A Generalized EXIT

Carol Pruitt

105 Salem Road
Rochester, New York 14622

Abstract

Like EXIT, {EXIT} allows a Forth word to abort its own execution upon discovery of an
exceptional condition. Unlike EXIT, however, {EXIT} can be used within a DO loop. It can specify
the point where execution is to resume. And its behavior is not affected by refactoring of the code
that uses it.

Background: Some Problems

The standard Forth EXIT is quite a useful word: it allows a colon definition to respond to
exceptional conditions by aborting its own execution and returning immediately to the word that
called it. It is most commonly used upon detection of a condition which renders execution of the
remainder of the definition either meaningless or dangerous.

EXIT has its limitations, however. Both the 1979 and 1983 standards explicitly state that EXIT
maynot be used within a D0 loop. From a practical standpoint, this is because it gets its destination
address from the top of the return stack; traditional Forth systems also use the return stack for
storage of the DO-loop counters, thus blocking EXIT’s access to the appropriate return address.
Even though some current Forth systems have a separate D0-loop stack for this purpose, many
do not, and the standard cannot allow a practice which does not work on all systems. The
traditional substitution for EXIT-within-a-D0-loop is a comparatively complex structure of flags
and IFs [figure 1].

Two other limitations may become apparent when a nest of Forth words is re-factored
[figure 2]. If a word which calls EXIT becomes in-line code, or if a large word is factored into
smaller words, EXIT may no longer go to the right place. Again, flags and IFs traditionally replace
the EXITs. The implementation must change, even though the logic has not.

Various special-purpose alternatives to the flag-and-IF technique have been proposed.
[BRODS84] (Chapter 8, “Minimizing Control Structures: Using Structured Exits”) suggests
direct manipulation of the return stack as one possibility, and an EXIT-type word specialized for
DO loops as another. Neither of these solutions, however, allows the code to be restructured.
Explicit return-stack manipulation fails if the level of nesting changes, and a word designed to
be used inside a DO loop will not work if, for example, a BEGIN loop is substituted.

A Solution

A more general technique is possible. Although this technique could replace EXIT al-
together, the simplicity and frequent usefulness of the plain-vanilla word make it worthwhile to
retain the old EXIT. Therefore, the new word has a new name, {EXIT}, pronounced “curly EXIT.”
Since all the problems enumerated above are due to EXIT’s not knowing where to go, it is also
necessary to mark the level where execution is to return if the exit occurs, The markers are named

© 1990 Institute for Applied Forth Research, Inc.

Journal of Forth Application and Research Volume 6, Number 2

157

158 The Journal of Forth Application and Research Volume 6 Number 2

{ and } (note that each is a Forth word and must be set off by spaces). Since the markers must
always be used together, they can be referred to collectively as “curly braces,” or individually as
“left curly” and “right curly.”

The use of {EXIT} can be demonstrated by applying it to the preceeding examples. In
Figure 3, {EXIT} works within a DO loop just the way EXIT “should” have. Not only do all three
examples in Figure 4 use {EXIT} in exactly the same way; all three examples actually accomplish
the same thing. (Note in the second example that the in-line code from DDD is enclosed in curly
braces just as the name of DDD is in the first and third.)

Like EXIT, {EXIT} can be used any number of times within the same definition. But because
{EXIT} can be used at any level within a nest of words, it can actually be used at more than one
level within the same nest [figure 5]. If the entire nest is enclosed by a single pair of curly braces,
all {EXIT}s within the nest will return to the same right curly. When there are multiple paired
braces, an {EXIT} will advance, just as one might expect, to the right curly corrésponding to the
most-recently-executed left curly. And one {EXIT} can even advance to any of several different
right curlies, depending on what part of the code calls the word that contains the {EXIT}.

Some Limitations

The many advantages of {EXIT} are accompanied by a few, relatively minor, cautions. The
f1rst three are implementation dependent,
\ what we'd really like to do, if only we could:
: AAA
whatevergl
DO whateverg2
IF EXIT THEN \ if we exit,
whatevergd3
LoOP
whateverdd ;
: BBB
whateverg5
AAA
whatevergb ; \ we'd 1ike to come here

\ what we end up doing instead:

VARIABLE flag \ we define a flag
: AAA
whatevergdl
FALSE flag ! \ we initialize the flag

DO whateverd?2
IF TRUE flag ! \ we set the flag

LEAVE \ & leave the DO loop
THEN
whateverg3
LOOP
flag @ \ then we test the flag
IF EXIT THEN \ and if it's set,
whatevergq ;
't BBB
whatevergd5s
AAA
whateverg6 ; \ we come here

Figure 1.

A Generalized EXIT 159

When curly braces are placed within a DO loop, the loop index cannot be retrieved by using
I within the braces, since the marker left on the return stack by left curly [see IMPLEMENTA-
TION NOTES, below] will block I’s access to the index. The solution is to call I from outside
the braces, leaving the index on the parameter stack for use from within. Curly braces outside a
DO loop will not interfere with the use of I.

\ the original factoring:
: DDD

whateverd7

whateverd8

IF EXIT THEN \ if we exit,

whatever@9

whateverlgd ;
EEE

whateverll

DDD

whateverl? ; \ we come here
FFF

whateverl3

EEE

whateverld ;

\ one refactoring that doesn't work:
¢ EEE

whateverll

whateverg7

whatevergs

IF EXIT THEN \ if we exit,

whateverg9

whateverld

whatever12 ; \ we'd 1ike to come here,
FFF

whateverl3

EEE

whateverld ; \ but we come here instead

\ and another that doesn't:
: CCC
whateverg8
IF EXIT THEN \ if we exit,
whatevergd9 ; :
pDD
whateverg?7
ccC
whateverld ; \ we come here, although
: EEE
whateverll
DDD]
whateverl? ;. \ we'd like to come here
FFF
whateverl3d
EEE
whateverld

Figure 2.

{
160 The Journal of Forth Application and Research Volume 6 Number 2

\ {EXIT} can be used within a DO Tloop:
s AAA
whatevergl
DO whateverg2
IF {EXIT} THEN \ if we exit,
whateverd3
Loop
whatevergd ;
: BBB
whatevergb
{ AAA }
whateverd6 ; \ we come here

Figure 3.

Use of a return-stack marker also limits the range of the DO loops within which {EXIT}
appears. In order to minimize the possibility that an intervening D0-loop counter will be mistaken
for it, I have chosen a negative value for the marker, thus effectively limiting my DO-loop
parameters to non-negative (or small unsigned) values.

My choice of marker was also driven by the need to distinguish between it and the more
typical occupants of the return stack, addresses. Since the processors used here are byte-addres-
sable but execute only 16-bit words, this was not difficult. I simply chose an odd marker. Since I
rarely use negative numbers, or large unsigned numbers other than (even) addresses, as D0-loop
parameters, these limitations are rarely burdensome.

The first two limitations would not exist in a system with a separate D0-loop stack, though
other precautions would then be required, to ensure that {EXIT} leaves the D0-loop stack in a
known state. (Even the standard Forth EXIT would have fewer limitations on such a system, but
recall that {EXIT}’s advantages are not limited to its usability within DO loops.)

All three limitations could be removed by an implementation which does not put a marker
on the return stack. (In order to implement {EXIT} on a word-addressed processor with a full
complement of memory, some alternative method would, of course, be a necessity.) For example,
left curly could simply store the current value of the return-stack pointer in a variable; but then
only one level of curly braces could be used. Nesting of curly-brace pairs could be restored by
giving left curly an array (essentially, its own stack) in which to store return-stack-pointer values,
but this could be considered overkill. Perhaps a more elegant solution will be discovered. (Or
one can imagine, for example, a very sophisticated {EXIT} that scans forward, mock-executing
and doing return-stack maintenance, tillit findsa }; { would then be a no-op, or could be omitted.)

Like many other pairs of Forth words, curly braces require balanced placement. Specifically,
both braces of a pair must be at the same return-stack level: Either both must be outside a 0 loop,
for example, or both inside. In general, both must be in the same word (this rule may be broken
with care, but both refactoring and documentation then become quite difficult). For the most
part, this simply means putting the braces where they intuitively belong.

Finally, as with EXIT, care must be taken that {EXIT} leaves the parameter stack (and the
DO-loop stack, if any) in a known condition.

Implementation Notes

Except of course for the assembler symbols in CODE definitions, the Forth used throughout
this paper is 79-Standard. The implementation [Appendix 1] includes only two extra-Standard
words, namely \ (“back-slash”), which designates the rest of the line as a comment, and R@
(“r-zero”), which is a user variable containing a value identical to the return-stack pointer’s
contents when the return stack is empty. In short, R@ points to the bottom of the return stack.

A Generalized EXIT 161

Ticking a colon definition is presumed to return a pointer to the first location within that
definition which points to a Forth word called by the definition. (The Forth I use actually does
not work this way, and the address must be calculated.)

\ {EXIT} can be used
\ not only in the original factoring:
s DDD
whateverg7
whateverg8
IF {EXIT} THEN \ if we exit,
whateverg9
whateverld ;
EEE
whateverll
{ DDD }
whateverl2
FFF
whateverl3
EEE
whateverl4 ;

we
g

we come here

. « o but also
in the first refactored version:
EEE
whateverll
{ whateverg7
whateverd8
IF {EXIT} THEN \ if we exit,
whatevergd9
whateverld } ,
whateverl? ; \ we come here
FFF '
whateverl3
EEE
whateverlg ;

e

\'. . . and in the other refactorization:
s CCC

whateverg8

IF {EXIT} THEN \ if we exit,

whateverd9 ;
DDD

whateverg?7

cce

whateverlg ;
EEE

whateverll

{ pDD }

whateverl? ; - \ we come here
FFF

whateverl3

EEE

whateverls ;

Figure 4.

162 The Journal of Forth Application and Research Volume 6 Number 2

\' {EXIT} may be used several times
\ and/or at different levels:
: GGG
whateverl?7
IF {EXIT} THEN \ whether we exit here,
whateverl8 ;
: HHH
- whateverl9
IF {EXIT} THEN \ or here,
GGG
whatever2d
IF {EXIT} THEN \ or here,
whatever2l ;
: III
whatever22
{ whatever23
IF {EXIT} THEN \ or here,
whatever24 }
whatever25 ; \ we come here

Figure 5.

Note that {’s run-time code, ({), compiles as two words: one is the usual pointer to ({) itself;
the other word (filled in when }’s run-time code, (}), is compiled) contains the address to which
{EXIT} will advance, namely the address of the word following (}).

When ({) is executed, it pushes two words onto the return stack: the advance-to address
saved in its other compiled word, topped by a marker. If {EXIT} executes, it first finds the marker
on the return stack (discarding it and anything on top of it), then pops the advance-to address
into the Forth instruction counter, so that NEXT will advance execution to the word following (}).
In this case, (}) is not executed. If {EXIT} is not executed, (}) simply discards the unused marker
and address (which by then are waiting at the top of the return stack).

This implementation is coded for DEC PDP/LSI-11 computers, but an equivalent im-
plementation of {EXIT} should be possible on most Forth systems. Register names used here are
fairly typical: RP is the return-stack pointer, IC is the Forth Instruction Counter, and UV points
to the current task’s user variables. The op-code SEZ sets the processor-status word’s Zero bit as
a flag, causing EQ END to fall through. The comparison HS (high-or-same) is an unsigned greater-
than-or-equal.

Acknowledgments

This work was supported by the U. S. Department of Energy Office of Inertial Fusion under
agreement No. DE-FC03-85DP40200 and by the Laser Fusion Feasibility Project at the
Laboratory for Laser Energetics which has the following sponsors: Empire State Electric Energy
Research Corporation, New York State Energy Research and Development Authority, Ontario
Hydro, and the University of Rochester. Such support does not imply endorsement of the content
by any of the above parties. /

References
[BROD&84] Brodie, Leo, Thinking FORTH, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984,

A Generalized EXIT 163

Carol Pruitt received an M.A.T. in mathematics from Harvard University in 1967, and has been
programming in Forth since 1978. At the time this paper was written, she was a Senior Laboratory
Engineer with the Facility Operations Group at the University of Rochester’s Laboratory for Laser
Energetics. Her responsibilities there included major control systems for both the single-beam Glass
Development Laser and the twenty-four-beam Omega Laser. Since then, she has written ROMable
code for a telephone switching system, and has begun training for a career in nutrition.

Appendix 1: Implementation
Copyright © University of Rochester 1988

\ Generalized EXIT 23-Aug-85 CJP
-1 CONSTANT MARKER \ return-stack marker value
CODE ({) \ o - <>

RP -) IC)+ MOV \ push address-after-(})

RP -) MARKER # MOV \ & the marker
NEXT \ onto return stack

: \ <> — <address for "}" to fill>
STATE @ \ if we're compiling, ,
IF COMPILE ({) \ compile {'s run-time code,
HERE \ & save address
g, \ of next word for "}"
THEN IMMEDIATE
CODE (}) \ - <
RP)+ RP)+ CMP \ pop marker & address

NEXT \ from return stack
\ <addr of ({)'s 2nd word> — <>
STATE @ \ if we're compiling,
IF COMPILE (}) \ compile }'s run-time code,
HERE SWAP ! \ & tell ({) where (}) ends
THEN IMMEDIATE

: {ABORT} \ <whatever> — <>
CR ." No {EXIT} flag" \ let debugger know
CR ABORT ; “\ why we're aborting
CODE {EXIT} \ o - <
BEGIN \ pop
' RG @ UV I) RP cMP return stack
Hs IF SEZ \ till it's empty
ELSE RP)+ MARKER # CMP \ or marker is found
THEN
EQ END
'RE @ UV I) RP CMP \ if no marker is found,
HS IF RP ' RO GUVI)MOV \ tidy up
IC ' {ABORT} # MOV \ & abort
ELSE IC RP)+ MOV \ else execute
THEN NEXT \ the word following (})

164 The Journal of Forth Application and Research Volume 6 Number 2

\ NOTE:

\ A minimalist implementation would omit the STATE @ IF ... THEN
\ from { and }, would omit {ABORT}, and would define {EXIT} as
\ follows:

\

\ CODE {EXIT} \ © - <

\ BEGIN \ pop return stack

\ RP)+ MARKER # CMP \ ti1l 1is marker found,
\ EQ END

\ Ic RP)+ MOV \ then execute

\ NEXT \ the word following (})

