A FORmula TRANSslator for Forth

J.V. Noble v -
Institute for Nuclear and Particle Physics
University of Virginia
Charlottesville, Virginia 22901

Abstract

This paper discusses problems in automating the translation of FORTRAN expressions into
Forth code. To avoid multiple passes, the translator recarsively decomposes a complex expression
into simpler sub-expressions residing on an expression stack, with corresponding arithmetic
operators residing on a parallel operator stack. When the top of the stack can no longer be
decomposed, its code is emitted. The program has finished when the stack is empty. The stack-
based parser seems simpler both in concept and execution than the trees usually advocated in
compiler design.

1. Introduction

In a recent article [NOBLS88] I celebrated the imminent demise of FORTRAN, claiming
Forth is the only modern programming language able to supplant FORTRAN in scientific
computing. Even Forth apologists may find this claim extravagant, since Forth is reputedly more
suited to machine control and interfacing than to number crunching [DUNCS8]. However, with
numerical calculations delegated to specialized dedicated coprocessors, computation in any
language becomes an exercise in machine control and interfacing, Forth’s acknowledged metier.

One of Forth’s virtues — shared with some C’s and Pascals — is its ability to interspetse
high-level and assembler language. This feature permits simple, efficient, machine-specific
optimizations while maintaining portability.

Extensibility is a second virtue. While C, Pascal Modula-2 (and now some BASICs) enable
programmers to define new data structures, only Forth, to my knowledge, defines new operations
(and operators) on the same footing as the old ones. Thus, e.g., it proved easy to supplement
integer operators (+ - * /) with floating-point (F+ F- F* F/)or complex (X+ X- X* X/)ones.
In fact, so far as I know, only Forth among compiled languages rivals FORTRAN in the graceful
extension of arithmetic to the complex number field.

Forth seems to me more pleasant than FORTRAN in several respects: first, compilation is
both immediate and incremental hence testing and debugging proceed in tandem with program
design (an example will be given below). Second, Forth enforces good structure because it lacks
statement labels and GOTO’s. Its control and looping arrangements are simpler and more logical
than FORTRAN’s. Finally, Forth’s simplified subroutine linkage mechanism imposes little
calling overhead and thereby encourages fine-grained decomposition into short definitions.

Nevertheless, FORTRAN — despite its manifold deficiencies relative to Forth — contains
a useful and widely imitated invention that helps maintain its popularity despite competition
from more modern languages. This is the FORmula TRANslator from which the name
FORTRAN derives.

© 1990 Institute for Applied Forth Research, Inc.

Journal of Forth Application and Research Volume 6, Number 2

131

132 The Journal of Forth Application and Research Volume 6 Number 2

Forth’s lack of a formula translator is keenly felt. Years of scientific Forth programming have
not entirely eliminated my habit of first writing a pseudo-FORTRAN version of a new algorithm
before reexpressing it in Forth. Realizing this, I have written a Forth formula translator to
supplement the scientific Forth lexicon I have described elsewhere [NOBL??]. My aim was to
maintain portability by employing only the standard Forth kernel. This article describes a Forth
program, FORTRAN.3, that converts a FORTRAN formula to Forth code.

Clearly, the Forth formula translator could become the kernel of a more complete
FORTRAN -» Forth filter. Although my original aim was to write a full cross-compiler, I have
(subsequent to writing the present article) only so far augmented the formula translator with
routines to translate FORTRAN DO loops and logical IE..THEN... ELSE...ENDIF statements
into their Forth equivalents. The substantial effort and (in my opinion) limited utility of
extensions to translate obsolescent and unstructured FORTRAN constructs such as assigned and
computed GOTO’s, EQUIVALENCE, COMMON and block COMMON, and arithmetic IF’s,
have discouraged me from tackling an ANSI standard FORTRAN cross-compiler. The formula
translator of this article is therefore intended for quick-and-dirty translation of single formulae;
with the understanding that a user will ultimately edit the resulting Forth code for style and
efficiency. Although some hand work is therefore needed, the incompleteness of the Forth
formula translator has not materially hindered my porting several standard FORTRAN library

routines.

The radical differences in the ideal forms of Forth and FORTRAN programs also discourage
further extensions: stylistically acceptable FORTRAN usually translates into stylistically
mediocre Forth or worse (even when no loss of execution speed is incurred). FORTRAN
subroutines tend to be long and poorly factored, as noted earlier [NOBL88]. Forth, conversely,
can be made almost self-documenting and quite readable, with only moderate effort in choosing
names. The program fragments in the text, and the full listing in Appendix Cillustrate this aspect
of Forth.

The general principles of compiler writing are of course well understood and have been
described extensively elsewhere. Several computer science texts expound programs for formula
evaluators, e.g, [KRUS87]. The interest of the translator described here lies more in the
surprisingly large amount of detailed information about FORTRAN that must be incorporated
in the program than in the principles embodied in the compiler itself.

To see how to proceed, let us translate a FORTRAN formula into Forth code by hand. For
simplicity, we eschew integer arithmetic and assume all literals will be placed on the floating
point stack (fstack). Similarly we assume all variable names in the program refer to FVARS (see
Appendix A). A word that has become fairly standard is %, which interprets a following number
as floating and places it on the fstack. With these conventions, we see that we shall want to
translate an expression like

A = —153E7T*EXP(7/X) + Z/(W—-SIN(THETA*P1/180)/4) (¢))
into Forth code something like this (for convenience we give a glossary of unfamiliar floating-
point words in Appendix B):

%4 %1808 F=PI F\ THETA F* FSIN F\ W FR-
ZF\ X%7F\ FEXP % -15.3E7 F* F+ ISA
FORTRAN.3 is invoked with >FTH, as in

>FTH ?
=-15.3E7*EXP(7/X)+2/ (W-SIN(THETA*PI1/180) /4); ok
and emits the code

ST

A FORmula TRANslator for Forth 133

FEXP

% -15.3E7 F*

F+

IS A ;
which is similar to, and functionally identical with, the hand-coded version. (The word PI is
synonymous with F=PI: it seemed simpler to make it so than to include code to recognize PI as
an operator rather than a variable name.) '

Section 2 below lists the FORTRAN rules that the translator must preserve. Following these

rules, we work out in §3 the algorithm used to achieve the above translation. Section 4 describes
the data structures and their associated operators used in the implementation of the algorithm,
and §5 details the actual code.

2. The rules of FORTRAN

A FORTRAN expression obeys the rules of algebra in a generally obvious fashion. Paren-
theses can be used to eliminate all ambiguity and force a definite order on the evaluation of terms
and factors. However, to reduce the number of parentheses, FORTRAN adopted a hierarchy of
operators that has been followed by all other languages that incorporate semi-algebraic replace-
ment statements like Eq. 1 above. The hierarchy, in decreasing order of priority, is

0. FUNCTION

1. EXPONENTIATION (~ or **)
2. *%or/

3. +or—

4., (argument separator in lists)

Our eventual algorithm must enforce these rules. It must also have rules for resolving
ambiguities involving operators at the same level. Thus, e.g., does the fragment
A/B*C
mean A/(B*C) or (A/B)*C ? Many FORTRAN compilers follow the latter convention, so we
should maintain this tradition.

A second issue is the FORTRAN function library. The formula translator must recognize
functions, and be able to determine whether a given function is in the standard library. Thus

FORTRAN.3 recognized EXP and SIN as standard library functions and emitted the requisite

Forth code that invokes them. A beauty of Forth is that there are several easy ways to accomplish
this, using components of the Forth kernel.

A third issue is the ability of a true FORTRAN compiler to perform mixed-mode arithmetic,
combining INTEGER*2, INTEGER *4, INTEGER*8, REAL*4, REAL*8, COMPLEX*8 and
COMPLEX*16 types ad libitem. FORTRAN does this using the information contained in the
type declarations at the beginning of a routine. A pure formula translator has no such noncon-
textual information available to it, hence has no way to decide how to insert the proper Forth

134 The Journal of Forth Application and Research Volume 6 Number 2

words during compilation. One way around this is the use of generic operators such as described
below, that make the decision at run-time. As we shall see, this approach has advantages and
disadvantages relative to classic FORTRAN compilers.

3. Parsing

Let us hand-parse the expression Eq. 1, reproduced below:

A=~153E7T*EXP(7/X)+Z/(W—-SIN(THETA*PI/180)/4) ¢))
The first and most obvious thing to do is split at the “=" sign, and interpret the text to its left
as a variable name. Since we want to emit the code IS A last, yet have parsed it first, we have to
hold it somewhere. Clearly the buffer where we store it will be a first-in last-out type; and by
induction, last-in, first-out also. But a LIFO buffer is a stack. Hence the fundamental data
structure needed in a parsing algorithm is a stack whose elements are strings. So we might
imagine that after the first parsing step the string stack contains two strings, as in Fig. 1 below.

$STACK Notes

ISA \last line of code
—153E7*EXP(7/X)+Z/(W—SIN(THETA*P1/180)/4) \everything else

Fig. 1 The stack used to parse a FORTRAN expression

Following the rule that the lowest priority operator is “+* or “—? (this example contains no
commas), we se¢ that the top expression should be broken at the + sign between “)” and Z. We
should think of the two sub-expressions

—153E7*EXP(7/X)
and
Z/(W—SIN(THETA*P1/180)/4)

as numbers on the fstack; hence their code should be emitted before the addition operator (that
is, these expressions are higher on the string stack than the addition operator F+). The $stack
now looks like Fig. 2. We may anticipate a new problem: suppose we have somehow — no need
to worry about details yet — emitted the code that represents the expression labelled “new
TOS” in the Figure. Then we would have to parse the line —15.3E7*EXP(7/X) F+ . Assuming
the program knows how to handle the first part, —15.3E7*EXP(7/X) , how will it deal with the

F+? We do not want to use the space as a delimiter (an obvious out) because this will cause
trouble with IS A.

- $STACK Notes
ISA \ last line of code
—15.3E7*EXP(7/X) F+ \ this has the F+

Z/(W-SIN(THETA*P1/180)/4) \new TOS
‘ Fig. 2 The stack after splitting at +

The difficulty came from placing F+ on the same line as

—153E7*EXP(7/X) .
What if we had placed it on the line above, as in Fig. 3? Eventually we realize this solution
merely exchanges the problem for another of equal difficulty. How do we distinguish a factor
or term (“atom”) that contains no more mathematical operators or functions —and is therefore
ready to be emitted as code — from the operator F+ , which contains a “+” sign? Now we need
complex expression recognition, which will lead to a slow, complicated program.

A FORmula TRANslator for Forth . 135

$STACK Notes

ISA \last line of code
F+ \put F+ here
—153E7*EXP(7/X) \ this has no F+

Z/(W—SIN(THETA*PI/180)/4) ~ \new TOS
Fig.3 The stack after splitting at + (second try)

* When this sort of impasse arises (and I am pretending it had been realized early in the design
process, although the difficulty did not register until somewhat later) it signals that a key aspect
of the problem has been overlooked. Here, we have not properly distinguished Forth words from
FORTRAN expressions. By putting them in a common string we have, in effect, mixed disparate
data types (like trying to add scalars and vectors). Worse, we discarded too soon information that
might have been useful at a later stage. This leads to a programming tip, a la Brodie [BROD84]:

TIP: Never discard information. You might need it later.
Phrased this way, the solution becomes obvious: keep the operators on a separate stack, whose
level parallels the expressions. So we now envision an expression stack and an operation stack,
which we call E/S and 0/$ for short. Let us recapitulate the parsing steps taken so far, but on
the two stacks, shown in Fig. 4.

E/S 0/S Notes

ISA NOP
—153E7*EXP(7/X)+Z/((W—SIN(THETA*PI/180)/4) ~ NOP \step1
IS A NOP
—153E7*EXP(7/X) F+
Z/(W—SIN(THETA*PI/180)/4) NOP \step2

Fig. 4 Parsing with two stacks.

Let us pause briefly to explain the NOP that appears on the 0/S. Since we want to keep the
stack levels the same (50 we do not have to check both when POPping off code strings) it is easier
to puta nooperation code on the 0/ to balance a string on the E/S. The top of the 0/S will usually
have a NOP. But NOP’s can appear elsewhere, if needed.

We are now ready to proceed to Step 3: notice that there are no more exposed (in this context
“exposed” means “not contained between parentheses”) “+” or “—” operators. The only “—”
signs are either a leading “— in the second line from TOS (unary operator — it needs special
treatment) and a “—” buried within parentheses (TOS). But there are exposed operators at a
higher priority-level: the “/” in the TOS. So we split the top string at this point, issuing a
reverse-divide instruction F\ (the reason for a reverse-divide is explained below) and putting the
left and right sub-expressions on the E/S as shown in Fig. 5. A little thought now explains why
the F\ instead of F/. The number that the expression (W—SIN(THETA*P1/180)/4) evaluates to
will be sitting on the fstack. Then Z will be pushed, but we want Z divided by Next-On-Stack,
rather than the opposite. (If the math co-processor has no direct machine-instruction for F\, we
can define it it as FSWAP F/.)

E/S 0o/S
ISA NOP
—153E7*EXP(7/X) F+
zZ R

(W-SIN(THETA*PI/180)/4) NOP

Fig. 5 Parsing the divide operator.

136 The Journal of Forth Application and Research Volume 6 Number 2

The parentheses around the expression on TOS serve no purpose, so drop them:

E/S 0/s
ISA NOP
—153E7*EXP(7/X) F+
V4 R
W-SIN(THETA*P1/180)/4 = NOP
The top expression now has an exposed “—” sign, so the hierarchy of operators tells us to split
at that point. This gives Fig. 6.
E/S 0/S
ISA NOP
—153E7*EXP(7/X) F+
Z R
W F+

—SIN(THETA*PI/180)/4 NOP
Fig. 6 Parsing an embedded “~—" as F+ and LEADING-

Here is another decision needing clarification. Why issue F+ and keep the “—" sign with
SIN in Fig. 6? The reason is simple: Any Sth grader can tell the difference between a “—” binary
operator (binop) and a “—” unary operator (unop) in an expression. But, while not impossible,
it is unnecessarily difficult to program this distinction. The Forth philosophy is “Keep it simple!”
Simplicity dictates that we embrace every opportunity to avoid a decision, such as that between
“—” binop and “—" unop. The algebraic identity

X=-Y=X+(-Y) 3]
lets us issue only F+, as long as we agree always to attach “—” signs as unops to the expressions
that follow them. Eventually, of course, we shall have to deal with the distinction between
negative literals (—15.3E7, e.g.) and negation of variables. The first we can leave alone, since
the literal-handling word FLITERAL (or %) surely knows how to handle a unary “—" sign; whereas
the second case will require us to issue a strategic FNEGATE.

A consequence of this method for handling “~” signs is that the compiler will resolve the
ambiguous expression

XY =~-X"Y)or (-X)"Y
in favor of the latter alternative. If the former is intended, it must be specified with explicit

parentheses. By the way, failure to resolve such ambiguities is one of the little ways FORTRAN
code that works with one compiler can develop bugs with another.

The next exposed operator is “/”, giving

E/S _ 0/S
ISA- NOP
—153E7*EXP(7/X) F+
Z R
w F+
—SIN(THETA*P1/180) R

4 NOP

A FORmula TR ANslator for Forth

137

The parsing has now reached a turning point: the top expression on the E/S can be reduced
no further. The program must recognize this and emit the corresponding line of code:

% 4 \send FORTH
The stacks now look like this:

E/S O/S

ISA NOP

—153E7*EXP(7/X) F+

Z R

w F+

~SIN(THETA*PI/180) F\

As predicted, the translation has reached the pointwhere the leading “—” preceding SIN() must
be dealt with. We want the decomposition of

—SIN(THETA*P1/180)

to lead to the stack

E/S 0/S

ISA NOP

—153E7*EXP(7/X) F+

Z | 2

W F+

NOP R

NOP FNEGATE

, SIN(THETA*PI/180) NOP
To preserve the proper ordering on emission we will want a word LEADING- that puts the token
for “FNEGATE” on the 0/S and moves the string
SIN(THETA*P1/180)
to the TOS, issuing a NOP on the E/S. (We show explicit NOP’s on the E/S for clarity, but in
operation the program will emit only blanks in the stream of Forth code.)

The function recognition code must now recognize SIN(THETA*PI/180) as a function, and
decompose it as

E/S . O/S

ISA NOP
—153ET*EXP(7/X) F+

Z |

W F+

NOP R

NOP FNEGATE
NOP FSIN
THETA F*

PI/180 NOP

138 The Journal of Forth Application and Research Volume 6 Number 2

Continuing, we find the successive stacks and Forth code emissions

E/S O/S
ISA NOP
—15.3E7*EXP(7/X) F+
Z R
W F+
FNEGATE R
NOP$ FSIN
THETA F*
PI R
80 NOP
% 180 \send FORTH
PIR
THETA F*
FSIN
FNEGATE R
WF+
ZR o
E/S 0/S
ISA NOP
NOP$ F+
—15.3E7*EXP(7/X) NOP
E/S O/S
ISA NOP
NOP$) F+
-15.3E7 F*
EXP(7/X) NOP
E/S 0O/S
ISA NOP
NOP$ F+
=15.3E7 F*
NOP$ FEXP
71X NOP
E/S V' OfS
ISA NOP
NOP$ F+
—15.3E7 F*
NOP$ FEXP
7 R
X o NOP_
X \send FORTH
% TR\
FEXP
% —15.3E7 F*
F+
ISA

We can derive the parsing rules from having observed the steps in the translation.

A FORmula TRANGslator for Forth 139

1. An expression can be either simple or complex. A simple expression contains no arithmetic
operators, except in floating-point exponents and leading “~—” signs. Simple expressions
contain no parentheses (or commas, which we use to delineate arguments).

2. If the TOS expression is simple, POP the E/S and 0/$, emitting the corresponding Forth
code.

3. If the TOS is complex, is it a function? A function is defined as a string containing no
exposed operators and ending in “)” , in which the character immediately preceding the
first “(” is not an arithmetic operator.

4. If the expression is a function, decompose into a function name and an argument string.
Look up the function name in the library and issue the requisite code if it is found.

5. If the name is not found, PUSH the name on the E/S as a text string. See below for possible
conventions in user-defined functions. PUSH the argument string on the E/S and PUSH
NOP on the 0/s.

6. If the expression is not a function, dissect it into subexpressions by splitting appropriately
at the arithmetic operators, in the following order: +—, */, ©~ .

7. Dissecting at “—” is handled as an exception, as discussed above.

8. To the preceding rule, possibly add the even lower-priority “arithmetic operator” “”
(comma) separating arguments within parentheses in a multi-argument function. Thus,
dissecting at “,” precedes dissecting at the other arithmetic operators.

9. When dissecting, do not recognize operators contained within parentheses ("hidden"
operators).

10. Leading “~” signs are handled by FNEGATE if they precede text, including a “(”, and by
retaining them if they precede a number.

11. A sub-expression is dissected out including all parentheses. A function that removes the
outermost parentheses of the TOS expression is therefore required.

In pseudocode we might express the algorithm as

¢ PARSE
FP#? IF CR ."™ % "™ SEND.FORTH ELSE
SIMPLE? IF LEADING- CR SEND.FORTH ELSE
HIDDEN? IF LEADING- EXPOSE ELSE
FUNCTION? IF LEADING- FUNCTION! ELSE

DISSECT THEN THEN THEN THEN
T0S> @> IF RECURSE THEN

4. Data structures

The soul of any computer program is its data structures [KRUS87]. We have seen that
parsinga FORTRAN expression uses two stacks. Since stacks are familiar to Forth programmers,
the code defining the E/S and 0/S should be fairly self-explanatory. The E/S$ is a stack of integer
addresses into a string buffer <E/$> of reasonable length. For safety I took <E/$> to be a kilobyte,
and the depths of E/S and 0/$ to be 16; but I am certain that reasonable expressions of < 256
characters will not require more than a stack of depth 1g(256) + 1 = 9, and a 512-byte buffer.
The code is shown in the full listing, in the section “USER-STACK DEFINITIONS.”

Note that the words PUSH and POP include run-time error checking. This is useful for
debugging. The stacks are addressed by giving their names, then saying PUSH, POP, S.@, S.INIT or
T0S>. The word S.LEN was included for clarity, but for optimization it would be replaced by a
simple @. In HS/Forth, S.LEN can be made synonymous with @ via

140 The Journal of Forth Application and Research Volume 6 Number 2

SYNONYM S.LEN @
thereby avoiding a run-time speed penalty.

5. Coding the FORmula TRANslator

As usual in Forth program development, we proceed by developing various components. For
example, we need to be able to recognize whether a piece of text is a floating point number. The
word that does this is FP#?. FP#? steps through a string and checks each character to see whether
it conforms to certain rules:

a, The first character can be a numeral, a “~" sign or a decimal point.

b. After a decimal point is encountered, further decimal points are forbidden.
c¢. After the first numeral, an exponent (E or ¢) is permitted.

d. A decimal point is forbidden after an E or ¢.

e. After the first character, a + or — sign is forbidden, except immediately following the E or
¢ of an exponent.

f. Only numerals are accepted after the + or — sign in an exponent.

g. If the first character is a letter, or if the string contains an arithmetic operator (including
parentheses or comma) then it is not a floating point number. However, if it contains 2 E’s
or 2 decimal points, or if other characters (not operators) follow numerals, then it is wrong
and should lead to an ABORT.

|
Coding FP#? is harder than it looks. Parsing rules like the above are most naturally
implemented via finite state machines (FSMs) [AHO86][SEDG83]. Although Forth offers
extremely natural ways to implement FSMs, here we use BEGIN. WHILE _REPEAT loops to simulate
an FSM.

The only tricky part is finding a fast way to determine whether a character is one of the
permissible ones. The word WITHIN lets us find out whether a character is between ASCII 0 and
ASCII 9, since these are contiguous in the ASCII code. However, “.”, “+7, “~”, “E” and “¢” have
codes 464, 434, 45d, 69d and 1014, respectively, so the brute-force method requires 5 tests and 6
OR’s in addition to WITHIN. It is faster simply to remap the desired ASCII characters into
contiguous 8-bit numbers in a table. The code for this appears in the section CONTIGUOUS
ENCODING TABLE (Appendix C).

By the way, the table includes “*”, “/” and “~”, “(”, “)” and “,”. This anticipates having to
determine whether a string is “simple” or a function name, according to parsing rule #3 above.
Clearly, it will help then to have these characters mapped into contiguous integers. Again, this
is retrospective prescience since I realized the utility of the extended table only after having first
defined a smaller table, arranged in a less useful order.

With the help of the table lookup word ASC>FP$ and some auxiliary definitions for good
factoring,

A FORmula TRANslator for Forth 141

WITHIN DDUP MAX -ROT MIN ROT UNDER MAX -ROT MIN =
DO.ADR ($adr — $adr+n+l $adr+l) COUNT OVER + SWAP ;

s Bto9? (n-19) ASCII @ ASCII 9 WITHIN

: an.op? (n-—F) ASC>FP$ 13 20 WITHIN ;

: Ee? (n-F) ASC>FP$ 11 12 WITHIN ;

s +-7 (n-f) ASC>FP$ 13 14 WITHIN ;

: SKIP- ($adr — $adr or $adr+l) DUP C@ ASCII - = - 3

: skip.nums ($beg $end — $beg' $end) >R :
BEGIN R@ OVER > \ not done?
OVER C@ Pto9? AND \ and a numeral?

WHILE 1+ REPEAT R>
do.exponent (-1 $beg $end — flag or abort)
OVER C@ Ee? ABS ROT + SWAP \ incr. pointer if E or e

OVER C@ +-? ABS ROT + SWAP \ incr. pointer if + or -
skip.nums

OVER C@ DUP

@to9? SWAP an.op? OR acceptable char.?

\
IF = AND \ "true" if end of string,
\ "false" if not eos

ELSE ." Improper fp#." ABORT THEN ; \ error

we may define the key word
: FP#? ($adr — f) DO.ADR ., SKIP- >R 1- R> (— $end $beg')

-1 SWAP ROT (— -1 $beg $end)
skip.nums

OVER C@ ASCII . = \ stopped at "." ?

IF >R 1+ R> \ incr. pointer
skip.nums

ELSE OVER C@ ASC>FP$ 32 = \ an incor. char.?
IF DDROP NOT EXIT THEN \ leave "false"

THEN do.exponent s
- (The word SKIP- above used a “hack” —itassumed logical “true” was —1. On some older Forth
systems, “true” is +1. SKIP- can be made universal by replacing the final - operator with the
phrase ABS +).

We now need to determine whether a string represents a “simple” or compound expression.
This is straightforward: a “simple” expression contains no parentheses, commas or operators.
Thus '
¢ SIMPLE? ($adr — f) -1 SWAP DO.ADR

SKIP- DO I C@ ASC>FP$ 13 20 WITHIN
IF NOT LEAVE THEN LOOP

To simplify an expression we slice it at exposed arithmetic operators. The “—” operator is
an exception, as noted previously. Moreover, the slicing word must know not to slice if the
operator is not found. (We can handle a “+” or “—” within a floating point exponent most simply
by not FINDing it.) The procedure is :

142 The Journal of Forth Application and Research Volume 6 Number 2

: SLICE ($adr char — flag or $endl $begl $end2 $beg2)
OVER SWAP FIND)?{ (- $adr, >op OR @) \ find exposed char

DUP @= IF PLUCK EXIT THEN ~ \ not found. leave #
\ now handle leading "-" exception ------c-mmoommmecm oo
DUP C@ ASCII - <> ABS >R \ 8if -, 1 else
| T e T L L L LR PR finished handiing exception!
>R $.ENDS ($adr >op — $end2 $begl)
RE 1- SWAP (- $end2 $endl $begl)
ROT R> R>+ 3 (- $endl $begl $end2 $heg2)
Note how the exception for a “~” is handled: we use the phrase

C@ ASCII - <>

to ask whether the found operator is a “—". If it is not, then —1 ("true") will be on the stack
(this is the case in Forth-83, and also in HS/Forth. In older Forths “true” is +1. By computing
with logic (and ABS) rather than making decisions with IF..ELSE.THEN we not only speed
execution, we vastly simplify the program). By taking the absolute value this is converted to 0
fora “~"and 1 for any other arithmeticoperator (the result is stored on the rstack). This number
will eventually be added to the pointer to the operator, >0p, to convert it to the beginning of
the right-hand expression: $beg2 = >op + (0 or 1). Conversely, the end of the left-hand
expression is always $end1 = >op — 1.

The definition of SLICE requires two other words: FIND) ? (, that finds an exposed character
in a counted string, and $.ENDS, that computes the actual beginning and end of the text in a
counted string. The latter is easy: '

: $.ENDS ($adr — $end $beg) COUNT OVER + 1- SWAP

As noted above, we must not find a “+” or a “—” if it is part of a floating point exponent.
The characters preceding such a sign are numerals followed by “E” or “e”; while the character
following must be a numeral from 0 to 9. Unfortunately, FORTRAN permits expressions that
fool this simple rule, e.g., A30E—273.5 (A30E is a permissable variable name, and 273.5 a
number). The correct solution is simply to skip over a floating point number:
: skip ($end $beg f — $end $beg') >R OVER <
IF R> - ELSE RDROP THEN ;
: skip.fp# ($end $beg ~ $end $beg')
SWAP skip.num SWAP

pUPCé ASCII . = skip
SWAP skip.num SWAP
DUPC@® Ee?

IF 1+ DUPCe +-? skip SWAP skip.num SWAP THEN ;
The word FIND)7(finds only exposed operators, not ones enclosed between parentheses. The
code looks like this:

+level (level — level') ASCII (
-level (level - level') ASCII)

ABS +
ABS -

e —

A FORmula TRANslator for Forth 143

: FIND)?(($adr char - >op OR @="not found") ,
g ROT \ set parens.level = @
DO.ADR SKIP- \ ignore leading -
D0 (— char parens.level)
R> R> SWAP skip.fp# SWAP >R >R

Ice >R

OVER R@ = (char=$[i] ?)

OVER @= AND (AND Tevel=g ?)

IF RDROP DROP I LEAVE \ found

ELSE R@ +level \ dincr. ()level
R> -level . \ decr. ()level
DUP @< ABORT" Too many) "

THEN

LOOP (—char >op OR @) PLUCK (— >op OR §)

DUP 1 260 WITHIN ABORT" Too many ("
Note the parenthesis-level is maintained on the stack, hence is a local variable, rather than a
VARIABLE or VAR. ‘

We can now write the words at the heart of the algorithm:

: PREDICATE ($end $heg —) MAKES PAD $PUSH ;
BREAK.AT (.op char - f)

TOP.LINE DUP $BUF.Z $! NOP$ SWAP §! \ top line in buffer

$BUF.@ SWAP SLICE DUP @=

IF $BUF.® TOP.LINE $! PLUCK \ Uncompleted. Leave false.

ELSE ?POP.NOPS DSWAP PREDICATE PREDICATE

0/S PUSH .NOP 0/S PUSH

-1 THEN \ Completed. Leave true.

¢ DISSECT
NOP ASCII

IF .F+ ASCII
IF .F+ ASCII
IF .F* ASCII

BREAK.AT DEBUG NOT \ parse function arguments
BREAK.AT DEBUG NOT

BREAK.AT DEBUG NOT

BREAK.AT DEBUG NOT

IF .F ASCII BREAK.AT DEBUG NOT

IF .F** ASCII BREAK.AT DEBUG DROP

THEN THEN THEN THEN THEN ;

The word DEBUG is debugging code that dumps both E/S and 0/S when enabled by DEBUG-ON;
it is disabled by DEBUG-OFF. See the section of the listing marked “DEBUGGING CODE.”

The nested IF..THEN’s appear ugly to me, but Forth seems to offer no simpler technique of
successive decisions. The mnemonics for floating point operation codes, . F+, efc., are CONSTANTS,
asin ~

@ CONSTANT .NOP-
10 CONSTANT .F+

We have also supposed that FUNCTION?, FUNCTION!, and $PUSH have been defined previously.
The definition of $PUSH is
TOP.LINE E/S S.0 ;
$PUSH ($adr -) \ text at $adr
TOP.LINE DUPC@ + 1+ \ new$adr in <E/S>
DUP E/S PUSH (— $adr new$adr) $!
The word FUNCTION? determines whether a string is a FORTRAN function. Clearly there is
some ambiguity here, since in FORTRAN the notation A(I,J) could mean, ab initio, either the
LI’th element of an array or a function whose arguments are I and J. A FORTRAN compiler

+ v

SN * 1

144 The Journal of Forth Apptication and Research Volume 6 Number 2

resolves this by requiring arrays to be declared in DIMENSION statements. Any undeclared
construct of this sort would then be interpreted as a function. Since the formula translator has
no declaration statements to guide it, it always assumes A(I,J) is a user-defined function.

A function is defined to be a string that ends with a right parenthesis, that has no exposed
arithmetic operators (+—*/"), and whose name (i.e. all characters preceding the first left
parenthesis) contains no arithmetic operators. Because we test whether a string is a function
before we DISSECT (that is, we have not yet tested for exposed operators) we must exclude cases
such as

(A+B)/(C-D)
SIN(A+B)/(C-D)
SIN(A+B)/EXP(C-D)
that is, compound expressions that might or might not contain functions. The simplest method
to perform this test, it seems to me, is to work from right to left. This leads to
: FUNCTION? ($adr — f) -1 -1 ROT (- -1 -1 $adr)
$.ENDS (— $end $heg) DUPC@ SKIP-
SWAP (— $heg' $end) DUPC@ ASCII) <> \ test for final ")"
IF DDROP DROP NOT EXIT THEN 1- \ decr. $end
DO I C@ DUP>R -level RE +level
R> ASC>FP$ 13 17 WITHIN OVER @= AND
IF SWAP LEAVE THEN

-1 +LOOP DROP ; \ drop ()level
Forth lets us test this definition immediately:
$" -(A+B)*(C-D)" FUNCTION? . @ ok
$" -SIN(A+B)*(C-D)" FUNCTION? . 6 ok
$" -SIN(A+B)/C0OS(C-D)" TFUNCTION? . & ok
$" -SIN(A+B)" FUNCTION? . -1 ok
$" -SIN(COS(A+B))" FUNCTION? . -1 ok

To save an extra comparison (having tested for it in the third line, we know the last character
is “)”) the parenthesis level is initialized to —1 and the D0..LOOP begins with the next-to-last
character (this is ensured by the 1- following the first IF..THEN). The backward counting is taken
care of by SWAPing the pointers to the beginning and end of the text, and by the phrase -1 +L0OOP.

Now that we know how to tell whether a text fragment is a function, how do we apply this
knowledge? The word FUNCTION! must perform these operations, presented as pseudocode:
¢ FUNCTION!
split the text at the first "(" to get NAME and ARG.STRING

Y: push its Forth equivalent on the 0/S
NAME in library? and NOP$ on the E/S
N: push NAME on E/S, .NOP on 0/S

push ARG.STRING on the E/S, .NOP on the 0/S ;
There is only one way to determine whether NAME is in the function library. We require a table
of library function names (tokens), a set of words that will look up a candidate NAME in the table,
and a method for translating NAMES to their Forth equivalents, e.g. SIN > .FSIN (on the 0/S).

Although it is not very hard to program these operations, the accessibility of Forth’s compiler
offers a better way. Looking up names in a dictionary is of course the key to both compilation
and interpretation in Forth. Let us suppose we have a method to find the CEAs of words bearing
the names of FORTRAN functions. Then we can simply define the action of such a library
function appropriately and EXECUTE it after finding its CFA. We can use the mnemonics for the

A FORmula TRANslator for Forth 145

Forth floating point library, e.g. .FSIN, .FEXP .., as shown in the code marked “FUNCTION
LIBRARY” in the full listing.

When we have located the CFA of EXP, we EXECUTE it and the result would be to add the new
top line

E/S O/S

NOP EXP

The various dialects of Forth differ slightly in the methods they require for finding the
relevant CFA. In Forth-83 the word FIND expects the address of a counted string. If the string
matches a dictionary entry, FIND leaves the CFA and —1 for an ordinary word and +1 for an
IMMEDIATE word; if no match is found, the address of the string and 0 are left. The Forth-79
version of FIND operates differently: it takes the text as the next blank-delimited token in the
input stream, seeks a dictionary match and leaves either the CFA or 0, depending on whether or
not the token is found. My initial approach —as HS/Forth is mainly Forth-79 except for following
Forth-83 conventions in “true” and “false” — was to use the old FIND in conjunction with the
word EVAL [TRAC87], as follows:
$" FIND " $CONSTANT FIND$
: IN.LIBRARY? ($adr — cfa OR @) FIND$ SWAP $+ PAD EVAL ;

Since HS/Forth already contains the equivalent of PAD EVAL (called PLOAD) this method was
effortless.

The equivalent Forth-83 definition would be
: IN.LIBRARY? ($adr—cfa OR®) FIND DUP @= IF PLUCK THEN ;

which is obviously simpler and faster. A word that would do the same thing as the Forth-83
FIND, but in Forth-79, could be defined given an intimate knowledge of the interpreter. The
HS/Forth equivalent word would be
: IN.LIBRARY? ($adr — cfa OR @) CONTEXT @ <FIND>

PLUCK SWAP QE SWAP ;

(Since we envision putting the function library in the same vocabulary as the parser, there is
no need to make this word search all vocabularies. The HS/Forth word @E is specific to this dialect
and the Intel 80x86 family: it fetches using the given offset and the ES segment register, which
has been properly set to the segment containing the current vocabulary by the phrase CONTEXT @
<FIND>.)

Finally, how do we handle something that is obviously a function but not in the library? Since
I have been using a function notation designed to clarify Forth programs ([3] and Appendix A),

FUNC{ name }TION ,

I made the translator emit a user-defined function in the above form. This is convenient for
me, and also alerts the user that the translator thinks his code is a functlon, not an array. The
words that implement this approach are
$" FUNC{ " $CONSTANT . FUNC{
$" J}TION " $CONSTANT }TION
¢ USER.FN! ($buf —) FUNC{ OVER $+ PAD OVER §$!

}TION $+ PAD $PUSH .NOP 0/S PUSH ;

With the definitions of IN.LIBRARY? and USER.FN! we define FUNCTION! as
256 $VARIABLE $BUF
32 $VARIABLE fn.name

146 The Journal of Forth Application and Research Volume 6 Number 2

¢ FUNCTION! :
TOP.LINE DUP $BUF $! NOP$ SWAP $! \ TOS in $BUF, NOP in TOS

?POP.NOPS \ drop Tine of NOP's

$BUF ASCII (SLICE 1- \ slice into name, arg.list
DSWAP MAKE$ PAD fn.name $! \ put name in a buffer
fn.name IN.LIBRARY? ?DUP @= \ not in library if @

IF fn.name USER.FN! ELSE EXECUTE THEN

PREDICATE .NOP 0/S PUSH \ arg.list on TOS

Using the tools developed so far, the words LEADING-, and EXPOSE arc easily defined:
: LEADING- (-) TOP.LINE \ remove leading "-" from expression

DUP $.ENDS DUPC@ ASCII - = \ leading "-" ?

IF 1+ MAKE$
NOP$ SWAP $! 0/S S.@ .NOP = IF 0/S POP DROP THEN
+FNEGATE 0/S PUSH \ issue FNEGATE
PAD - $PUSH 0/S TOS> E/S TOS> < \ new top.line
IF .NOP 0/S PUSH THEN \ balance stacks

ELSE DDROP DROP THEN ; \ not a Teading "-"

: EXPOSE (-) TOP.LINE \ remove outer parens from top expression

DUP $.ENDS DUPC@ ASCII (

DUPC@ ASCII)

MAKE$ PAD SWAP §! _

The final word we need is PARSE, which we pseudocoded above in §3. Its definition is

essentially the same (note we explicitly coded the tail recursion as a BEGIN.WHILE..REPEAT loop
in this version).

- SWAP
+ SWAP = (- $end-1 $beg+l)

¢ SEND.FORTH E/S POP $. 0/S POP .FCODES ; \ emit Forth code
: PARSE (-) ‘ \ FORTRAN -> Forth
BEGIN E/S TOS> @> WHILE
TOP.LINE FP#? IF CR "% ™" SEND.FORTH ELSE
TOP.LINE SIMPLE? IF LEADING- CR SEND.FORTH ELSE
TOP.LINE HIDDEN? IF LEADING- EXPOSE ELSE
TOP.LINE FUNCTION? IF LEADING- FUNCTION! ELSE

DISSECT THEN THEN THEN THEN
REPEAT :
The process of translation is virtually self-documenting. With the addition of words to read
the keyboard, or to read lines from a file, we have the germ of a FORTRAN compiler.

Notice that I have followed the BASIC convention of using ~ for exponentiation, rather
than FORTRAN’s **. The token ** can be handled easily by substituting ~ for it in the input
string, prior to parsing. But this would be needed only when translating existing FORTRAN
programs, as ~ is clearly better for expressions entered from the keyboard.

An obvious improvement that has not escaped my attention (bypassed in the initial design
in the interest of expeditiously getting the program working) would be to replace the expression
address stack and the 1 kbyte expression stack by a stack holding addresses (relative to EXPRES-
SION+1) and lengths of sub-strings of the original expression (nhote standard 2-byte cells will
hold both data). Then moving strings around would become unnecessary, and the workspace
could be reduced.

6. Typed variables

FORTRAN permits mixed number-types in arithmetic expressions. It achieves this at the
cost of demanding compile-time typing of variables, so the compiler will have the information
needed to choose which of the 36 possible subroutines to use, e.g, in the expression A**B,

A FORmula TRANslator for Forth 147

Elsewhere [NOBL90] I have proposed a system of low-overhead run-time data typing. The key
to run-time typing is that SCALAR must be a defining word that makes a data structure containing

a type label as well as storage for its data. The generic operations must then be able to use this
information to vector to appropriate routines.

Among other things, run-time data typing makes practical a library of generic functions and
subroutines, that work with any of the four most-used data types (4-byte REAL, 8-byte DREAL,
8-byte COMPLEX and 16-byte DCOMPLEX) with equal facility. The modifications to the
formula translator are trivial: the mnemonics would be replaced with generic ones, the variable
names are emitted with the code G@ (generic fetch), the terminating phrase IS Awould be replaced
with A G!, the function library would be extended, ezc. One could even retain the VAR notation by
using multiple code-field words, but I am not sure this is worth the trouble.

References

[NOBLSS8] Noble, 1.V, “Fortran is Dead! Lohg Live Forth!,” JEAR, §, 2 (1988) pp.261.
[DUNCSS8] Duncan, R., Programmer’s Journal, 6, 6 (1988) pp.56.

[NOBL??] Noble, J.V,, “Scientific Forth: A Modern Language for Scientific Computing,” in
preparation.

[KRUS87| Kruse, R.L., Data Structures and Program Design, 2nd Ed., Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1987.

[BRODS84] Brodie, L., Thinking FORTH, Prentice-Hall, Inc., NJ, 1984.

[AHOS86] Aho, AV, Sethi, R. and Ullman, J.D., Compilers: Principles, Tools and Techniques,
Addison Wesley Publishing Company, Reading, MA, 1986.

[SEDGS83] Sedgewick, R., Algorithms, Addison Wesley Publishing Company, Reading, MA,
1983.

[TRACS87] Tracy, M., Dr. Dobb’s Journal, 12/87, pp.152. (EVAL expects the address of a counted
string containing Forth words, and executes them as though they had been input from the
keyboard.)

[NOBL90] Noble, J.V,, “Data Structures for Scientific Programming in Forth,” JEAR, 6, 1
(1990) pp.47.

Dr. Noble received his B.S. from Caltech in 1962, his M.S. from Princeton in 1963 and his PhD
from Princeton in 1966, all in Physics. Beginning with Fortran I in 1960, he has programmed in Basic
and Assembler, but almost exclusively in Forth since 1985. His interests include theoretical physics
(nuclear, particle and astrophysics), theoretical biology (epidemiology and chaos), and science and
public policy. Dr. Noble’s major use of Forth is in number crunching.

Appendix A

A.1 Multiple code field words

A VAR is a data structure with three code fields, invoked at compile time by the presence or
absence of the word IS, or by the presence of the word AT. Thus, the code fragment below
definesf/initializes a VAR named N; then shows how VAR can behave like a constant (its name brings
its contents to the stack); then illustrates how it can act like a variable, since IS allows its contents
to be changed. And finally, the third code field, invoked with AT, places its address on the stack
should direct access be necessary.

g VAR N
: NN (=)
s SET.N ISN;: (n-=)

148 The Journal of Forth Application and Research

Volume 6 Number 2

An FVAR s exactly the same, except it uses the fstack and holds a floating point number. Some

systems use the name QUAN rather than VAR.
An FVAR can be simulated on systems lacking VARs via

VARIABLE <is>
VARIABLE <at>

: <reset> @ <is>! @ <at>! ; <set>
s IS -l <is>! @ <at> 1
ct AT -1 <is>! £ <is> ! ;
s+ F, HERE R32! 4 ALLOT ; IMMEDIATE
CASE: DOFVAR R32@ R32! NEXT ;CASE
: FVYAR (n-) CREATE F, DOES> :
(a—-) <at>@ 2 AND <is> @ 1 AND + DOFVAR

A.2 A notation for functions in Forth
The HS/Forth definition of FUNC{ is
: FUNC{ [COMPILE] * CFA
whereas }TION is a SYNONYM of EXECUTE.

IMMEDIATE

Appendix B: Non-standard Definitions

<reset>

%
FVARIABLE
FCONSTANT
F=0

F=1

F=PI

F=<E
F=LN(18)
F*

F**2

F2*

F2/

F+

F/

F\

F-

FR-

FSQRT
FEXP

FLN

F**

R32@, R32!
R640, R64!
R80@, R8O!

interpret following text as fp#, place on fstack
create a named 4-byte fp variable (- adr)
create a named 4-byte fp constant (:: - x)
- 9)

-1)

- 3.14159...)

- 2.71828...)

2.39258...)

y - x*y)

- X*x)

- X*2)

x/2)

- xty)

- x/y)

- y/x)

- x-y)

- y-x)

x"8.5)

e"x)

Tn[x])

y - x**y)

| K €“ W << |

P I N e T T e T e T T T T e Tt T W W W W ¥

MO X X X X X X X X X X X

integer in name indicates no. of bits precision
(adr[x] - :: = x), (adr[x] — :: x—)
(adr[x] - :: = x), (adr[x] — :: x =)
(adr[x] = 22 = x), (adr[x] - :: x =)

A FORmula TRANSslator for Forth

149

Appendix C: Listing of FORTRAN.3

CR CR

.(TRANSLATE A FORTRAN EXPRESSION TO FORTH CODE:) CR

o ARITHMETIC AND MATHEMATICAL FUNCTIONS)

CR CR .(Copyright NobleHouse Software 1989) CR

. Modification or sale of this software or removal of this) CR
o copyright notice will constitute grounds for legal action) CR

TASK FTNZ2FTH

\ STRING HANDLING (HS/FORTH COPYRIGHT DEFINITIONS AS SHOWN) -------------

¢t WITHIN (n a b - f) DDUP MIN -ROT MAX ROT UNDER MIN -ROT MAX =

\ Reproduced with permission from HARVARD SOFTWORKS for non-commercial ----
\ personal use in this utility only -------mcmmemom oo

HEX
¢ $VARIABLE (#bytes -) CREATE 1+ ALLOT ;' DOVAR
: $CONSTANT (srcadr —) CREATE HERE OVER C@ 1+ DUP ALLOT CMOVE ;' DOVAR
: $! (srcadr dstadr -) OVER C@ 1+ CMOVE ;
: $+ (adr$l adr$2 - pad)
DUPC@ >R 1+ OVER C@ PAD + 1+ R@ <CMOVE
PAD $! R> PAD C@ + @ MAX FF MIN PAD C!' 3
DECIMAL

\ END HS/FORTH DEFINITIONS =-=-=-mmmmmmm=mmmmmmmmmmmmmmmommmmmmm oo

\ BEGIN FORMULA TRANSLATOR ==========s======s===s==s====== ==

\ MNEMONICS FOR FLOATING-POINT OPERATIONS —---=mmm-mmmmmmmmmm oo oo oo

@ CONSTANT .NOP 3@ CONSTANT .FSQRT
1 CONSTANT .R32! 31 CONSTANT .FEXP
2 CONSTANT .R32@ 32 CONSTANT .FLN

33 CONSTANT .F**

34 CONSTANT .FSIN
35 CONSTANT .FCOS
36 CONSTANT .FTAN
37 CONSTANT .FATAN

19 CONSTANT .F+ 38 CONSTANT .FASIN
11 CONSTANT .F* 39 CONSTANT .FACOS
12 CONSTANT .F/ 4@ CONSTANT .FSINH
13 CONSTANT .F\ 41 CONSTANT .FCOSH
14 CONSTANT .FINV 42 CONSTANT .FTANH
15 CONSTANT .F2* 43 CONSTANT .FASINH
16 CONSTANT .F2/ 44 CONSTANT .FACOSH

45 CONSTANT .FATANH
20 CONSTANT .FNEGATE
21 CONSTANT .FABS
22 CONSTANT .FMAX
23 CONSTANT .FMIN

150 The Journal of Forth Application and Research Volume 6 - Number 2

¢+ .FCODES BEGIN-CASE (OUTPUT MNEMONICS AS TEXT)

@ CASE-OF ." " ELSE

1 CASE-OF ." R32! " ELSE

2 CASE-OF ." R32@ " ELSE

19 CASE-OF ." F+ " ELSE

11 CASE-OF ." F* " ELSE

12 CASE-OF ," F/ " ELSE

13 CASE-OF ." F\ " ELSE

14 CASE-OF ." FINV " ELSE

15 CASE-OF ." F2* " ELSE

16 CASE-OF ." F2/ " ELSE
20 CASE-OF ." FNEGATE " ELSE
21 CASE-OF ." FABS " ELSE
22 CASE-OF ." FMAX ™ ELSE
23 CASE-OF ." FMIN " ELSE
30 CASE-OF ." FSQRT " ELSE
31 CASE-OF ." FEXP " ELSE
32 CASE-OF ." FLN ™ ELSE
33 CASE-OF ." FSWAP F** " ELSE
34 CASE-OF ." FSIN " ELSE
35 CASE-OF ." FCOS " ELSE
36 CASE-OF ." FTAN " ELSE

37 CASE-OF ." FATAN " ELSE
38 CASE-OF ." FASIN " ELSE
39 CASE-OF ." FACOS " ELSE

49 CASE-OF ." FSINH " ELSE
41 CASE-OF ." FCOSH " ELSE
42 CASE-OF ." FTANH " ELSE
43 CASE-OF ." FASINH " ELSE
44 CASE-OF ." FACOSH " ELSE
45 CASE-OF ." FATANH " ELSE

DROP " " END-CASE 3
\ Ex: .NOP .FCODES
\ .R32! .FCODES
\ o e

\ READ AN EXPRESSION FROM THE KEYBOARD =-=~-rrmmmmmmmmmm e m o s oo

256 $VARIABLE EXPRESSION

A FORmula TR ANslator for Forth 151

GET.EXP M7 (RO \ emit "?", count on stack
BEGIN KEY DUP \ get Tetter from KB
ASCII ; <> \ is it a ";" ?
WHILE \ if not
DUP 32 < \ ignore BL
IF DUP
8 = IF EMIT 1- \ is it a BS ?
ELSE DUP EMIT \ echo to CRT
SWAP 1+ \ increment count
UNDER PAD + C! \ add to string at PAD
THEN
DUP 73 MOD 72 = \ end of input line ?
IF CR THEN \ newline
ELSE DROP
THEN
REPEAT EMIT \ echo ":" to CRT
PAD UNDER C! EXPRESSION $! ; \ store count, string

ADDITIONAL $ WORDS =-mmmmmmmme oo oo oo oo e m e

$.ENDS ($adr — $end $heg=$adr+l) COUNT - OVER + 1- SHWAP ;
DO.ADR ($adr — $end+l $adr+l) COUNT OVER + SWAP ;

MAKE$S ($end $beg —) \ make a string at PAD given endpoints
UNDER - DUP @< ABORT" Improper endpoints" (— $beg n)
1+ DUP>R PAD 1+ SWAP CMOVE R> PAD C! ;

---------------------------------- END ADDITIONAL $ DEFINITIONS ----mmmmmm-
USER-STACK DEFINITIONS =r-mmmmmmmmmmmmmmmmmm o oo s e oo oo mmmm s m o o
STACK CREATE DUP , @ , 2* ALLOT ;' DOVAR

S.LEN (adr — 1len) @&

Tos> (adr — TOS) 2+ @ 3
STACK.INIT (adr =) 2+ @! 3

: PUSH (n adr -) DUP>R S.LEN R@ TOS> = \ check if room

IF CR R> CFA .WORD ." -STACK FULL"™ ABORT THEN

R@ TOS> 2* R@ + 4+ ! \ put # on u.stack

R> 2+ 1+! 3 \ increment TOS>
:S.@ (adr-n) DUP TOS> 1- 2* + 4+ @ ; \ copy TOS to p.stack
: POP (adr —n) DUP TOS> @< \ test for empty

IF CR CFA .WORD ."™ -STACK EMPTY" ABORT THEN)

DUP S.@ SWAP \ fetch TOS

2+ 1-! 3 \ decrement TO0S>
L e L L E L P L L P PRt END U.STACK DEFINITIONS --
16 STACK E/S \ expression address stack

16 STACK 0/S \ operations tokens stack

152 The Journal of Forth Application and Research Volume 6 Number 2

CREATE <E/S> 1024 ALLOT OKLW \ the expression stack
\ DEBUGBING CODE === m oo oo oo e

: .STACK E/S T0S> @ \ dump the stacks
OVER @= ABORT"™ EXPRESSION STACK EMPTY"
DO CR I 2* 4+
E/S OVER + @ $. 0/S + @ .FCODES
LOOP ;

VAR DEBUG?
DEBUG-ON -1 IS DEBUG? ; : DEBUG-OFF & IS DEBUG?
DEBUG DEBUG? IF .STACK CR THEN ;

e e @

\ CONTIGUOUS ENCODING WORDS =rmmmmmmmmmmmmmmmmmmmmmmec e mm e o mmmmmm e

CREATE FP$ 128 ALLOT OKLW \ MAKE A TRANSLATION TABLE

FP$ 128 BL FILL \ FILL IT WITH ASCII 32

g ASCII & FP$ + C! 9 ASCII 9 FP$ + (! \ CONTENTS OF TABLE
1 ASCII 1 FP$ + C! 10 ASCII . FP$ + C!

2 ASCII 2 FP$ + C! 11 ASCII e FP$ + C! 18 ASCII (FP$ + C!

3 ASCII 3 FP$ + (I 12 ASCII E FP$ + C! 19 ASCII) FP$ + C!

4 ASCIT 4 FP$ + C! 13 ASCII + FP$ + C! 20 ASCII , FP$ + C!

5 ASCII 5 FP$ + C! - 14 ASCII - FP$ + C!

6 ASCII 6 FP$ + C! 15 ASCII * FP$ + C!

7 ASCII 7 FP$ + C! 16 ASCII / FP§ + C!

8 ASCII 8 FP$ + C! 17 ASCII ~ FP$ + C!

ASC>FP$ (char —n) FP$ + C@ ;

e

EXPRESSION TESTING WORDS ~----mcmm e eee e
gto9? (n-f) ASCII @ ASCII 9 WITHIN

an.op? (n-F) ASC>FP$ 13 20 WITHIN ;
Ee? (n-19) ASC>FP$ 11 12 WITHIN
+-7 (n—f) ASC>FP$ 13 14 WITHIN ;
SKIP- ($adr — $adr or $adr+l) DUP C& A

ee oo as e e

skip.nums ($beg $end — $heg' $end) >R
BEGIN RG@ OVER > \ not done?
OVER C@ @to%? AND \ and a numeral?
WHILE 1+ REPEAT R> ;

do.exponent (-1 $heg $end — flag or abort)
OVER C@ Ee? ABS ROT + SWAP \ incr. pointer if E or e

OVER C@ +-? ABS ROT + SWAP \ incr. pointer if + or -
skip.nums
OVER Ce DUP
gto9? SWAP an.op? OR \ acceptable char.?
IF = AND \ "true" if end of string,
\ "false" if not eos
ELSE ." Improper fp#." ABORT THEN ; \ error

A FORmula TRANGSlator for Forth

153

\ PARSING WORDS

FP#? (

OVER C@

I

E

T

SIMPLE?
DuPC@
DO I

HIDDEN?
pup
ce
NOT
-1
DO

Loo

skip (
IF

skip.fp#
SWAP
DUPC@
SWAP
pupcCe
IF

+level (
-level (

$adr —~ f) DO.ADR SKIP-
1 SWAP ROT
skip.nums
ASCII . =
F >R 1+ R>
skip.nums
LSE OVER C@ ASC>FP$
IF DDROP NOT EXIT

HEN do.exponent

32 =

($adr —)
ASCII - = -
€@ ASC>FP$ 13 20 WITHIN
IF NOT LEAVE THEN LOO

-1 SWAP DO

($adr —)
C@ ASCII - = -
ASCII (= SHWAP
IF DROP © EXIT THEN
@ ROT DO.ADR
I C@ DUP>R ASC>FP$
13 17 WITHIN OVER @= AND
IF RDROP SWAP LEAVE ELSE
R@ ASCII (= -
P (--18o0r®-1) DROP

DUP $.ENDS

$end $beg f — $end $heg')

R> - ELSE RDROP THEN
($end $beg — $end $beg')
skip.num SWAP
ASCII . =
skip.num SWAP
Ee?
1+ DUPC@

skip

+-? skip SHWAP

Tevel — level')
level - level')

ASCII (
ASCII)

THEN

.ADR

P

€@ ASCII) =

>R 1- R>
(— -1 $beg $end)

R> ASCII) =

(— $end $beg’')

\ stopped at "." ?
\ incr. pointer

\ an incor. char.?
\ leave "false"

\ test for simple expression
\ skip Teading "-"

\ enclosed in parens ?

\ dincr. $beg if leading *-"
AND

\ no leading and trailing ()

\ +-*/ OR ~ and ().level=g
\ Exposed op. (-9 -1)
+ THEN

>R OVER

skip.num SWAP THEN

ABS +

ABS

154 The Journal of Forth Application and Research Volume 6 Number 2

: FIND)?(($adr char — >op OR @="not found")

g ROT
DO.ADR SKIP-

DO (— char parens.level)
R> R> SWAP skip.fp# SWAP >R >R

ICé >R

\ set parens.level = @
\ ignore leading -

OVER RO = (char=$[i] ?)
OVER @= AND (AND level=g ?)

IF RDROP DROP I LEAVE

ELSE R@ +level
R> -level

\ found
\ incr. (}Tevel
: \ decr. ()level

DUP @< ABORT" Too many) "

THEN

L0OP (— char >op OR 4)
DUP 1 28 WITHIN ABORT" Too many (" 3

TOP.LINE E/S S.@ ;

OVER SWAP . FIND)?(

(

PLUCK (— >op OR @)

SLICE ($adr char — $endl $begl $end2 $heg2 OR flag=@)

— $adr >op OR 0)

DUP @= IF PLUCK EXIT THEN \ Not found. Leave 0.

DUPC@ ASCII - = 1+

(- $adr >op n=0 OR 1)
>R >R $.ENDS
R@ 1- SWAP
ROT R> R> +

DUP E/S PUSH $! ;

$" " $CONSTANT NOP$

\ Slice. Include Teading "-"

(- $end2 $begl)
(- $end2 $endl $begl)
(~ $endl $begl $end2 $beg2)

$PUSH ($adr —) TOP.LINE DUPCE + 1+ \ new $adr

: ?POP.NOPS 0/S S.@ .NOP = TOP.LINE 1+ C@ BL = AND
IF E/S POP 0/S POP DDROP THEN ;
: LEADING- (-) = TOP.LINE \ remove leading "-" from expression
DUP $.ENDS DUPC@ ASCII - = \ leading "-" ?

IF 1+ MAKES$

NOP$ SWAP $! 0/S S.@ .NOP = IF 0/S POP DROP THEN

.FNEGATE 0/S PUSH

\ issue FNEGATE

PAD $PUSH 0/S ToS> E/S TOS> < \ new top.line
IF .NOP 0/S PUSH THEN

ELSE DDROP DROP THEN

¢ EXPOSE (-) TOP.LINE

\ remove outer parens from top expression

DUP $.ENDS DUPC@ ASCII (= - SWAP
DUPC@ ASCII) = + SWAP (— $end-1 $bheg+l)

MAKE$ PAD SWAP $! ;

256 $VARIABLE $BUF.9
64 $VARIABLE $BUF.1

$" IS " $CONSTANT 1IS$

A FORmula TRANSlator for Forth 155

: SUBJECT ($end $heg —) MAKE$ PAD $BUF.8 $!
I1S$ $BUF.0 $+
PAD <E/S> $! <E/S> E/S PUSH .NOP 0/S PUSH ;

: PREDICATE ($end $heg -) MAKE$ PAD $PUSH

¢ FIRST.LINE ($adr =) \ used as EXPRESSION FIRST LINE

E/S STACK.INIT 0/S STACK.INIT

ASCII = SLICE DUP @= ABORT" No = in expression"

DSWAP SUBJECT \ make subject field
PREDICATE .NOP 0/S PUSH \ make predicate field

¢ BREAK.AT (.op char -)
TOP.LINE DUP $BUF.@ $! NOP$ SWAP- $! \ top line in buffer
$BUF.@ SWAP SLICE DUP @=
IF $BUF.8 TOP.LINE $! PLUCK \ Uncompleted. Leave false.
ELSE ?POP.NOPS DSWAP PREDICATE PREDICATE

0/S PUSH .NOP 0/S PUSH
-1 THEN \ Completed. Leave true.

: FUNCTION? ($adr — f) -1 -1 ROT (— t -1 $adr)
$.ENDS (— $end $heg) DUPC@ SKIP-

SWAP (- $beg' $end) DUPC@ ASCII) <> \ test for final ")"
IF DDROP DROP NOT EXIT THEN \ no), f=0
1- : \' decr. $end
DO I Ce DUP>R -Tevel = R@ +level \ count ()
R> ASC>FP$ 13 17 WITHIN OVER @= AND \ exposed op?
IF SWAP LEAVE THEN ') \V(-81)
-1 +LOOP DROP ‘ \ drop ()level
: COUNT() DUP>R ASCII (= - R> ASCII) = + ;
: FUNCTION? ($adr — f) B SWAP (- @ $adr)
$.ENDS SKIP- \ skip Teading -
OVER C@
ASCII) <> IF DDROP EXIT THEN ~ \'no) - not a function

1+ SWAP (— @ $beg+l $end)
DO I C@ COUNT() I C@ ASC>FP$ 13 17 WITHIN
OVER &= AND
IF NOT LEAVE THEN (-~ -1) \ not a function
-1 +L00P (-n) @= \ not a function if not @

$" FIND ™ $CONSTANT FIND$

: IN.LIBRARY? ($adr — cfa OR @) FIND$ SWAP $+ PLOAD 3

156 The Journal of Forth Application and Research Volume 6 - Number 2

$" FUNC{ " $CONSTANT FUNC{
$" JTION "™ $CONSTANT }TION
¢ FUNCTION! TOP.LINE DUP $BUF.@ $! NOP$ SWAP $I

7POP.NOPS
$BUF.@ ASCII (SLICE 1- DSHWAP (— $end2 $beg2 $endl $bhegl)
MAKE$ PAD $BUF.1 $! (— $end2 $heg2)

$BUF.1 IN.LIBRARY? DUP @=
IF FUNC{ $BUF.1 $+ PAD $BUF.1 $! $BUF.1 }TION $+

PAD $PUSH .NOP 0/S PUSH \ not found, assume function
ELSE EXECUTE THEN \ found, look-up in library
PREDICATE .NOP. 0/S PUSH \ clean up arguments
s DISSECT
+NOP ASCII BREAK.AT DEBUG NOT \ parse function arguments

+ -

IF .F+ ASCII
IF .F+ ASCII
IF .F* ASCII

BREAK.AT DEBUG NOT
BREAK.AT DEBUG NOT
BREAK.AT DEBUG NOT
IF .F\ ASCII BREAK.AT DEBUG NOT
IF .F** ASCII BREAK.AT DEBUG DROP
THEN THEN THEN THEN THEN

PN ¥ 1

¢ SEND.FORTH E/S POP $. 0/S POP .FCODES ;

: PARSE (-)

BEGIN E/S TOS> @> WHILE

TOP.LINE FP#? IF CR %" SEND.FORTH ELSE

TOP.LINE. SIMPLE? IF LEADING- CR SEND.FORTH ELSE

TOP.LINE HIDDEN? IF LEADING- EXPOSE ELSE

TOP.LINE FUNCTION? IF LEADING- FUNCTION! ELSE

DISSECT THEN THEN THEN THEN

REPEAT ; '
: >FTH GET.EXP EXPRESSION FIRST.LINE PARSE ;
\ mm e mm e m e END PARSING WORDS ~---u-eee
| Q——— FUNCTION LIBRARY ==--—-—mmmccmcmmmom oo ccmmmmmmmmmmmmmmmmee

FUNC (.op -) CREATE ,
DOES> @ NOP$ $.ENDS PREDICATE 0/S PUSH 3

.FEXP FUNC EXP .FSQRT FUNC SQRT .FLN FUNC LOG

.FSIN FUNC SIN .FCOS FUNC COS .FTAN FUNC TAN

.FATAN FUNC ATN .FASIN FUNC ASIN .FACOS FUNC ACOS

.FSINH FUNC SINH .FCOSH FUNC COSH .FTANH FUNC TANH

.FASINH FUNC ASINH .FACOSH FUNC ACOSH .FATANH FUNC ATANH

\ s END FUNCTION LIBRARY ------m-commmmemn

