Little Universe:
a Self-Referencing State Table

Karl-Dietrich Neubert

Physikalisch-Technische Bundesanstalt
Berlin, Germany

Abstract

Little Universe is a self-referencing state table, providing an environment in which to embed
a multiplicity of alternative actions, procedures, equations or other objects. Essentially, it consists
of matrices, whose rows are called classes and whose columns represent states. Each matrix
element is considered to be an object, and a matrix is a world of objects. The set of all worlds is the
universe. An object not only is identified by its class-, state-, and world-names, but conversely is
aware of these coordinate values.

Introduction

Little Universe is a frame for implementing state tables for various kinds of applications. It
is universal in a twofold sense: first, it may be used in structuring small knowledge bases or active
systems with a high degree of flexibility; secondly, it provides a universal tool toimplement certain
coding structures with a uniform approach. We will first describe its logical structure and present
the essential words; finally, we present and discuss some typical applications.

Structure

Little Universe consists of worlds, created by WORLD=. Each world is a matrix. The columns
of this matrix are called states, and are created by STATE=. The world is set to any desired state
simply by invoking the state name. The rows of the matrix are called classes, and are created by
one of several class-defining words. Matrix elements can best be considered to be objects, because
these elements are unrestricted with respect to type: they can be actions, functions, variables,
constants, strings, or combinations of these. An object is activated by invoking its class name.
The word PROMPT activates the object of the current class in the current world and state. Since
rows and columns are identified by names and not by indices, the matrix can also be viewed as an
associative memory.

The number of states has to be defined in advance by use of a word STATES. In contrast, the
number of classes may be changed dynamically and is limited only by the resources at hand.

In a given vocabulary any name, i.e. world-, state-, and class-name, must be unique. We have
implemented the ability of each object to communicate its membership with respect to class,
state, and world. Furthermore, states and classes know from which world they descend. In physical
memory, the entire matrix need not occupy contiguous memory space, but the objects in any
single row, i.e., belonging to a given class, must.

The essential features of the underlying logical structure of Little Universe are shown in
Fig. 1. At each level, some auxiliary cells are created to hold cross-references. In particular, each

© 1990 Institute for Applied Forth Research, Inc.

Journal of Forth Application and Research Volume 6, Number 2

117

118 The Journal of Forth Application and Research Volume 6 Number 2

world carries a number of cells for monitoring the total number of its states, the address of the
current active state, the offsets of the last defined state and of the current active state relative to
the first defined state, and finally a pointer to the last selected class name. A central role in this
structure is played by the variable ORG (Origin) which holds the address of the current world. This
information is also accessible from each state and each class. ORG plays the role of a mailbox and
provides the path to environmental information with a minimum cost in memory cells. Fig. 1
also shows the sources of the available self-references, which are activated by the corresponding
words .CLASS, .STATE, and .WORLD. Where appropriate, these self-references are activated
automatically. By setting the Boolean value of the variable DISPLAY? to false, the screen display
of these self-references may be suppressed.

To round out this general description, we have provided the source code for Little Universe
as a text file in Appendix A, together with in-line comments. This version of Little Universe is
written in PC/FORTH from Laboratory Microsystems, Inc. (LMI). In Little Universe, all words
conform to the Forth-83 standard, except the still experimental words BODY> and >NAME, the word
PCKEY, which is used in one example to read an extended keyset, the word STRPCK, which converts
a string specified by address and length into a counted string, and some self explanatory words
for screen attributes.

As examples of class defining words, the words STRING=, VARIABLE=, CONSTANT=, FUNCTION=,
and MATRIX= are shown in Appendix A. Each of these defines a class of objects with common
operational action. These and similar classes may be used in very different contexts. Class defining
words that create more extended objects can also be envisaged, such as:

LITTLE /\ /\ |
UNIVE RS E Name Name Name

n
JWORLD .CLASS .STATE STATES
pfa offset: address offset #
<WORLD= +vs r current class current state current state last def. state of state
ORG

DOES> ose addr. current world

LSTATE= eoe ORG @ -t addr. offset
> —

DOES> oo

.CLASS= ees ORG @ | — OBJECT 1 OBJECT 2 soe OBJECT n
L) |
DOES> eee | INSTANCE

Fig. 1. Structure of Little Universe. Certain key information on constituent states is an integral part of each world, as
seen in the uppermost boxes. The address of the current active world is stored in the variable ORG. A reference to ORG
is part of each state and class object.

Little Universe: a Self-Referencing State Table 119

¢ COMPLEX= SPECIFY COMMON PROPERTY CREATE .. DOES> RECEIVE INFORMATION
TRANSFORM INFORMATION PERFORM ACTION SEND INFORMATION ;
The flexibility of Forth allows one to implement almost any conceivable run-time action of an
object.
As an overview of Little Universe, its user vocabulary is listed in Appendix B, with
accompanying notes on usage. '

Sample Applications

Executable code is provided in Appendix C to illustrate various applications. To use Little
Universe, one must first define a world. Then the world must be activated and the number of
states in this world must be specified. At least one state must be defined and activated before a
class may be defined. Further states can then be defined. These different actions may be
intercepted by any other Forth words. In particular, one may alternate between different worlds
during asession. The correct world is set automatically, if not specifically set by the user. Similarly,
objects of different worlds can be activated by the user without providing the world specification.

. The first two examples below are intended to demonstrate the basicapproach forimplement-
ing a small knowledge base or a small active system. The remaining examples illustrate that
various standard code structures may be viewed under one common aspect, namely as specific
applications of Little Universe. Furthermore, to make the vocabulary more relevant, we intro-
duce in the examples appropriate synonyms in place of the standard wordset of Little Universe.
Obviously, the introduction of such synonyms is not essential to the execution of the code.

Example 1: a knowledge base

This example represents a knowledge base that provides information on two planets in a
world named PLANETS. In addition to the classes COLOR and #SATELLITES, arbitrarily many other
classes with various properties may be defined. With the given definitions, the user will be
rewarded with the requested information by typing EARTH COLOR or MARS COLOR.

Even though with Little Universe we have only one matrix at our disposal for each world,
extensive systems may be built. Consider an universe of say four worlds with 40 states and 40
classes each, then there are already 6,400 objects at hand, some of which may be by themselves
matrices of arbitrary size. Nevertheless, only 320 words would be added to the Forth vocabulary!
By using different vocabularies, several such universes may be defined concurrently. One may
view each vocabulary, each world, and each state as a node in a hierarchical structure, which then
has four levels, when classes are also considered as a level. With some loss of simplicity, Little
Universe may be extended to model hierarchical structures of still greater depth. For example,
to represent different worlds as different states of a class WORLDS= would require the generaliza-
tion of the variable ORG to a vector, to hold state information of additional levels.

Example 2: an active system

This example differs from the first example in the type of classes used. Here the classes are
functions. In addition, these functions accept control parameters at runtime. These functions are
intended to represent particular real-time action performed by some machinery. In the world
ELEVATOR, the command 6 UP GO activates an elevator to go up 6 units, 5 DOWN GO to go down 5
units. This example represents a wide range of possible applications. In medical instrumentation,
it could represent a heart-lung machine interpreting instructions differently under different
patient conditions. In the field of robotics, it could represent a robot behaving differently in
different environments. Furthermore, if a class CLASS= SENSE-ENVIRONMENT SET-STATE is imple-
mented, the robot will be able to monitor the environmental condition continuously and
automatically set the appropriate environmental state.

120 The Journal of Forth Application and Research Volume 6 Number 2

Example 3: deferred definitions

In Little Universe a class created by FUNCTION= may be referred to before it is initiated. We
take advantage of this fact in the case of deferred definitions. We use the class FUNCTION= under
the synonym DEFER and initiate the function using the synonym RESOLVE for COIN. Since the
number of rows in the state table is unlimited, arbitrarily many deferred definitions may be
handled this way.

Example 4: vectorization

Vectorization is a preferred method in Forth when one wants to use identical code in
changing situations or for different purposes. In the given example, TELL will print different
sentences depending on whether the current active vector component is VEC1, VEC2 or VEC3.

Example 5: the case construct

The case construct may be implemented in two ways, either as an ... IF ... THEN structure or by
use of a state table. In the first way, the conditional branch to be performed depends on the
numeric value of a variable. In Little Universe, the action to be taken is the direct execution of
a state-dependent named operation. This allows a straightforward solution to an otherwise
complex situation.

As an illustration, consider the problem of designing a hot-key mode for the keyboard. We
want the response action to depend on the pressing of two keys: the first key should be any key
from F1 1o F10, the second key any capital letter. This lets the computer user choose any one of
260 different actions quickly with only two keystrokes; such efficiency may be required in a critical
situation. The Little Universe solution is given in example 5. First, we define a word HOT which
initiates a key request which runs indefinitely until the ESC key (ASCII code 27) is detected.
Further, it maps by a constant shift the numeric codes of keys F1 to F10 onto the numeric codes
of the letters a, b, ¢, ..., and interprets these codes as strings with the value a, b, ¢, ..., so that
they can be searched for in the Forth dictionary. Next, in a world CASES, we define under the
synonym CASE the states a, b, ¢, ..., and assign to each capital letter for each CASE the required
action. In example 5, this is shown for the letter @ and W. These few steps are all that must be done
to make HOT to perform according to the set of specifications: if F1 has been pressed, Q takes one
particular action; if F2 has been pressed, Q performs some other action; and so on. Compare this
solution to a solution of the form ASCII F1 = SHAP ASCII Q = AND IF .. THEN for large sets of hot-key
combinations!

Note that in the frame of object-oriented programming the problem of transforming
numerical values to callable string names may be quite general. It may not always be easy to find
a mapping which is straightforward and at the same time produces meaningful names to use as
case names.

Example 6: local variables

The quest for local variables seems to have its source in the convenience of using variable
names from the “main” program in callable subroutines or words as well, without clashes. A
further justification of local variables is to avoid cluttering the dictionary with names which are
only of local usage. In the world LOCALS, the number of states is the anticipated number of Forth
words where local variables may be needed. Thien, using the synonym LOCAL for VARIABLE=, we
may define arbitrarily many local variables. For example, if one has 26 LOCAL uses occurring in
30 Forthwords, W1, W2, W3, through W34, then one can use a total of 600 independent local variables
at the cost of only 50 dictionary entries. This method is also very memory-efficient, in that
VARIABLE= creates a constant overhead independent of the number of states.

Litile Universe: a Self-Referencing State Table ,) 121

In strict usage, the value of a local variable is allowed to be lost once the subroutine is exited.
If one intends to use this kind of local variable, then two states are sufficient: one for the “main”
program and the other for the subroutines. It might be attractive to coin names for the two states
such that the syntax reflects the particular locality of the variables. In the example, STATE=} refers
to the main program, STATE= { refers to the subroutines.

Summary

Little Universe is an environment for creating state tables in a wide range of applications. It
is easily extended to cover the needs of special applications. These tables are indeed state tables
in the technical sense used by Brodie [1], but have a greater functionality. Further, they exhibit
self-referential features, as described by Smith [2], in that they refer to their own internal state
and their location in the universe. Some of the examples given provide alternative solutions to
problems discussed in recent issues of Forth Dimensions.

Acknowledgment

Special thanks to my colleague Christopher McManus, who recast the phrasing of this paper
to increase its readability. His discussions over the paper’s substance has also improved its
content.

References

[1] Leo Brodie, Thinking Forth, a Language and Philosophy for Solving Problems, Prentice-
Hall, Englewood Cliffs, NJ, 1984. P. 219.

[2] B.C. Smith, “Self-Reference,” Encyclopedia of Artificial Intelligence, editor Stuart C.
Shapiro. John Wiley and Sons, New York, 1987. Vol. 2.

Dr. Karl D. Neubert received a M.Sc. in Physics from Case Western Reserve University in
Cleveland, Ohio in 1960 and a Ph.D. in Physics from the Technical University of Berlin, West Germany
in 1969. He has spent several years in solid state research, especially studying the mechanical and
electrical properties of silicon, and presently leads a laboratory at the Physikalisch-Technische
Bundesanstalt in Berlin where they are developing a body function simulator for testing medical
instrumentation. His other interests include parallel computing and expert systems, for which Forth
is a promising alternative to other tools.

122 The Journal of Forth Application and Research Volume 6 Number 2
APPENDIX A : Source Code
: TITLE CLS
15 5 GOTOXY ." Little Universe: "
15 7 GOTOXY ." a Self-Referential State-Table Environment "
15 9 GOTOXY ." Copyright 1988, K.D.Neubert "o
TITLE
(S —— VARIABLES === = e mmmmmmmm e)
CREATE ORG 0 , (reserved for world address)
CREATE EXECUTE? 1 , (1: execute, @: specify function)
CREATE DISPLAY? 1 , (1: display, @: suppress display)
(A DIAGNOSTIC WORDS —---memmmmmmmemmmmeme e)
¢ NAME (pfa --- type < name >) (pfa --> type name)
BODY> >NAME COUNT :
63 AND (mask off the 3 MSB)
SPACE TYPE SPACE ;
: JWORLD (---)
CR ." current WORLD is " ORG @
REVERSE NAME REVERSE SPACE ;
: STATE? (---)
ORG @ 4 + @ @= IF ABORT" no STATE activated " THEN ;
: .STATE (---)
STATE?
CR ." current STATE is " ORG @ 4 + @
INTENSITY NAME -INTENSITY
7XY SWAP DROP 32 SWAP GOTOXY ;
s JH#STATES (---) (. how many states are not defined ?)
WORLD ." with " ORG @ 2+ @2/ . ."of "ORG @ 6 + 0 .
.M STATES still to be defined " ;
+ STATES? - (---) (is # of states specified ?)
DISPLAY? @ IF
WORLD
ORG @ 6 + @ 9= IF
INTENSITY ." assign n STATES , n > @ ! " -INTENSITY
THEN
THEN
: .CLASS (---)

ORG @ 8 + @ §= IF ABORT" no CLASS activated " THEN
CR ." current CLASS is " ORG @ 8 + @
INTENSITY NAME -INTENSITY SPACE ;

Little Universe: a Self-Referencing State Table

123

: CLASS! (pfa --- pfa)
DUP ORG @ 8 + | ; (keep pfa for later reference)
: WORLD?! (pfa --- pfa)
DUP @ DUP ORG @ <> IF
ORG ! (set current world)
DISPLAY? @ IF .WORLD THEN
ELSE DROP THEN ;
: COORDINATES (pfa --- pfa)

WORLD?!
DISPLAY? @ IF .STATE THEN
CLASS!
(—memmmmmm e STRUCTURING WORDS -----—cmommmmmmeeo)
¢ WORLD= (name) (arbitrarily many definitions)
CREATE @ , (offset of last selected STATE)
g, (offset of last defined STATE:)
g, (address of last selected STATE)
g, (total # of STATES)
‘ g, (pfa of last selected CLASS)
DISPLAY? @ IF .WORLD THEN - (reminder to activate world)
DOES> (---)
ORG !
STATES?

s STATES (# of ---) (assign # of STATES in current WORLD)
ORG @ 6 + @ 9> IF ABORT" already assigned ! " THEN
DUP 2* ORG @ 2+ ! ORG @ 6 + ! ;

s STATE= (name) (# of STATES definitions)
ORG @ 2+ @ 1 < IF ABORT" definitions exhausted ! " THEN
-2 ORG @ 2+ +!
CREATE ORG @ , ORG @ 2+ @ , (address of world-name,)
(offset with respect to)
DOES> (---)
WORLD?!
DUP ORG @ 4 + !
2+ @ 2+ ORG @ !
WORLD= VAST VAST TITLE (default setting for world)
(S — OBJECT ACTIVATING WORD =--mmcmmmmmmmeme)
: PROMPT (---) (activate object)

DISPLAY? @ IF .CLASS THEN
ORG @ 8 + @ BODY> >NAME COUNT 63 AND
STRPCK FIND DROP EXECUTE ;

124 The Journal of Forth Application and Research Volume 6 - Number 2

(O CLASS CREATING WORDS --=----=-mmmmmmmmee)
: VARIABLE= (name) (create variahle)
STATE? -
CREATE ORG @ , ORG @ 6 + @ § DO & , LOOP
DOES>
COORDINATES
DUP @ @ + ; (-- addr)
¢ FUNCTION= (name) (create function)
STATE?
CREATE ORG @ , ORG @ 6 + @ @ DO ['] NOOP , LOOP
DOES>
COORDINATES
DUP @ @ +
EXECUTE? @ IF @ EXECUTE (execute function)
ELSE ! (specify function)
1 EXECUTE? !
THEN
¢ COIN (COIN < predefined word name > < function name >)

@ EXECUTE? !

¢ CONSTANT= (name) (create constant)
STATE?
CREATE ORG @ , ORG @ 6 + @ 2* 1- 9 DO @ , LOOP

(set fields for constants and marks to zero)

DOES>
COORDINATES
DUP @ @ + DUP @
IF @ (--n) (get constant)
ELSE
DUP ORG @ 6 + @ 2* + DUP @ (inspect mark field)
IF DROP @ (--n) (constant is @ !)
ELSE 1 SWAP ! (set mark field)
' (n--) (set constant)
THEN
THEN
¢ STRING= (name) (create string constant)
STATE? v
CREATE ORG @ , ORG @ 6 + @ & DO & , LOOP
DOES>
COORDINATES
DUP @ @ + DUP @ IF @ (string addr)
COUNT TYPE (type string)
ELSE
HERE SWAP ! (set field to HERE)
DUP HERE OVER C@ 1+ CMOVE (move string to HERE)
C@ 1+ ALLOT (update HERE)

THEN

Little Universe: a Self-Referencing State Table 125

: BOUNDS? (n n pfa ~--) (used in MATRIX=)
(to check upper bounds of indices)
>R 2DUP
RO 2+ @ 1- > SWAP R@ 2+ 2+ @ 1- > OR IF
." index overflow : "
R>2+ 20 . ." x" ., ." matrix ! " ABORT
ELSE R> THEN ;
¢+ MATRIX= (nl n2 .. name (create nl x n2 matrix)
STATE?
CREATE ORG @ , 2pUP , ,
ORGR6 +@@D0O2DUP *1+ I *ORGR@ 6 +@+ 3+ 2%, LOOP
(produce pointers to matrices)
ORG @ 6 +@ @ DO 2DUP DUP , * @ DO @ , LOOP LOOP 2DROP
(set matrix elements to @)
DOES> (#y #x -- addr) (indices from 8,0 to nl-1,n2-1)

COORDINATES
BOUNDS? (check indices)
DUPDUP @@ +4+0@+ (addr of first matrix elem.)

DUP @ ROT * ROT + 2* + 2+ 3 (addr of #y,#x matrix elem)

126

The Journal of Forth Application and Research Volume 6

Number 2

APPENDIX B : User Vocabulary

(STRUCTURING WORDS
WORLD= < name > define world
< name > activate world
n STATES assign # of STATES
STATE= < name > def. state in current world
< name > activate state
OBJECT ACTIVATING WORD
PROMPT activate objekt of current class
in current state of current world
)
(CLASS DEFINING WORDS
VARIABLE= < name > define variable
n < name > | assign n to variable
< name > @ get value of variable
FUNCTION= < name > define function
COIN ,< predef. name > < name > specify function
< name > execute function
CONSTANT= < name > define constant
n < name > assign n to constant
< name > place constant on stack
STRING= < name > define string constant
" xxx " < name > assign xxx to string
< name > display string
nl n2 MATRIX= < name > define nl x n2 matrix
n #y #x < name > 1 assign n to element #y #x
#y #x < name > @ get value of #y #x element
#y,#x = 9,8 to nl-1,n2-1
)
(DIAGNOSTIC WORDS
+WORLD display name of current world
.STATE display name of current state
.CLASS display name of current class
+#STATES display the # of states still
to be defined in current world
1 DISPLAY? ! automatic display of diagnostics on !
@ DISPLAY? ! automatic display of diagnostics off !

Little Universe: a Self-Referencing State Table 127

APPENDIX C : Examples
@ 23 GOTOXY .(press any key to load EXAMPLES) KEY DROP

@ DISPLAY? !

[Example 1 =—--c-cemmmmmmmmmemeoo)
WORLD= PLANETS PLANETS 9 STATES
STATE= MERCURY STATE= VENUS STATE= EARTH STATE= MARS (etc.)
MARS STRING= COLOR CONSTANT= #SATELLITES

" This is the blue planet. " COLOR 2 #SATELLITES
EARTH " This is the green planet. " COLOR 1 #SATELLITES
e Example 2 —-=-—cm—mmmmmmmmmmee o)
T up {(n---) @ Do I.L00P :
¢t down (n---) DUP @ DO DUP I - . LOOP DROP ;
: alarm (n <=~) 100 * 20 BEEP ;
WORLD= ELEVATOR ELEVATOR 3 STATES
STATE= UP STATE= DOWN STATE= ALARM
up FUNCTION= GO . VARIABLE= SPEED

COIN up GO S SPEED !
DOWN COIN down GO _ 10 SPEED !
ALARM COIN alarm GO ’ @ SPEED !
(——mmmmmm e Example 3 —---—cmmmm e)

¢ DEFER FUNCTION= ;
¢ RESOLVE COIN ;

WORLD= ANY ANY 10 STATES
STATE= ANY-ONE
ANY-ONE DEFER INSIGHT)
INSIGHT (no action performed)
+ SOLUTION ." This was evident. " ;
RESOLVE SOLUTION INSIGHT
INSIGHT (SOLUTION is executed)

(T Example 4 —-cmmmmm e)
ESTIMATE ." Every activity takes more time than you have. "

¢ SIMPLIFY ." Nothing is ever as simple as it first seems. "
: CLARIFY ." Every clarification breeds new questions. "

¢ VECTOR FUNCTION= ;

WORLD= VECTORIZATION VECTORIZATION 3 STATES
STATE= VEC1 STATE= VEC2 STATE= VEC3
VEC1 VECTOR TELL

COIN ESTIMATE TELL
VEC2 COIN SIMPLIFY TELL
VEC3 COIN CLARIFY TELL

128 The Journal of Forth Application and Research Volume 6 Number 2

[Example 5 -—=-=-=-m—cmmommmme e)
: HOT (---) (initiate hot key mode)
BEGIN
PCKEY ?DUP &= IF (request key, special key ?)
38 + THEN (map F1...F19.. onto a...j..)
DUP 27 = IF
DROP QUIT THEN (quit hot key mode on ESCAPE)
PAD ! PAD 1 STRPCK (prepare string for FIND)
FIND IF EXECUTE (execute string)

ELSE ."™ not defined " DROP THEN
?XY 24 = SWAP 64 > AND IF CLS THEN
AGAIN ;

: case STATE= ;

WORLD= CASES CASES 10 STATES
case a case b case c case d (etc)
a STRING= @ STRING= W (etc)
" Who are you? " b " What are you ? "Q
¢ "“Why areyou? " Q d ™ How are you ? "qQ
a " Wer bist Du? "W b ™ Was bist Du ? "W
¢ " Warum bist Du ? " W d " Wie geht es Dir 2 " W
T e Example 6 --—=----——c-mmmmmmm e)
s LOCAL VARIABLE= ;
WORLD= LOCALS LOCALS 39 STATES

STATE= WL STATE= W2 STATE= W3 (etc.)
W1 LOCAL xi LOCAL xj LOCAL xk

STATE= } STATE= { (define states "main","subroutine")
}. (set "main" as default state)

¢ MAIN-1 42 xi ! ;
: SUB { (set "subroutine" state)

24 xi !

} (reset to "main" state)

: MAIN-2 xi @ . ;
MAIN-1 SUB MAIN-2 (prints 42)

Little Universe: a Self-Referencing State Table 129

(———- RUN some EXAMPLES ————-)

1 DISPLAY? !

CR .(press any key to run some of the EXAMPLES) KEY DROP CLS
MARS #SATELLITES .CLASS . COLOR

Uup SPEED .CLASS @ . 12 GO

PLANETS PROMPT .#STATES DOWN 6 GO

TELL VEC2 TELL ALARM 28 GO UP VEC1
CR CR .(Try yourself:)

CR .(enter HOT enter FLQW FA QU Esc)
CR .(enter COLOR 12 GO EARTH PROMPT TELL ANY PROMPT)
CR .(enter PODISPLAY? ! and try examples -)

()

