of
this mechanism, some things should be said about the number 16. This storage mechanism has
been used with objects that require several hundred bytes of memory each — so the author was
anxious not to tie up more memory than necessary for temporaries. How many temporary
locations are needed to perform calculations? The stack in Hewlett-Packard calculators provides
4 — HP found that any common arithmetic computation could be performed in a way that
requires no more than this. Tests have shown that in typical mathematics applications the Forth
parameter stack does not become deeper than 20 — 25 (cells), and the number of active tem-
poraries for a particular data type does not exceed 4. The code is implemented so that an error
message and ABORT occur if a storage structure runs out of available locations. The onl‘y___ytime we
have seen the error message, while using the mechanism for two years, is in response to program
bugs. Thus, for a language like Forth which does not use recursion as a primary control
mechanism, 4 temporary locations is enough and 16 is more than enough. Those who work with
truly massive objects might want to use a smaller number.

Handling Multiple Data Types in Forth 69

We distinguish the “storage structure”, which is a scheme for managing a block of storage,
from the block of storage it manages. A new storage structure is introduced by the defining word
TEMP-STORAGE. Each child has its own array ADDRESS (containing the addresses of the storage it
manages); an integer MARKS (a bit map showing which of its addresses are in use); and a variable
ELSEWHERE (which contains the execution address of an alternate search routine). The most
important word used in programming is the word TEMP which gives the address of the next
available temporary storage location and initiates a garbage collection when necessary.

In keeping with the spirit of Forth’s CREATE ... DOES> mechanism, the exact same code is used
by all the children. The actual action of each child is to put the address of its data in a specific
place. All of the words in the package use this to perform their actions. Thus the child provides
areferencing environment for a set of shared words and the syntax makes the child’s name appear
as an adjective which modifies the scope of the following shared word. If STRINGS and LISTS are
thenames of children, STRINGS TEMP will return the next temporarylocation belonging to STRINGS
and LISTS TEMP will return the next temporary location belonging to LISTS.

Hlustrations

There are two steps involved in using this mechanism. Suppose we want to create a stora ge
structure for polynomials:

(1) TEMP-STORAGE POLY-TEMPS is used to defined the storage structure

(2) Storage for the temporaries must be set aside and the application must install the addresses
in the array ADDRESS

We assume that each polynomial occupies a fixed number, PSIZE, of bytes. The following code
carries out these two steps:.

TEMP-STORAGE POLY-TEMPS
CREATE PPOOL PSIZE 16 * ALLOT

¢ PSETUP POLY-TEMPS
PPOOL 16 @ DO DUP I ADDRESS ! PSIZE +
LOOP DROP ; PSETUP
For convenience, we introduce the word PTEMP to get the address of a polynomial storage
location: :

: PTEMP POLY-TEMPS TEMP ;

Here is the code for the addition of polynomials. It uses the following words (part of the
polynomial package from which this example is taken). It is designed to work with any type of
coefficients.

DEG (poly —=n) n js the degree of poly

DEG! (n poly -) store n as the new degree of poly
COEFF (npoly —c) return the coefficient of x ™ n
COEFF! (¢ npoly -) make c the new coefficient of x ™ n
SETDEG (poly -) recalculate the degree of poly

C+ (clc2—-¢3) addition of coefficients

CONS P1L CONS P2 CONS RESULT
¢ GETRES PTEMP IS RESULT ;

: P+ (polyl poly2 — sum) GETRES IS P2 IS Pl
P1 DEG P2 DEG MAX DUP RESULT DEG!
1+ g D0 I Pl COEFF I P2 COEFF C+
I RESULT COEFF!
LOOP RESULT SETDEG RESULT

70 The Journal of Forth Application and Research Volume 6. Number 1

NB: Initializable constants were used for a clean appearance. Forth standards have never fixed
a name for these. Most Forth systems provide them using different names. F-83 allows the
value of regular. constants to be changed using IS. CONS is a catch-all defining word.

It is not the purpose of the illustration to get us involved in polynomials and their arithmetic.
Rather it is to show that new data objects have been treated on the stack using the same kind
of writing and thinking that is used with the primary types — without changing any of the basic
Forth operators or adding complicated new ones. The addition operator for polynomials can
be used in exactly the same way as the addition operation for integers.

There are only two things to remember when using storage structures:

(1) The 16 locations are intended only for temporarily storing intermediate results. Any data
1o be saved for future use should be copied to a permanent home. ‘

(2) For speed the garbage-collector only checks the parameter stack (but see below) to find if
an address is still in use. Make sure active addresses are not hidden from view when the
garbage is collected.

The second point does not prevent the use of variables. Notice that the example above shows
all the addresses being removed from the stack and put in constants. The only time a garbage
collection could occur is when a temporary was requested at the beginning of the program. We
therefore left the two original polynomials on the stack until after the temporary was obtained.
Purists who do everything with stack manipulations will have no problems.

Special Situations

‘Most data types use just the simple treatment outlined above and therefore only the words
TEMP-STORAGE and TEMP. The next two sections explain how some other words in the package can
be used to handle special situations. The two situations are:

(1) The user wants the garbage collector to do something in addition to finding free addresses.

(2) The user wants to remove addresses from the parameter stack but still keep them visible
to the garbage collector.

We illustrate by examples from an application in which they have been used. Underlying this
example is a package which implements circular lists. It has mechanisms for managing the nodes
of lists. The details are not needed here. We only need to know that lists are referenced by a
pointer to the head node; that <ptr> XLIST will return the nodes of the list to the storage pool;
and that this occurs automatically whenever <ptr> is reassigned.

The application was designed for the segmented architecture of the 80x86. The pointers all
reside in a separate “pointer segment” and they place on the stack an offset in this segment. The
pointers appear to the Forth system as ordinary integers — the segment manipulation is hidden
in the words which handle the pointers. If the same application is used on a 32-bit system the
pointers are offsets into a reserved block within the dictionary. The word PTX is a variable
containing the offset of the last pointer defined.

TEMP-STORAGE LISTS
¢ LTEMP-SETUP LISTS :
16 8 DO CELL PTX +! PTX @ I ADDRESS ! 'LOOP ;
LTEMP-SETUP
As before this produces a new storage structure and fills in the addresses.

(1) The pointers which we are managing here each will point to a list of nodes. The circular list
package will automatically return all the nodes attached to a pointer at the point when the
pointer is to be reused. The programmer can also force the return by using the word XLIST.

Handling Multiple Data Types in Forth : 71

If very large lists are used, it can be useful to have our garbage collector do an XLIST to free
them up when it finds that a pointer is not being used.

There are two different storage management schemes being used to manage two different kinds
of things, but the situation is not as complicated as it might first seem. Here is an analogy: There
is a large box of pop-beads (the kind that can be pushed together to form chains). Children in
a school class are allowed to take beads from the box as they need them to make chains. There
is a class rule that when a child finishes building one thing and starts another, all the old beads
are first put back in the box. If the box becomes empty it means that all of the beads are being
used — so construction must stop. Now suppose we introduce a new possibility. Suppose
children have other things they could do besides work with the beads. It could happen that
several children have become interested in something else but still have long strings of beads
in their hands. Our storage structure is like a school teacher who periodically checks to find out
which children are still busy. Her job is to deal with children, not with beads. We would like to
add to her duties and have her tell children who are not currently making chains to return their
beads to the box.

Our storage structure application provides several words in addition to those we have used
before. One of these is UNMARKED which puts on the stack a list of the addresses currently
unmarked, together with the number of such addresses. We use it to find which addresses are
not in use. Another is GET-NEXT which gives the next unmarked address (or 0 if there is none).
It is quite easy to define a word RECLAIM-TEMPS to return nodes attached to inactive pointers
after a garbage collection. _
¢ RECLAIM-TEMPS LISTS COLLECT-GARBAGE UNMARKED
?2DUP IF @ DO XLIST LOOP THEN
We now define the word LTEMP to use RECLAIM-TEMPS instead of ordinary garbage collection
(and use it every time we need a temporary list).
: LTEMP (- addr) LISTS GET-NEXT ?DUP @=
IF RECLAIM-TEMPS GET-NEXT ?DUP ©@=
ABORT" storage exhausted " THEN

(2) Typically an algorithm involving circular lists starts a pointer at the head of the list and

moves it to each node in succession. It is natural, then, to put the address of a list in a

variable as the first step in these algorithms. In keeping with our previous points, however,

putting the address of the list in a variable will remove the address from the stack — and

so the garbage collection will mark it as unused. Since artificially keeping these addresses

on the stack seemed unnatural, we use an extension of the storage structure mechanism to

provide the garbage collector with other places to look for active addresses.

A normal assignment uses ! to store an address in a variable. This removes the address from
the stack. Here we use a new operator for assignment ! !. At compile time a count is kept of the
number of such assignments — and a runtime action word is compiled. The runtime word, (1),
saves the address of the head node on an extra stack and also assigns it to the moving pointer.
Aword RELEASE is compiled at the end of the word to pop the appropriate number of addresses
from the extra stack. [We have re-defined the semicolon to compile RELEASE. Those who object
to redefining a system word might want to use another name.]

72 The Journal of Forth Application and Research Volume 6 Number 1

VARIABLE LCNT : v \
CREATE LSTACK 104 ALLOT ’ VARIABLE LPTR

: SET-LSTACK LSTACK LPTR ! @ LCNT ! ; SET-LSTACK

: >L LPTR @ ! 1 CELLS LPTR +! 3

: > 1 CELLS NEGATE LPTR +! LPTR@ @ ;

'+ RELEASE CELLS NEGATE LPTR +! ;

: (1)) SWAP DUP >L POINT ;

: z COMPILE (!!) 1 LCNT +! ; IMMEDIATE

: 3 LCNT @ ?DUP IF [COMPILE] LITERAL COMPILE RELEASE
@ LCNT !

THEN [COMPILE] ; ; IMMEDIATE

POINT is a word from the circular lists package — <ptr1> <ptr2> POINT will make <ptr1> point
to where <ptr2>now points.

Anything we store using !'! will now be saved on the LSTACK — so we need only tell the garbage
collection to look at the LSTACK too before deciding that an address is inactive. The word
LSTACK? returns TRUE if the given address is in the LSTACK and FALSE if not.
: LSTACK? (addr — f)
FALSE LPTR @ LSTACK
?D0° OVER I @ =

IF DROP TRUE LEAVE THEN
CELL +L0OP SWAP DROP ;

LISTS ' LSTACK? >ELSEWHERE
The word LISTS makes this the current storage structure.
The word >ELSEWHERE (cfa —) installs this new search routine.

Any word used for installation in ELSEWHERE must take an address from the stack and return a

flag (T=address was found). The default is the word NO-ELSE which drops the address and
returns FALSE.

Here is a definition where this idea is used. It should be clear without knowing what it does,
that !'! is being used in the same way as !. What is going on is that we have a double loop which
touches all possible combinations of a node in the first list and-a node in the second (and, in
each case, does some processing — the nature of which need not concern us). To do this we run
a pointer (called AF) along the first list and a pointer (called BF) along the second.

The pointers which run along lists in this way are essentially variables that hold the address of
a-node being pointed to. The main thing to be understood is why !! is used rather than ! to
store the initial values of these pointers. Some of the lists could be temporaries and garbage
collection could occur in the middle of this algorithm. If we remove the addresses from the
parameter stack and store them, the garbage collector would believe we are no longer using
them. The word ! ! not only stores the addresses in the variables, but it also puts them in a place
where the garbage collector will see them. Thus !! is used whenever we store an address that
we want to keep safe. :
: MULTIN ~ (<A><C> — replace C hy C + A * B)
CF I BF 1! AF !}
BEGIN BF ADVANCE BF HEAD? NOT WHILE
BEGIN AF ADVANCE AF HEAD? NOT WHILE
FORM.PRODUCT
FIND.PLACE
REPEAT
REPEAT H

Handling Multiple Data Types in Forth 73

One point should be made about the use of auxilliary stacks in Forth. In cases where computa-
tions are terminated by an error or a keyboard interrupt, Forth’s parameter and return stacks
are reset — but user defined stacks are not. Many Forth implementations vector their-error
handling words allowmg users to add extra things. The word SET-LSTACK should be inserted in
the chain.

Summary

This paper explores the problem of adding new data types to a Forth system (as part of an
application) without making the syntax and semantics complicated and difficult to use. It presents
a very compact and efficient mechanism for managing the storage needed to store the inter-
mediate results of calculation. It was designed particularly for use with data types whose
representations require a great deal of memory, yet it has also been found useful in just adding
a string package to Forth.

Glossary of Major Words
>ELSEWHERE (addr —)

Install an extended search routine in the current temporary storage structure. An example
is given in the discussion below.

(1) In the high level version, the search routine should take the address of a temporary from
the stack and return a true flag (-1) if the address is found in the search. The address (above)
is the execution address of this search routine.

(2) In the F83 assembly language version, the search routine is a subroutine (defined by LABEL
ending with RET). It searches for an address contained in the AX register and sets the zero
flag if it is found.

ADDRESS (ind — addr)

Givenanindex, ind, between 0 and 15, return the address where the corresponding temporary
pointer is stored. 3 ADDRESS @, for example, is used to get the temporary location of index 3.
Pointers must be stored in this array as part of the initialization.

TEMP (— addr)

Return the next available temporary address in the current storage structure (a garbage
collection is initiated if no address is immediately available and-execution aborts if no address is
freed by the garbage collection). Since the storage structure must be made current, it is best to
define a word specific to each data type (e.g ¢ LTEMP LISTS TEMP ; defines LTEMP to give the next
address in the structure called LISTS.)

TEMP-STORAGE

Defining word for a temporary structure (usage: TEMP-STORAGE LISTS defines a temporary
structure called LISTS. When LISTS executes it is made the current structure.) To use the structure
the collection of addresses in the array ADDRESS must be filled in (and an optional extended search
routine installed).

John Wavrik is an Associate Professor of Mathematics at the University of California at San
Diego. He received his Ph.D. in 1966 from Stanford University in Several Complex Variables. His
current work uses Forth to implement special purpose software systems for work in abstract algebra
and allied fields. He also teaches a course in computer algebra and the Forth language.

74 The Journal of Forth Application and Research Volume 6 Number 1

Listings
" Blocks 1-4 Low level version using F-83 assembler
Blocks 6-9 High Tevel version using Forth-83 standard code

Blk # 1 ‘ File: tempsto.blk
g. \ Temporary Storage Tlo Tlevel 29Sep88j.jw
1. LABEL NO-OP RET C;
2. .
3. VARIABLE 'MARKS (' holds base address of temp type)

4. VARIABLE ELSEWHERE = (subroutine — search other than stack)
5. . : :
6. : TEMP-STORAGE CREATE # , (marks) NO-OP , (extended)

7. HERE 16 CELLS DUP ALLOT ERASE (addresses)
8. DOES> DUP 'MARKS ! CELL+ @ ELSEWHERE ! 3
9.
14. : MARKS 'MARKS @
11. : ADDRESS (indx — addr) 2+ CELLS MARKS +
12.
13. (ADDRESS is an array with indices @-15. The application
14, must fill in specific addresses from a storage area)
15. -
Blk # 2 File: tempsto.bTk
g. \ Temporary Storage 1lo Tevel 29Sep88jjw
1. :
2. : >ELSEWHERE MARKS CELL+ ! 3
3.
4, LABEL INSTACK? CX PUSH DI PUSH SP@ #) CX MOV SP DI MoV
5. 6 # DI ADD DI CX SUB CX SHR REPNZ SCAS
6. @<> IF ELSEWHERE S#) CALL THEN DI :POP CX POP RET C;
7. ‘
8. CODE COLLECT-GARBAGE 'MARKS #) DI MOV @ # @ [DI] Mov
9. 1 # DX MOV 16 # CX MOV SI PUSH DI SI MOV 4 # SI ADD
14. HERE AX LODS INSTACK? #) CALL
11. @g= IF DX @ [DI] OR THEN DX SHL
12. LOOP - SI POP NEXT C;
13. \
14.

15. : >

Handling Multiple Data Types in Forth

5

Blk # 3 File: tempsto.blk
#. \ Temporary Storage 1o level 11Febh88jjw
1.
2. CODE GET-NEXT (— addr or @) 'MARKS #) DI MOV
3. @ [DI] BX MOV BX AX MOV AX INC @<>
4, IF DI PUSH 1 # AX MOV 4 # DI ADD
5. BEGIN AX BX TEST @<>
6. WHILE AX-SHL 2 # DI ADD :REPEAT
7. BX POP AX @ [BX] OR @ [DI] AX MOV
8. THEN 1PUSH C;
9, : TEMP (— addr) GET-NEXT ?DUP 8=
14a, IF COLLECT-GARBAGE GET-NEXT ?DUP 8=
11. IF ." storage exhausted " "ABORT THEN THEN
12.
13, ("<name> TEMP" gives next available address. Best
14. to define, e.g. LTEMP as LISTS TEMP)
15. : -
Blk # 4 File: tempsto.blk
g. \ Temporary Storage To level 11Feb88j jw
1.
2. CODE MARKED (— Al .. Ak k) - @ # CX MOV 1 # AX MOV
3. 'MARKS #) DI MOV @ [DI] BX MOV 2 # DI ADD
4, BEGIN DI INC DI INC AX BX TEST
5. @g<> IF @ [DI] PUSH €X INC THEN AX AX ADD
6. @= UNTIL CX PUSH NEXT C;
7.
8. CODE UNMARKED (— AL .. Ak k) @ # CX MOV 1 # AX MOV
9. 'MARKS #) DI MOV @ [DI] BX MOV 2 # DI ADD
19. BEGIN DI INC DI INC AX BX TEST
11. g= 1IF @ [DI] PUSH CX INC THEN AX AX ADD
12. @= UNTIL CX PUSH NEXT C;
13. ‘
14. \ These are used if the addresses point to storage to be
15. \ reclaimed. Marked addresses are still in use.
Blk # 6 File: tempsto.blk
#. \ Temporary Storage hi level 29Sep88jjw
1. '
2. : NO-ELSE DROP FALSE ; ' NO-ELSE CONSTANT NO-OP
3.
4, VARIABLE 'MARKS (holds base address of temp type)
5. VARIABLE ELSEWHERE (exec addr — search other than stack)
6. ‘ '
7. ¢ TEMP-STORAGE CREATE @ , (marks) NO-OP , (extended)
8. HERE 16 CELLS DUP ALLOT ERASE (addresses)
9. DOES> DUP 'MARKS ! CELL+ @ ELSEWHERE !
1a.
11. : MARKS 'MARKS @ ;
12, : ADDRESS { indx — addr) 2+ CELLS MARKS +
13. (ADDRESS is an array with indices #-15. The application
14. must fill in specific addresses from a storage area)

—>

76 The Journal of Forth Application and Research - 'Volume 6¢ Number 1
Blk # 7 File: tempsto.blk
@. \ Temporary Storage hi level , 11Febh88j jw
1.
2. : >ELSEWHERE MARKS CELL+ ! QUAN ADR VARIABLE MSK
3.
4, : INSTACK? (addr - f) IS ADR @ DEPTH 1
5. ?D0 I PICK ADR = IF DROP -1 LEAVE THEN LOOP
6. DUP NOT IF DROP ADR ELSEWHERE @ EXECUTE THEN ;
7.
8.
9. : COLLECT-GARBAGE @ MARKS ! 1 MSK ! (bit mask)
14. 16 4 DO I ADDRESS @ INSTACK?
i1. IF MARKS @ MSK @ ‘OR MARKS ! THEN
12. MSK @ 2* MSK !
13. Loor
14.
15. —>
Blk # 8 File: tempsto.blk
9. \ Temporary Storage hi level : 19Aug88j jw
1.
2. : GET-NEXT (— addr or &) MARKS @ . DUP -1 =
3. IF DROP @
4, ELSE 1 (mask) 16 @ :
5. DO 2DUP AND @= (unmarked bit)
6. IF OR MARKS ! I ADDRESS @ LEAVE THEN
7. 2%
8. Loop
9. THEN
1d.
11. : TEMP (— addr) GET-NEXT ?DUP @=
12. IF COLLECT-GARBAGE GET-NEXT ?DUP &=
13. ABORT" storage exhausted “ THEN ;
14.
15. ->
Blk # 9 File: tempsto.blk
g. \ Temporary Storage hi level 19Aug88jjw
1.
2. : MARKED (— Al .. Ak k ; marked addresses) @ MARKS @
3. 16 8 DO @ 2 UM/MOD SWAP
4. IF I ADDRESS @ -ROT SWAP 1+ SWAP THEN
5. LOOP DROP
6. :
7. : UNMARKED (— Al .. Ak k ; unmarked addresses) @ MARKS @
8. 16 8 DO & 2 UM/MOD SWAP @= .
9. ~IF I ADDRESS @ -ROT. SWAP 1+ SWAP THEN
19. LOOP DROP
11.
12.
13. \ These are used if the addresses point to storage to be
14.

\ reclaimed. Marked addresses are still in use.

