MATMATH — A Matrix Handling
Package for Forth

Denise S. (Derby) Stilling and L. Glen Watson

Department of Mechanical Engineering
University of Saskatchewan
Saskatoon, Saskatchewan, Canada
S7N OW0

Abstract

This paper discusses a matrix mathematics package which illustrates the utility. of Forth for
numerical analysis. Since matrices are the primary building block for much of the numerical analysis
used in present day science and engineering, the package was developed to be suitable for a variety of
applications. The code presented assumes the presence of the proposed FVG Standard floating point
extensions [DUNC84] and follows the Forth-83 Standard [FORT83]. The package provides for the
creation, initialization and fundamental manipulations of matrices. To demonstrate the utility of the
package, two applications have been presented.

Introduction

In many branches of engineering, numerical analysis is carried out almost exclusively in
FORTRAN. There have been suggestions that this should not be the case and Forth has been
tecommended as a viable replacement. For example, Noble [NOBLS88], [NOBLS89Y] states that
Forth is fast, compact and easy to program, debug and maintain. In addition, Forth efficiently
exploits available resources as demonstrated by MacIntyre [MACI84] whose example uses Forth
on a PC to solve a problem which others have studied using FORTRAN on a Cray. Watson and
Stilling [WATS90] support Noble’s arguments and stress the reusability of Forth code. In this
paper, a matrix mathematics package is presented in hopes of enhancing the popularity of Forth
for applied scientific computations. The authots wetre motivated to develop such a package when
programming a finite element simulation and a neural network controller [STIL90]. Special
effort was taken to design a serviceable utility package with extensible, te-usable routines.

The package includes: words to create matrices, words to interrogate matrices as to their
dimensions or element size, words to designate specific mattices as the “active” arguments in
various matrix. operations, words to facilitate input and output of matrix elements, words for
calculating various norms of matrices, words to perform matrix addition, subtraction, multipli-
cation, inversion and scaling, and words to produce a duplicate or transposed copy of a matrix.

As a comprehensive utility package, the selected mattix operatots encompass those encoun-
tered in an introductory linear algebra course and those required in engineering design and

Journal of Forth Application and Research, Volume 6, Number3
199

200 The Journal of Forth Application and Research Volume 6 Number3 .

analysis. Although the set of operators is not exhaustive, supplcmbntal functions can be derived
by combining the defined operations or by modifying the source code in Appendix A [WATS91a].

The operators have been defined using the Forth-83 Standard [FORT83] word-set; the
authors have attempted to denote or define any anomalous words. This creates transportable and
comptehensible code in contrast to machine-dependent versions such as that of Ruzinsky
[RUZI83a&b]. Since in most engineering applications, computations are performed on the set
of real numbers, this package was limited to floating point arithmetic. Presumably, the user’s
Forth is equipped with floating point words which follow the proposed FVG standard floating
point extension [DUNC84]. Floating point arithmetic tends to be more functional than integer
arithmetic since scaling procedures become impractical when the magnitudes of the calculated
numbers are unknown.

The programming approach possesses a unique degree of flexibility. In petforming any
matrix manipulation, the operation internally adjusts to the size of its operand(s). That is, the
operands themselves impose the necessatry size constraints for the routines. Thus, reusable,
generic routines can be defined where fewer parameters are requited as. arguments to the
operators. ' '

Matrix Mathematical Package

The matrix mathematical package contains a variety of operators and utilities. The cardinal
function, MATRIX, creates the data structure. Supplemental opetators are provided to access the
parameters characterizing the structure. Another set of routines perform input and output of the
elements of the matrix; including routines to define a matrix as a null or an identity matrix, to
initialize all elements to a fixed value or to fill the matrix from values on the stack. Matrix
transpose and copy facilities that include matrix partitioning and assembling routines are
available. Algebraic operators, such as: scalar multiplication, matrix multiplication, matrix
inverse, addition and subtraction are provided. Also included are matrix-specific operators, for
calculating: determinants and norms and for performing LU decomposition. Operators for
creating temporary or scratch space have also been provided.

Defining the MatrixData Structure

In Forth, data structures, such as matrices, can be defined using the CREATE ... DOES>
construct [BASI83]. With this construct, information characterizing the structure along with
code which operates on this iriformation can be encapsulated. There is no consensus as to the
amount of extra information to be included in the data structure. Maclntyre, for one, questions
the degree of “intelligence” that data structures should possess. He suggests that parameters such
as the number of dimensions, data type, address type and storage byte-width should be included
in each array header [MACI86]. This issue is avoided when application-specific code is
developed; usually, matrices of fixed dimensions are employed [STOD85], [LAQUSS].

Since most problems encounteted in engineering can be formulated using vectors or two
dimensional arrays, this package has been so restricted. Each matrix is an entity that provides
_ self-indexing for addressing or accessing its contents. During the CREATE phase, a header
containing the matrix name, its dimensions and element storage size plus an appropriate amount
of data storage space is placed in the dictionary. At execution time, the DOES> phase returns the
address of the specified element location. This defining word is MATRIX whose usage follows:

number_of rows number_of columns MATRIX <matrix.name>

MATMATH — A Matrix Handling Pacckage for Forth 201

Row and column matrices, i.e. vectors, are defined with MATRIX by setting either the corre-
sponding row ot column value to one. This implementation of MATRIX assumes a zero based
index system; i.e. the first element is stored at (0,0).

The element size, which is stored in a self-fetching variable, #BYTES, is coded to default to
FPSIZE, the byte-width of a floating point value. The space allotted to <matrix.name> is based
on the element size and the number of elements as specified by the number of rows and columns.
Using a self-fetching variable accommodates for various stack widths. Non-standard element
sizes can be declared priot to matrix creation with the command:

size_in_bytes EQU #BYTES

Note that most 32-bit Forth versions use 4 bytes for integer values and 4 bytes for double precision
values; whetreas, 16-bit Forth versions use 2 bytes for integer values and 4 bytes for double
precision values. As denoted in the soutce code, the location or address of an element can be
obtained by specifying: '

row_numbet column_number <matrix.name>

Brodie suggested this syntax [BROD87] which has been followed in various appllcatlon-spcclfic
codes [RUZI83a], [BARNS4], [CARP88], [NEUB90].

Operators for accessing the parameters that characterize a matrix have been provided. The
number of rows of a matrix can be obtained by using the following command:

PHROWS - <matrix.name>.
Similarly, the number of columns of a matrix can be accessed by:

?#COLUMNS <matrix.name>
and the storage width of each element can be discerned using the command:
?P#BYTES <matrix.name>.

When defining block operators for matrix manipulation, it is essential to realize that each
matrix stores its contents contiguously, row by row. Data storage by rows is well-suited for many
matrix operators; especially, those whose algorithms employ row exchanges. When coding
algorithms, Forth words for memory transfer can be used advantageously.

Creating Operators

To create generic, reusable operators, the arguments of the operators were vectored. This
vector execution philosophy enables operators to be coded for a matrix structure; that is, each
operator can be associated with any matrix without requiring any modification to the operation.

_In this package, matrix operations which require one, two or three operands have been defined.

Assigning operands to a routine is accomplished using the state-dependent words,
UNI_MAT, BI_MAT and TRI_MAT. In assigning a matrix to be the “active” argument for an
operation, the code field address (cfa) of the designated matrix is stored in a variable. In order
to perform matrix data manipulation, the code pointed to by the variable must be executed.

Assighments of matrices are made to the variables LMATRIX (left-hand matrix), RMATRIX
(right-hand matrix) and SMATRIX (solution matrix). For example, operators involving three
matrices ate prefaced with the command TRI_MAT. The command TRI_MAT A B C, stores
the cfa of matrix A in the variable, LMATRIX, the cfa of matrix B in the variable, RMATRIX and
the cfa of matrix C in the variable, SMATRIX. Similatly, two argument matrix operations employ
the statement, BI_MAT A B, which places the cfa of matrix A in LMATRIX and places the cfa

202 The Journal of Forth Application and Research Volume 6 Number3

of matrix B in RMATRIX. Lastly, UNI_MAT is used to preface single argument operations and
stotes the cfa of the matrix in LMATRIX.

Accessory words which return the names of the cutrently active matrices and their related
characteristics have been provided. LMAT . NAME, RMAT . NAME and SMAT .NAME; L#ROWS,
R#ROWS and S#ROWS; and L#COLS, R#COLS and S#COLS return the cotresponding name,
number of tows or number of columns of the assigned left-hand, right-hand or solution matrix,
respectively. The operators LM®@, RM@ and SM® perform data retrieval and LM, RM1 and SMI
provide data storage based on the above vectoring. These operators are the core of. the matnx
operator words.

Matrix Operators

A brief description of the operators that are coded in high level Forth follows. An effort has
been made to adhere to Forth 83 standard word-set [FORT83). The corresponding stack effects
and appropriate syntax for each operator are also given. Note that “f™ refers to a floating point
value and “m” and “n” are integer values. Cortect matrix dimensioning has also been assumed.

Matrix Input/Output
ELEMENT DATA STORAGE
A floating point value on the stack is stored in the nth row and mth column of matrix A:

fnmAF!

ELEMENT DATA RETRIEVAL
A floating point value taken from the nth row and mth column of matrix A is placed on the
stack:

nmA F@

MATRIX DISPLAY

MAT (--) |
Prints the contents of the matrix in formatted form.
Usage: UNI_MAT A .MAT

Interactive Matrix Interrogation Words

?DIMENSIONS (--)
Displays the characteristic parameters of the active matrix.
Usage: UNI_MAT A ?DIMENSIONS

?#COLUMNS (--n)
Returns the number of columns in the matrix whlch follows the operator. -
Usage: ?#COLUMNS A

?#ROWS (--n) ,
Returns the number of rows in the matrix which follows the operator.
Usage: ?#ROWS A

" MATMATH — A Matrix Handling Pacckage for Forth 203

?#BYTES (—-n)
Returns the number of bytes per element in the matrix which follows thc operatot,
Usage: ?#BYTES A

Matrix Initialization

STACK->MAT (fo.. .fum-)

A matrix is initialized using the values on the stack, hence the number of elements on the
stack corresponds to the number of elements in the matrix. Values entered on the stack are
stored by rows, beginning with the (0,0) element. Warning: the stack depth determines the
permissible number of elements that can be entered.

Usage: UNI_MAT A STACK->MAT

DIAGONAL (--)

Zeros all non-diagonal elements of a mattix. In this context, the non- dlagonal clements are
assumed to be any cell where the row and column indices are not equivalent.

Usage: UNI_MAT A DIAGONAL

MZERO (--)
Creates a null matrix by initializing all elements to zero.
Usage: UNI_MAT A MZERO

MFILL (f--)
Sets each element in the matrix to the floating point value on the stack .
Usage: UNI_MAT A MFILL '

IDENTITY (--)

If the active argument is a square matrix an identity matrix is created; otherwise a Kronecker
Delta function is performed using the matrix indices.

Usage: UNI_MAT A IDENTITY

Algebraic Matrix Operations

MPLUS (--)
Performs the matrix addition: A +B=C.
Usage: TRI_MAT A B C MPLUS

MMINUS (--)
Performs the matrix subtraction: A- B =C.
Usage: TRI_MAT A B C MMINUS

MMULT (--)
Performs the matrix multiplication: A* B = C.
Usage: TRI_MAT A B C MMULT

204

The Journal of Forth Application and Research " Volume 6 Number 3

SMULT (--) _
Performs a scalat multiplication on the matrix; the scalar multiplier is stored in a floating
point variable, SVAR,

Usage: TRI_MAT SVAR A C SMULT

INVERSE (--)
Inverts a square matrix in place.
Usage: UNI_MAT A INVERSE

SOLVE (--)

Used for solving a set of linear equations. In the form, A X = B, where A is the coefficient
matrix (square matrix) and B is the constant matrix (given vector of a single set of forcing
functions). The solution matrix, X is placed in matrix, B.

Usage: BI_MAT A B SOLVE

Other Operators

DETERMINANT (- f)
Calculates the determinant of A.
Usagc: UNI_MAT A DETERMINANT

LUDECOMP (--)
Petforms a lower-upper triangulation using Crout’s method; the result is a LU decomposed
rowwise permutation of the original matrix.

Usage: UNI_MAT A LUDECOMP

Matrix Norms

ROW - NORM (-- f) :
Determines the row norm which is defined as the largest sum of the absolute values of the
elements in a row. ‘

Usage: UNI_MAT A ROW-NORM

COL-NORM (-- f) ;
Determines the column norm which is defined as the largest sum of the absolute values of
the elements in a column.

Usage: UNI_MAT A COL-NORM

E-NORM (-- f)
Determines the Euclidian horm of a matrix.
Usage: UNI_MAT A E-NORM

'

MATMATH — A Matrix Handling Pacckage for Forth 205

Copying and Partitioning Matrices

MCOPY (--)
Copies the contents of one matrix to another.
Usage: BI_MAT A B MCOPY

TRANS_COPY (--)
Copies the transpose of one matrix to another; the first matrix is left intact.
Usage: BI_MAT A B TRANS_COPY

MINSERT (nm--)

Replaces the elements of the second matrix with thosc of the first matrix. The upper left hand
element of the first matrix is matched to the nth, mth element of the second matrix.
Replacement is done by rows.

Usage: BI_MAT A B MINSERT

MEXTRACT (nm --)

The second matrix is a partition of the first matrix. The (0, 0) element of the second matrix
is matched to the nth, mth element of the first matrix.

Usage: BI_MAT A B MEXTRACT

- Dynamic Memory Management Operators

TEMP_MATRIX (--)

Creates the framework of a temporary data structure for the storage of characterizing
parameters which will include the number of columns, the number of rows, the byte-width
and the start of the base address of the data storage space. Since these structures are similar
to those created using MATRIX, the previously described matrix operators can be used.

Usage: TEMP_MATRIX A

TEMP_ALLOT (nm --)

* Sets the characterizing parameters of the tcmporary data structure (n number of rows, m
number or columns, current value of #BYTES for byte-width and sets the base address to the
current end of the dictionary). Then thc required data space is allocated past the end of the
dictionary.

Usage: UNI_MAT A TEMP_ALLOT

TEMP_DEALLOT (--)

Resets the characterizing parameters of the temporary data structure and frees the data
storage memory.

Usage: UNI_MAT A TEMP_DEALLOT

These operators are integral to algorithms that require wotk space (i.e. DETERMINANT,
SOLVE, LUDECOMP and INVERSE). After creating (TEMP_MATRIX) and allocating space
(TEMP_ALLOT), the data structure can be manipulated with the matrix operators. Retrieving the

206 : The Journal of Forth Application and Research . - Volume 6 - Number 3

data storage space (TEMP_DEALLOT) must be completed ptior to subsequent creation of
matrices or definitions.

A full description of each algorithm can be found in various sources on humerical analysis.
Most algorithms used in this package have been adapted from those presented in Numerical
Recipes [PRESS87], Handbook of Algorithms and Data Structures [GONNS4] and HP-15C
- Advanced Functions Handbook [HPC82].

Anomalies to Forth-83 Standard

The use of nonstandard words has been minimized. Those that have been incorporated into
the code are explained to improve the code’s comprehensibility and portability. To assist with
vector execution, the nonstandard word, PERFORM has been used [HAYD90]. This word
executes the code stored at the address-on the stack. The high level Forth word EQU [LMIS6]
which is a “changeable constant™ has been used in defining the matrix element cell-size. A similar
implementation of this structure, called VALUE, appears in Lewis’s work [LEWI85]. The
routines to identify and describe active arguments use . NAME. The function of this LMI extension
[L.MI87] is to print the name corresponding to the given name field address.

As previously mentioned, data manipulation uses floating point operators as proposed in the
FVG Standard. The unique implementation of MZERO takes advantage of the way floating point
numbers are stored in LMI-FORTH+. The two cell definition of a floating point number can be
set to zero by setting each cell to zero. Thus an efficient method to create a null matrix is to fill
the data space with zeros. An alternative definition has been provided to ensure compatibility.

One of the employed nonstandard words 8> F converts a single precision integer to a floating
point numbet. An equivalent high level definition would combine 8>D [TRACS87b] and the FVG
Standard word, FLOAT. The floating point logical opetator FO<> is mcrely a combination of the
logic operatots FO' and NOT.

Forth Coding Techniques

In developing software, two widely accepted, programming objectives are readability and
efficiency. Special efforts have been made to enhance the readability of the source code. This is
particularly important because as noted by Stoddard “well understood operations, such as matrix
multiplication are quite tricky to express in Forth, and when coded bear little resemblance to a
text book desctiption of the underlying algorithm” [STOD85] As well, the algorithms have been
reformulated to enhance efficiency.

One weakness of Forth lies in its lack of support for loops nested to an arbltrary level.
According to the Forth-83 standard [FORT83], loop indices are recoverable to only two levels.
As well, the loop accessing utilities are relative to loop nesting rather than absolute referencing.
The nesting of more than two layers requires either clever stack manipulation or a kludge such
as using variables with mnemonic hames like EYE, JAY or KAY, to stote the indices. This latter
approach has been adopted where such nesting is required, as in MMULT [WATS90].

Forth is adept at memory handling. Transferting blocks of memory using CMOVE has been
used extensively in algorithms requiring row interchanges. Alternately, element-by-element
transfers may be implemented; however run-time efficiency tends to be decreased. Similarly,
initialization routines employ FILL to operate more efficiently.

The vector execution technique utilized in this package provides greater flexibility than was
previously indicated. The operator, SMULT, references-a vatiable rather than anothcr matnx as
discussed in the definition of TRI_MAT. :

MATMATH — A Matrix Handling Pacckage for Forth : 207

Some applications benefit greatly from dynhamic memory management. Many Forths provide
this by accessing the host operating system; unfortunately, this is not standard, resulting in
nontransportable code. Still other vendors provide no such suppott. For this reason, a high level,
dynamic management scheme has been employed. Rather than creating work spaces which
restrict the size of the arguments being passed to an operation, temporary data structures are
created. This is accomplished by creating temporary, matrices. In complex operators, at run-time
charactetizing parameters are stored and the tequired data space for intermediate storage and
computations is allocated. Subsequently, the operations are terminated by recovering the allotted
data space. Such dynamic allocation is an integtal part of the DETERMINANT, LUDECOMP,
SOLVE and INVERSE operators. The syntax for creating and data manipulation of these
temporary matrices is consistent with the rest of the MATMATH package. The other matrix
operations can be performed on the temporary matrices. A drawback of this technique is that the
framework of the temporary data structure temains in the dictionary after liberating the allocated
data storage space. But this skeleton can be revitalized; that is, “new™ information to create
scratch space with different characteristics can be allocated. Unfortunately, this dynamic memory
management demands allocation of space prior to usage and deallocation of this space prior to
defining further application code or additional data structures. (Refer to Appendix A, screens 36
and 37 for a sample implementation).

Future Developments

The authors found the package easy to use and it contained all of the matrix operations needed
in their present work [STIL90]. Undoubtedly, some other usets may feel the scope of this package
needs to be extended. Possible areas for improvement include etror handling, mixed data structure
handling, or additional matrix operators and speed or size optimization of the code [WATS91a].

Error handling routines tend to assist in creating a user friendly package, often at the expense
of run-time efficiency. In this package profuse error handling and bounds checking routines are
limited to detecting singularities. The detection of a singularity leads to aborting LU decompo-
sition operations which are integral to inversion, finding determinants and linear equation
solving. Further routines could be added for checking compatibility in element storage size or
matrix bounds checking as required by the operators [WATS91a].

Some applications may require mixed data structures. Hence operations should be defined
so as to petform the appropriate type of manipulation; this is most likely to present problems if
there is no separate floating point stack. Perhaps the routines could be re-coded for the various
data types and special conversion opetators defined [WATS91b]. Also, the technique of operator
overloading [STRO87] may be applied. By defining primitives for integer, double precision,
floating point and complex arithmetic operations, the matrix structure and operators can be
reformatted to correctly access the appropriate algebraic operator [WATS91b].

Without any doubt, there will be user applications which require operations which cannot be
cobbled from the existing operators. In some cases, a more efficient set of operators based on
algorithms specific to the user’s problem may prove more efficacious than the general purpose
routines that were used. The Forth-83 standard word-set [FORT83] has been followed closely
to enhance portability and understandability. Unfortunately, this fails to tap Forth’s forte,
accessing machine dependent routines, which often reduces execution time. For. applications
whete speed is a priority, the usual techniques for optimizing code such as reformulating
algorithms, redefining inner loops in machine code and in-line programming can be followed.

208 The Journal of Forth Application and Research Volume 6 Number 3

Another concern is space optimization. This can be achieved by better factoring of code or
by loading only the operations required. The source code (Appendix A) has been documented to
facilitate such optimization.

Applications |

Linear algebra spans many domains of scientific application. For instance, the solving of
simultaneous, independent equations is patt of circuit analysis, structural designh and control
applications. As illustrated in Figure 1, the cutrent flow through each loop can be calculated by
applying Kirchoff's Laws [BOBRS8S5].

2Q
ANV
i < i
L 1 > 2 1Q
5V = N2
[-
Figure 1.

Simple electrical circuit

The equations for each loop are

5 =2i; +3(i; -ip), _ ¢}
and
0 = -3i; + 4i,, ‘ @)

After solving the above equations, the curents are found to be

ir=1%4A
and ,
i2 =1 9/11 A.

The solution of this set of linear equations can be computed from the following code:

\ Creating appropriate matrices
2 2 MATRIX COEF 2 1 MATRIX VECTOR

\ Initializing of the matrices
5.0E0 -3.0E0 -3.0E0 4.0E0 UNI_MAT COEF STACK->MAT

5.0E0 1.0E0 U'NVI_MAT VECTOR STACK->MAT

MATMATH — A Matrix Handling Pacckage for Forth ‘ 209

\ Solving the equation
BI_MAT ‘ COEF . VECTOR SOLVE

\ Output of the solution matrix
. (The loop currents are) CR UNI_MAT VECTOR .MAT

Another exposition of the versatility of this package follows in the use of linear algebra to
solve an algebraic equation. The algebraic equation (3) petforms a unique scaling of the elements
in matrix, C. The following code incorporates the special operators of the matrix package to solve
the equation.

di; =(1 - 1 a;; by) ¢ ’ 3)
\ Declaration of matrices » '
5 5 MATRIX A 5 1 MATRIX B 1 5 MATRIX C S5 5 MATRIX D

5 1 MATRIX ONE 5 1 MATRIX TEMP1 5 1 MATRIX TEMP2

\ Defining the scalar
FVARIABLE ETA -1.0E0 ETA Fl

\ Initialization of matrices
,1.0E0 UNI_MAT ONE MFILL

\ Implementation of equations assume other matrices have been initialized

UNI_MAT A DIAGONAL
TRI_MAT A B TEMP1 MMULT
TRI_MAT TEMP1 ETA TEMP2 SMULT
TRI_MAT ONE TEMP2 TEMP1 MMINUS
TRI_MAT TEMP1 C D MMULT

\ Output Solution
+(The solution is) CR UNI_MAT D .MAT

Conclusions

This mathematical package for linear algebra illustrates the dexterity of Forth for numerical
computations. As presented, this utility package has attempted to attain a high degree of
portability. Hopefully, this will ease transferring of the program to a varlety of machines and
encourage the use of Forth for numerical analysis.

The authors hope that this package may serve as a first draft of a standard Forth linear algebra
utility. Similar resource packages [STAR87], [MOSA90] are available for matrix handling;
unfortunately, most of these packages are protected by proprietary rights and 1mp1cmentatlon
details are usually withheld, resulting in numerous re-creations of the same resoutce. By makmg

209

210 The Journal of Forth Application and Research Volume 6 Number3

the code accessible development time for similar problems should be reduced. The authors
encourage others to use this code for personal, hon-commercial purposes and invite feedback on
the package.

The original and innovative nature associated with creating generic operators lies with the
vectoring. technique. This technique requires the use of a quasi-prefix syntax in the commands
of UNI_MAT, BI_MAT and TRI_MAT. Some of the merits of this technique include readable
application source code, the ability to liberate state dependency in assighing operands, ease in
extending the matrix operator library and streamlining of application code where repetitive use
of the same matrix operator occurs. Alternately, assighment of the matrix arguments using the
Forth commands [“] or * would be viable. Drawbacks of this technique for the user include
remembering the required state syntax and the need to declare arguments for each use although
the matrix operand has not changed. When attempting to implement the matrix package so that
the matrix operators use postfix syntax, stack manipulation within the defined operatots tended
to be more involved and the apparent need to patse the input stream in both states added to the
programming complexity. The authors did not investigate all possibilities for implementing
generic matrix operatots. However, from our extensive use, MATMATH appears to be easy to use
and practical. The nature of the employed, quasi- prcfix syntax is offered as an issue for debate
in the Forth community.

Using Forth’s extensibility, operators that cannot be synthesized from the cxisting code can
be created by modifying the code.

We have found that if the syntax of MATMATH serves as a standard, then modular program-
ming with mathematical routines written by more than one individual can be easily. interfaced
and improved program development results.

Some of the unique programming techniques used in MATMATH are relevant to other
applications. The vectoring of more than one argument enables operands to be exchanged among
routines and improves the readability and maintainability of routines. The dynamic memory
management scheme was created to avoid imposing size constraints on arguments when space
for intermediate steps was necessary.” Although this high level dynamic allocation scheme
requires the immediate freeing of memory, routines that require a large amount of space for a
brief interval, may use this technique. Alternately, a rudimentary, dynamic memory management
scheme could have employed EVAL [TRAC87a&b] and FORGET. EVAL, a nonstandard com-
mand, enables strings to be interpreted. Scratch space can be created at run-time if the strings
contain the commands for creating matrices. The dictionaty space is not wasted, since FORGET
cleanly frees the dictionary. This technique is extensible to other temportary operations. However,
implementation requires the nonstandard commands of EVAL [TRAC87a&b] and * [HAYDY0].
As experienced and as noted by a reviewet, this technique is problematic when creating an
embedded system where the text interpreter is shed.

MATMATH has been created as a powerful and portable utility package for linear algebra.,
Through the use of generic, reusable operators and consistent syntax, compatibility and standard-
ization is achieved. The authots encourage others to improve the utility of this package to assist
in realizing the potential Forth has for applied scientific computation,

Acknowledgement

The comments of the reviewers have enhanced the presentation and content of this paper. A
special tribute to the reviewer who suggested the basis of the discussed dynamic memory
management technique. Partial financial assistance was provided by the Natural Sciences and
Engineering Research Council of Canada (0GP0005575). Also gratefully appreciated was the

MATMATH — A Matrix Handling Pacckage for Forth 211

suppott provided from- Zonta International Foundation in the form of the Amelia Earhait
Fellowship to the first author.

References

[BARNS84] Joe Barnhatt, “Forth and the Fast Founct Transform , Dr. Dobb’s Journal
19(9):34ff, 1984,

[BASI83] James Basile, “Multi-Dimension Arrays™, JEAR, 1(2):79-80, 1983.

[BOBR85] Leonard S. Bobrow, Fundamentals of Electrical Engt'neering,‘ Holt, Rinehart and
Winston, Inc.: New York, 1985. ’

[BRAD86] Mitch Bradley, Fi orthmacs User Guide, Bradley Fothware Mountain View, Califor-
nia, 1986.

[BROD&7] Leo Brodie and Fotth Inc. Starting Forth, pp. 267-8, Prentlce—Hall Inc Englcwood
Cliff, New Jersey, 1987.

[CARP88] J ohn D. Carpentet, “Trainable Neural Nets in Forth™, 1987 FORML Conference Pro-
ceedings, pp. 415-434, 1988,

[DUNCS84] Ray Duncan and Martin Tracy, “The FVG Standard Floating Point Extension”, Dr
.Dobb's Journal, 9(9):110-115, 1984.

[FORT83] Forth Standards Team, Forth-83 Standard Moutitain View Prcss Mountain View,
California, 1983.

[GONN84] G. H. Gonnet. Handbook of Algorithms and Data Structures Addison-Wesley Pub-
lishing Co.: Reading, Massachusetts, 1984.

[HAYDS0] Glen Haydon, All About Forth — An Annotated Glossary, 3rd Edition, MVP-Forth
Seties Moutain View Press: Mountain View California, 1990.

[HPC82] Hewlett-Packard Company, HP-15C Advanced Functions Handbook, (00015 -90011),
Cotvallis, OR, pp. 96ff, 1982.

[LAQUB88] Robett E. La Quey, “Networks of Neurons”, 1987 FORML Conference Proceedmgs
pp. 191-200, 1988.

[LEWI8S] . Steven M. Lewis, “Should VARIABLE be an Immediate Statc—scnsmvc Word"”
JEAR, 3(1):53-60, 1985.

[LMI86] LMI FORTH USER NEWSLETTER, pp.5-6, Laboratory Mlcrosystcms Inc. California,
Aug. 1986.

[LMI87] LNH, PC/FORTH+ User s Manual, Laboratory Microsystems, Inc.: Califomia, 1987.

[MACI86] Ferten MacIntyre, “Forth Advanced Scientific Tools: How Intelli gent Should Arrays
Be?”, Proceedings of 1986 Rochester Forth Conference, published in JFAR, 4(2):335-338.

[MAC184] Ferren Maclntyre, “Number Crunching with 8087 FQUANSs: The Mic Equatlons”
JFAR, 2(3):51-62, 1984.

[MOSA90] Mosaic Industries, Inc. The RealFORTH Card (brochure). 1990

[NEUB90] Katl-Deitriech Neubett, “Little Universe: A Self-referencing State Table”, JEAR,
6(2):117-130, 1990.

[NOBLS88] J. V. Noble, “Fortran is Dead: Long Live Forth!”, JEAR, 5(2):261-270, 1988.

[NOBL89] J.V. Noble, “Scientific Computations in Forth”, Computers in Physics, 3(5):31-38,
1989.

b

212 The Journal of Forth Application and Research Volume 6 Number 3

[PRES87] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Nu-
merical Recipes The Art of Scientific Computing, Cambridge University Press: New York,
1987.

[RUZI83a] Steven A. Ruzinsky, “Fast Matrix Operations in Forth, Part 1", Dr. Dobb’s Journal,
8(6):56ff, 1983.

[RUZI83b] Steven A. Ruzinsky, “Fast Matrix Opetations in Forth, Part II", Dr. Dobb’s Journal,
8(7):70ff, 1983.

[STAR87] Mike K. Starling, “MATH.DOC", 4XFORTH™ (Disk update), Version 3.03, 1987.

[STIL90] Denise S. (Derby) Stilling and L. Glen Watson, “Neural Net Control of Intelligent
Structures”, Proceedings of the 1990 Rochester Forth Conference , pp. 139-141, June, 1990.

[STODS85] Bill Stoddart, “Readable and Efficient Parameter Access Via Argument Rccordé”,
JFAR, 3(1):61ff,, 1985.

[STRO87] Bijarne Stroustrup, The C++ Programmmg Language, Addison-Wesley Publishing
Co., Reading, Massachussetts, 1987.

[TRACS87a] Mattin Tracy, “A Forth Standard Prelude”, Dr. Dobb’s Journal, 12(10):40-45, 1987.
[TRACS7b] Martin Tracy, “The Forth Column”, Dr Dobb’s Journal, 12(12):144ff, 1987.

[WATS90] L. Glen Watson and Denise S. (Derby) Stilling, “Number Crunching With Forth”,
Proceedings of the 1990 Rochester Forth Conference, pp. 152-153, June, 1990,

[WATS91a] L. Glen Watson and Denise S. (Derby) Stilling, “Experience with Linear Algebra
and the Forth Utility Package, MATMATH", Proceedings of the 1991 Rochester Forth Con-
Jerence, pp. 129-131, June,1991

[WATS91b] L. Glen Watson and Denise S. (Derby) Stllllng, MATMATH: A Linear Algebra Pack-
age User's Guide, 1991.

Appendix A: SOURCE CODE

The program was developed using LMI FORTH+ with special effort to adhere to the Forth-83
standard [FORT83] word-set. The authors believe that all non-standard words have been either
noted or redefined. To test the transpottability of the code, the source code was downloaded to
another Forth vendor [BRADS6] with the only changes required being the implementation of
VALUE [LEWIS8S5] for EQU and adhering to the vendor’s floating point syntax.

The source code does not depend on the text interpreter being either case sensitive or case
_insensitive. However, when compiled using a case sensitive Forth, the appropriate case of the
Forth primitives must be used. Note that the following source code assumes Forth primitives are
in upper case. For simplicity, the matrix operators are also defined using upper case.

Comments have been interspersed to indicate usage and to depict stack effects. Also the
required screens for each function have been listed to assist with customizing the code for desired
operatots when space optimization is crucial. The space occupied by the entire code is about 5
Kbytes.

MATMATH — A Matrix Handling Package for Forth : 213

\ SCREEN 0
\: MATH UTILITIES : D&G 09/14/90

LA A AR RS R AR RS RS SRRE Rl R R AR R 2R SRR YRR X R YRR Y
ddkkhkhhhhhhhhhkhhddhhkhkhkkhkhkkhkhbhhdhbhhdkhbdkrrhrrrhkbrrohkdrrehbrhh kb krkhd

* % * ok
** MATMATH - A LINEAR ALGEBRA PACKAGE * ok
*k * %k
* Copyright 1990 by L. Glen Watson & D.S.D. Stilling * %
* % University of Saskatchewan * ok
*k . **
* ok All commercial rights are reserved. *%
** * %
%* % **

LR RS AR RS AR AR AR RS RS RS R R R RS2 R RSS2 2 X2 TR T
LA R RS RS AR R R AR S SRR SRR RS 22X X222 R R RN T

\ SCREEN 1 .

\ MATMATH - Anomolies to FORTH-83 D&G 09/17/90
\ Screens 1 and 2 contain required non-standard extensions

\\ This causes the rest of the screen to be treated as comments.
\
\

Assumes existence of floating point package that follows
FVG Standard [DUNC74].
FOK> (£ -- flag) '

\ true flag if floating point number not equal to 0
F0= NOT ;

S>F (n -- f)
\ converts single precision number to floating point #
S>D FLOAT ; -

\ References: [LMI86] [TRAC87b]

\ SCREEN 2
k\MAIMATH - Anomolies to FORTH-83 (contd.) D&G 09/17/90
\ .NAME (Prints the header or name for a given nfa) [LMIS86]
\ EQU { a changeable consfant) [LMIBSI
\ implementation similar to default action of VALUE [LEWIS8S]
\ PERFORM (executes a definition; cfa is stored in a variable)

PERFORM (addr --) \ [(HAYD90]

@ EXECUTE ;

\ SCREEN 3
\ MATMATH - Matrix Parameter Access Words D&G 09/17/90
18087 \ Loads INTEL 8087 floating point routines

\ for LMI FORTH+ [LMIS86]

4 CONSTANT WSIZE
\ size of single precision value in LMI FORTH+

é CONSTANT FPSIZE
\ size of a floating point value in LMI FORTH+

FPSIZE EQU #BYTES
\ initialize #BYTES to fpsize

\ The augmented base dictionary is assumed to be comprised

\ of the words on these screens (1 to 3).

\ SCREEN 4

\ MATMATH - Matrix Declaration D&G 09/17/90

MATRIX \ Usage: #rows #columns MATRIX TEST
\ Matrix structure defining word
" CREATE (#rows, #columns ---)
2DUP , , #BYTES DUP , * * ALLOT
DOES> (row , column --- addr)
>R R@ @ ROT * + R@ WSIZE 2* + @ * R> WSIZE 3 * + +

214 The Journal of Forth Application and Research Volume 6 Number 3
\ SCREEN 5 ‘ o
\ MATMATH- Interrogation of Matrix Parameter . D&G: 09/21/90
?HCOLUMNS (----n)- \ Usage: ?#COLUMNS A
’ >BODY @ ; \ - returns # of columns in A
?#ROWS (---n) \ Usage: ?H#ROWS A
* >BODY WSIZE + @ ; \ . returns # rows in A
PHBYTES (--- n) \ Usage: P#BYTES A
' >BODY WSIZE 2* + @ ; \ returns # of bytes allotted for
\- each element entry in Matrix A

Useful for iteractively determining matrix parameters
necessary for bounds checking and other error handllng
routines. :

Requires Screens 4 & 5.

MATMATH - Vectoring variables D&G 09/20/90
The following variabled are used for vector execution:

the variables will contain the cfa‘s of the ‘active’
arguments.

\

\

\

\

\ SCREEN 6
\

\

\

\
VARIABLE LMATRIX (Left:-hand Matrix)
VARIABLE RMATRIX (Right-hand Matrix)
VARIABLE SMATRIX (Solution Matrix)

[LIT] (---)
[COMPILE] LITERAL

\ SCREEN 7
\ MATMATH - Single Argument specifier D&G . 09/20/90
UNI_MAT (---) \ Usage: UNI_MAT <matrix-name>
STATE @ \ Vectors one matrix

IF + [LIT] LMATRIX [LIT] COMPILE !

ELSE ‘* LMATRIX !

THEN . ;
IMMEDIATE

\ Requires Screens 4, 6 & 7.

\ SCREEN 8
\ MATMATH - Two argument specifier D&G 09/20/90
BI MAT (---) \ Usage: BI MAT <matrix-name> <{matrix-name>
STATE @ \ Vectors two matrices:- :
IF ¢ [LIT] LMATRIX [LIT] COMPILE !
* [LIT] RMATRIX [LIT] COMPILE !

ELSE * LMATRIX ! * RMATRIX !

THEN
IMMEDIATE

\ Requires Screens 4, 6 & 8.

\ SCREEN 9
\ MATMATH - Three argument specifier D&G 09/20/90

TRI MAT (---)
\ Usage: TRI MAT <matrix-name> <matrix-name> <matrix- name)
STATE @ \ Vectors three matrices
IF . [LIT] LMATRIX {LIT] COMPILE !
* [LIT] RMATRIX (LIT] COMPILE !
r [LIT] SMATRIX {LIT] COMPILE !
ELSE ‘ LMATRIX ! ‘ RMATRIX ! ’ SMATRIX !
THEN ;
IMMEDIATE

\ Requires Screens 4, 6 & 9.

MATMATH — A Matrix Handling Package for Forth 215

\ SCREEN 10 K
\ MATMATH - Current Argument Assignment D&G 09/20/90
LMAT.NAME (--) \ Usage: LMAT.NAME
LMATRIX @ \ returns name of the assigned Left-hand

>NAME .NAME ; \ matrix.
RMAT.NAME (--) \ Usage RMAT.NAME
RMATRIX @ \ returns name of the assigned Right-hand
>NAME .NAME ; \ matrix.
\
\

SMAT .NAME (--)
SMATRIX @
>NAME .NAME ;

Usage SMAT.NAME
returns name of the Solution Matrix.

\ Requires Screens 4, 6 to 10.

\ SCREEN 11

\ MATMATH - Parameters of Active Arguments D&G 09/20/90
L#ROWS (--- i) LMATRIX @ >BODY WSIZE + @ ; \ get #rows
L#COLS (--- i) LMATRIX @ >BODY @ ; \ get #columns
?LH#BYTES (--- n) LMATRIX @ >BODY WSIZE 2* + @ ;

\ fetches size of element storage

RHROWS (--- i) RMATRIX @ >BODY WSIZE + @ ; \ get #rows
RHCOLS.-(--- i ') RMATRIX @ >BODY @ ; \ get #columns
S#ROWS (--- i) SMATRIX @ >BODY WSIZE + @ ; \ get #rows
S#COLS (--- i) SMATRIX @ >BODY @ ; \ get #columns

\ Requires Screens 4, 6 to 9 & 11.

\ SCREEN 12

\ MATMATH - Element Accessing Commands D&G Q9/20/90
IM@ (i3j --- f) LMATRIX PERFORM F@ ; \ fetch a fp #
LM! (£f1i3j ---.) LMATRIX PERFORM F! ; \ store a fp #
RM@ (i 3j --- f) RMATRIX PERFORM F@ ; \ fetch a fp #
RM! (£ i3 ---) RMATRIX PERFORM F! ; \ store a fp #
SM@ (i j --- £) SMATRIX PERFORM F@ ; \ fetch a fp #
sM! (£ i j ---) SMATRIX PERFORM F! ; \ store a fp #

\ Requires Screens 4, 6 to 9 & 12.

\.'SCREEN 13
\ MATMATH - Parameter Access Utility (?DIMENSION) D&G 09/20/90

?DIMENSION { --) \ Usage: UNI MAT A ?DIMENSION
CR \ Provides characteristic data of a matrix
LMATRIX @ >NAME ,NAME ." has "
L#ROWS . ." rows and " L#COLS . ." columns."
CR
?L#BYTES ." Element length is " . ." bytes.”

Requires Screens 4, 6, 7, 11 & 13.

\
\ SCREEN 14
\ MATMATH - Matrix Manipulation Variables D&G. 09/20/90
\ Index variables for: loops (Kludge for enhanced readability)
VARIABLE EYE
VARIABLE JAY
VARIABLE KAY
VARIABLE ELEL
VARIABLE EYEEYE

216 The Journal of Forth Application and Research Volume 6 Number 3
\ SCREEN 15
\ MATMATH - Initializing a Matrix (STACK->MAT) D&G 05/28/91
STACK->MAT (fo ... fnm --). \ Usage: UNI_MAT A STACK->MAT
0 LH#ROWS 1- \ Initializes the matrix with
DO 0 L#COLS 1- \ values from the stack.
DO J I LM! -1
+LOOP -1

+LOOP

\ Requires Screens 4, 6, 7, 11, 12 & 15.
\ SCREEN 16
§ MATMATH - Matrix printing/output (.MAT) D&G 05/28/91

(Requires user input for advancing ‘the display after each scr)
4 PLACES \ Sets # of decimal places ‘to be printed to left of
\ the decimal.)
VARIABLE LINES 25 CONSTANT (#LINES
LMAT (O ---) \ Usage: UNI MAT A .MAT
CR 0 LINES ! \ Formatted printing of a matrix
L#ROWS 0
DO L#COLS 0
DO J I ILM@ 4 10 F.R
I0> IF I 7 MOD 0= IF CR 1 LINES +! THEN THEN
LOOP CR 1 LINES +! (HLINES LINES @ - 3 -
IF ." Press any key to continue" KEY DROP 0 LINES ! CR
THEN
LOOP

~-

\ Requires Screens 4, 6, 7, 11, 12 & 16.
\ SCREEN 17
\ MATMATH - Determining Norms (ROW-NORM) D&G 09/20/90
\ Beginning of various norms calculation for a matrix.
ROW-NORM (-- f) \ Usage: UNI_MAT A ROW-NORM
0.0E0 L#ROWS 0 \ Determines the row norm of matrix, A

DO 0.0E0 L#COLS 0
DO J 1 IM@ FABS F+
LOOP FMAX

LOOP

Requires Screens 4, 6, 7, 11, 12 & 17.

\
\ SCREEN 18
\' MATMATH - Determining Norms (COL-NORM) D&G . 09/20/90
COL-NORM (-- £) \ Usage: UNI_MAT A COL-NORM
0.0E0 L#COLS 0O \ Determines the column norm of a matrix
DO 0.0E0 L#ROWS O :
DO I J LM@ FABS F+
LOOP FMAX
LOOP
\ Requires Screens 4, 6, 7, 11, 12 & 18.
\ SCREEN 19
\ MATMATH - Determining Euclidian norm (E-NORM) D&G 09/20/90

E-NORM (-- f) \ Usage: UNI MAT A E-NORM
0.0E0 LH#ROWS 0 \ Determines the Euclidean norm of a matrix
DO L#COLS 0 ‘
DO J I IM@ FDUP F* F+
LOOP
LooP
FSQRT

MATMATH — A Matrix Handling Package for Fotth

217

\ SCREEN 20

\ MATMATH - Creating a Null Matrix (MZERO) D&G 09/21/90
MZERO (--) \ Usage: UNI_MAT A MZERO
0 0 LMATRIX PERFORM \ Creates a Null Matrix
LHROWS LHCOLS ?LHBYTES * *
0 FILL
(\ \ Alternate element-by-element definition of MZERO
MZERO (--.) \ Usage: UNI_MAT A MZERO
0.0E0 L#COLS 0 \ Creates a Null Matrix
DO L#ROWS 0 :
DO FDUP I J LM!
LOOP
LOOP FDROP
;
\ Requires Screens 4, 6, 7, 11, 12 & 20.
\ SCREEN 21
\ MATMATH - Initializing a Matrix (MFILL) D&G 09/21/90
MFILL {(£ --) \ Usage: UNI _MAT A MFILL
L#COLS 0 \ Fills a matrix with the number on the stack
DO L#ROWS 0
DO FDUP I J LM!
LOOP
LOOP
FDROP
\ Requires Screens 4, 6, 7, 11, 12 & 21.
\ SCREEN 22
\ MATMATH - Creates an identity matrix (IDENTITY) D&G 09/20/90
IDENTITY (--) \ Usage: UNI MAT A IDENTITY
L#COLS 0 \ Creates an identity matirx
DO L#ROWS 0
DO I J = 1IF 1.0E0
ELSE 0.0EQ
THEN
1 J;1M!
LOOP -
LOOP
\ Requires Screens 4, 6, 7, 11, 12 & 22.
\ SCREEN 23
\ MATMATH - Matrix addition (MPLUS) D&G 09/20/90
MPLUS () \ Usage: TRI MAT A B C MPLUS
SH#ROWS 0 \ Places the matrix addition of A + B in C
DO S#COLS 0
DO J I LMe
J I RM@ F+
J I SM!
LOOP
~~ LOOP
\ Requires Screens 4, 6, 9, 11, 12 & 23.
\ SCREEN 24 . N
\ MATMATH - Matrix subtraction (MMINUS) D&G 09/20/90
MMINUS (-- } \ Usage: TRI MAT A B C MMINUS
S#ROWS 0 \ Places the matrix difference of A - B in C
DO S#COLS 0 ’
DO J I LM@
J I RM@ F-
J I SM!
LOOP ~
LOOP
\ Requires Screens 4, 6, 9, 11, 12 & 24.

218 The Journal of Forth Application and Research -Volume 6

Number 3

\ SCREEN 25 : .
\ MATMATH - Matrix multlpllcatlon (MMULT) D&G 09/20/90

MMULT (--) '\ Usage: TRI MAT A B C MMULT
S#ROWS 0 \ Places the product of A and B in C
DO SH#COLS 0 I EYE !
DC 0.0E0 L#COLS ©
DO EYE @ I LM@
I JRM@ F* F+
LOOP
J I SM!
LOCP
LOOP

\ Requires Screens 4, 6, 9, 11, 12, 14 & 25,

\ SCREEN 26
\ MATMATH - -Scalar Multiplication (SMULT)- D&G 09/20/90
SMULT (--) \ Usage: TRI MAT SVAR A C SMULT
R#COLS 0 \ Scales the contents of A by SVAR and stores
DO R#ROWS 0 \ the result in C
DO I J RM@
ILMATRIX @ >BODY F@ F*
I J. SM!
LOOP
LOOP

\ Requires Screens 4, 6, 2, 11, 12 & 26.

\ SCREEN 27
\ MATMATH - Matrix Partitioning (MINSERT) D&G 09/20/90
MINSERT (nm --) \ Usage: BI MAT A B MINSERT
L#ROWS O \ Inserts matrix . A into B with the 0 0
DO 2DUP \ element of A matching element n m of B
I 0 LMATRIX PERFORM-

ROT I + ROT RMATRIX PERFORM
L#COLS ?L#BYTES * CMOVE
LOOP
2DROP

\ Alternate element-by-element partitioning algorithm follows

\ Requires Screens 4, 6, 8, 11, 12°& 27.
\ SCREEN 27a
\ MATMATH - Matrix Partitioning (MINSERT) 11:25 05/06/92
\ Alternate element-by-element partitioning algorithm
\ -
VARIABLE NN VARIABLE MM
MINSERT {(nm--) \ Usage: BI MAT A B MINSERT
MM ! NN ! -
LH#ROWS 0 \ Inserts matrix A into B with the 0 0
DO L#COLS 0 \ element of A matching the mth nth element
DO \ of B
J I Me
JNN@+ I MM @ + RM!
LOOP
LOOP

\ Requires Screens 4, 6, 8, 11, 12 & 27a.

MATMATH — A Matrix Handling Package for Forth _ : 219

\ SCREEN 28

\ MATMATH - Matrix Partitioning (MEXTRACT) D&G .09/20/90
MEXTRACT (nm --) \ Usage: BI MAT A B MEXTRACT
RH#ROWS' 0 "\ Extracts matrix B from matrix A with n m.
DO 2DUP - \ element of A matching element 0 0 of B
SWAP I + SWAP LMATRIX PERFORM . .
I 0 RMATRIX PERFORM
R#COLS ~ ?L#BYTES = CMOVE
LOOP
2DROP
\ Alternate element-by-element partitioning algorithm follows
\ Requires Screens 4, 6, 8, 11, 12 & 28.
\ SCREEN 28a :
\ MATMATH - Matrix Partitioning (MEXTRACT) 11 26 05/06/92
\ Alternate element-by- element partitioning algorithm
A\
\ VARIABLE NN VARIABRLE MM
: MEXTRACT (nm --) \ Usage: BI_MAT A B MEXTRACT ’
MM ! NN ! \ Extracts matrix B from matrix A with the
RH#COLS 0 \ n m element of A matching element 0:0
DO R#ROWS 0O \ of B
pDOoIMMe@e+ JNNG@+ LM@ I J RM!
LOOP
LOOP
\ Requires Screens 4, 6, 8, 11, 12 & 28a.
\ SCREEN 29
\ MATMATH - Matrix Copying Facilities (MCOPY) D&G 09/20/90
: MCOPY (- =--) \ Usage BI_MAT A B MCOPY .

00 LMATRIX PERFORM \ Copies A to B; both matrices assumed
0 0 RMATRIX PERFORM - \ ‘to-be the same size
LHROWS L#COLS ?L#BYTES * *

CMOVE
\\ Alternate element -by- element definition of MCOPY
MCOPY (--) \ Usage BT MAT A B MCOPY .
LH#COLS 0 \ Copies contents of A into B; element by element

DO L#ROWS 0
DO.I J ILM@ I J RM!
LOOP

LOOP

\ Requires Screens 4, 6, 8, 11, 12 & 29.

\ SCREEN 30 : o ~ R :
\ MATMATH - Copying Facilities (TRANS_COPY) D&G 09/20/90
TRANS COPY (-~) \ Usage: BI. MAT A B TRANS COPY :
L#COLS 0 \ The transpose of A is placed in B.
DO LH#ROWS 0
DO - I JLM@& J I RM!
LOOP
LOOP
\ Requires Screens 4, 6, 8, 11, 12 & 30.
\ SCREEN 31
\ MATMATH - Special Utility (DIAGONAL) D&G 09/20/90
DIAGONAL (--) \ Usage: UNI MAT A DIAGONAL
L#COLS 0 \ Retains thé diagonal elements and all other
DO L#ROWS 0 \ elements are set to zero.
DO I J=1IF
ELSE 0.0E0 I J LM!
THEN
LOOP
LOOP

P

Requires Screens 4, 6, 7, 11, 12 & 31.

220

The Journal of Forth Application and Research Volume 6

Number 3

\
\
\
\

\

~- P

P

P

\

SCREEN 32
MATMATH - Matrix Utilities (Variables) D&G 05/04/92

The algorithms for the following matrix utilities, :LUDECOMP,
DETERMINANT, INVERSE and SOLVE have been adapted from
Numerical Recipes pp. 35ff [PRES87]

Temporary storage variables (mainly for LUDECOMP)
VARIABLE IMAX

VARIABLE O/E 1 O/E !

FVARIABLE AMAX

FVARIABLE TEMP

FVARIABLE FOM

FVARIABLE TINY 1.0E-20 TINY F!

SCREEN 33
MATMATH -Dynamic Memory Management (TEMP_! MATRIX)D&G 05/04/92

Defining command that stores required parameters for
the temporary or space/matrix that will operate similar
to the data structures defined using MATRIX

TEMP MATRIX
CREATE
o,0, 0,0, { #Columns, #Rows, #bytes, base address)
DOES>
>R R@ @ ROT * + R@ WSIZE 2* + @ * R> WSIZE 3 * + @ +

Requires screens 1, 2, 3 & 33.

SCREEN 34

MATMATH -Dynamic Memory Management (TEMP ALLOT) D&G 05/04/92

TEMP ALLOT -- allots required scratch space at the end of the
dictionary and stores necessary characterizing parameters.

TEMP ALLOT \ Usage: n m UNI_MAT A TEMP_ALLOT
2DUP
LMATRIX @ >BODY ! (Storing #columns in matrix header)
LMATRIX @ >BODY WSIZE + ! (Store #rows in header)
#BYTES DUP (Byte width of an element)
ILMATRIX @ >BODY WSIZE 2* + !: (Store element byte width)
HERE - (Beginning address for data)
LMATRIX @ >BODY WSIZE 3 * + ! (Store address in header)
* * ALLOT { Allot required data space)

Requires screens 1, 2, 3, 33 & 34.

SCREEN 35
MATMATH -Dynamic Memory Management (TEMP DEALLOT) D&G 05/04/92

TEMP_DEALLOT -- frees scratch space at the end of the
dictionary and clears the characterizing parameters.

TEMP_ DEALLOT \ Usage: UNI_MAT A TEMP DEALLOT
LMATRIX @ >BODY @ (# Columns in tempary matrix)
LMATRIX @ >BODY WSIZE + @ { # Row in tempary matrix)
LMATRIX @ >BODY WSIZE 2* + @ (Byte width in temp. matrix)
* *+ NEGATE ALLOT (Deallocate memory space)

0 LMATRIX @ >BODY ! (Zero # Columns)
0 LMATRIX @ >BODY WSIZE + ! (Zero # Row)
0 LMATRIX @ >BODY WSIZE 2* + ! (Zero Byte-width)
0 LMATRIX @ >BODY WSIZE 3 * + | (Zero Base Address)

Requires screens 1, 2, 3,33 & 35.

v

)

MATMATH — A Matrix Handling Package for Forth

221

\ SCREEN 36)

\ ‘MATMATH -Application of Dynamic Memmory Mgmt. D&G 05/04/92
\ (for LUDECOMP)
\
\

Scratch space/arrays are created when the routine is executed;

at the end of the operation this space

\ Interm data storage & initialization for dyn. memory alloc.
VARIABLE ADDR

LMAT->ADDR LMATRIX @ ADDR ! ;

ADDR->LMAT ADDR @ LMATRIX !

\ Necessary Temporary Matrix Structures
TEMP MATRIX SCALER
TEMP MATRIX RECORD

\ SCREEN 37

\ MATMATH -Application of Dynamic Memmory Mgmt. D&G 05/04/92

\ (for LUDECOMP)

SET-UPL (--) \ Allocates scratch space

LH#COLS 1 LMAT->ADDR UNI MAT SCALER TEMP__ ALLOT ADDR->LMAT
(Creates floating point array based on size of LMATRIX)
WSIZE EQU #BYTES (Set bit-width -» integer)
LH#COLS 1 LMAT->ADDR UNI_MAT RECORD TEMP ALLOT ADDR->LMAT

(Creates integer array based on size of LMATRIX)
FPSIZE EQU #BYTES (Set bit-width -> fl. pt)
M RESTORE (--) \ Freeing of Scratch space

LMAT->ADDR UNI_MAT RECORD TEMP DEALLOT ADDR->LMAT
LMAT->ADDR UNI_MAT SCALER TEMP_DEALLOT ADDR->LMAT

\ Requires screens 33, 34, 35, 36 and 37.
\ SCREEN 38
\ MATMATH - Matrix Utility (LUDECOMP) D&G 05/04/92
\ LUDECOMP: replaces a square matrix with a rowwise permutation
\ of its LU decomposition; the algorithm uses Crout’s Method.
\ Inner Loops of forthcoming code
: UPDATE TEMP (--) \ TEMP = TEMP - LMATI[i,k]LMAT[k,7]
TEMP F@ .
EYE @ KAY @ LM@
KAY @ JAY @ LM@ F* F-
TEMP F!
: CALC FOM (--) \ Calculate Figure of Merit for Pivot
EYE @ 0 SCALER
F@ TEMP F@ FARS F*
FOM F!
\ SCREEN 39 .
\ MATMATH - LUDECOMP (contlnued) D&G 05/04/92
\ Finding the largest element in each row for implict scaling -
\ information (Do 12 Loop of algorithm)}

SCALOR (--)
L#ROWS 0
DO 0.0E0 AMAX F! L#COLS 0
DO J I LM@ FABS FDUP AMAX F@ F>
IF AMAX F! ELSE FDROP THEN
LOOP
AMAX F@ FO= :
IF M_RESTORE LMATRIX @ >NAME .NAME ." is singular."
TRUE ABORT
THEN ;
1.0E0 AMAX F@ F/ I O SCALER F!
LOOP

222 The Journal of Forth Application and Research Volume 6

Number 3

\ SCREEN 40)
\ MATMATH - LUDECOMP (continued) . D&G 09/17/90

\ Solves Upper Triangular Coef. [Eqn 2.3.12] Do 14 & 13 Loops
: 'CALC BETA (--
0 EYE ! ;
BEGIN EYE @ JAY @ IM@ TEMP F! EYE @ 0>
IF .0 KAY ! . »
BEGIN
UPDATE_TEMP «
1 KAY +! KAY @ EYE @ >=
UNTIL
TEMP F@ EYE @ JAY @ LM!
THEN
1 EYE +! EYE @ JAY @ »>=
UNTIL

.

\ SCREEN 41 o
\ MATMATH - LUDECOMP. (continued) D&G - 09/17/90
\ Solves Lower Triangular Coef. - [Egqn 2.3.13] Do 16 & 15 Loops
CALC ALPHA (--
JAY @ EYE !
BEGIN '
EYE @ JAY @ ILM@ TEMP F! JAY @ 0>
IF 0 KAY !
BEGIN
UPDATE TEMP 1 KAY +! KAY @ JAY @ >=
UNTIL -
TEMP F@ EYE @ JAY @ LM!
THEN :
CALC FOM FOM F@ AMAX F@ F>= ;
IF EYE @ IMAX ! FOM F@ AMAX F! THEN !
1 EYE +! EYE @ L}ROWS >=
UNTIL

\ SCREEN-42 : S
\ MATMATH - LUDECOMP. (continued) D&G 05/04/92

\ Row Interchange (Do 17 Loop) & Largest Pivot Element (Do 16)
ROW INTERCHANGE (--)
JAY @ IMAX @ <> \ Check if necessary to interchange rows
IF LHROWS 0 \ Interchange the rows element by elemernt
DO IMAX @ I LM@ FOM F!
-JAY @ I ILMe IMAX @ I LM!
FOM Fe@ JAY @ I IM!
LOOP - R
O/E @ -1 * O/E ! \ Adjust parity of -# of interchanges
JAY @ O SCALER F@ \ Change scaling: factor
IMAX @ 0 SCALER F!
THEN

\ SCREEN 43
\ MATMATH - LUDECOMP (continued) 'D&G. 05/04/92

\ Dividing by Pivot Element (Do 18 Loop)
+ DIVXPIVOT (--
IMAX @ JAY @ 0 RECORD !
JAY @ LH#ROWS 1- <>
IF JAY @ DUP IM@ FO=
IF TINY F@ JAY @ DUP 1M! THEN
1,0E0 JAY @ DUP LM@ F/ FOM F!
JAY @ 1+ EYE !
BEGIN .
EYE @ JAY @ ILM@ FOM F@ F* EYE @ JAY @ LM!
1 EYE +! EYE @ LH#ROWS >= :
UNTIL
THEN

MATMATH — A Matrix Handling Package for Forth

223

\ SCREEN 44

\ MATMATH - LUDECOMP (continued) D&G 09/17/90
\ Crout’s Method summation over columns (Do 19 Loop)
FACTORIZATION (--)
L#ROWS 0
DO I JAY !
- I 0 *
IF CALC BETA THEN
0.0EQ0 AMAX F!
CALC ALPHA
ROW TNTERCHANGE
DIVXPIVOT
LOOP
\ SCREEN 45
\ MATMATH - LUDECOMP (continued) D&G 05/04/92
LUDECOMP - \ Usage: UNI_MAT A LUDECOMP
SET-UPL. \ LU Decomposition using Crout‘’s Method.
1 0/E ! \ This version frees work/scratch vectors.
SCALOR :
FACTORIZATION
L#ROWS DUP IM@ FO=
IF TINY F@ L#ROWS DUP LM! THEN
M_RESTORE
\ Requires Screens 4, 6, 7, 11, 12, 14 & 32-45,
\ SCREEN 46
\ MATMATH - LUDECOMP D&G 05/04/92
\ (without memory restoration)
LUDECOMP . (--) \ Performs LU Decomposition on LMAT
. SET-UPL™ \ Scratch space retained; integral part
1 O/E ! \ of DETERMINANT, SOLVE and INVERSE.
SCALOR
FACTORIZATION
L#ROWS DUP LM@ FO= .
IF TINY F@ L#ROWS DUP LM! THEN
\ Requires Screens 4, 6, 7, 11, 12, 14, 32:44 & 46.
\ SCREEN 47
\ MATMATH - Dynamic Memmory Mgmt. D&G 05/04/92
\ (for DETERMINANT and SOLVE) :

TEMP _MATRIX ORIGINAL \ Temporary or scratch Matrix Structure

SET-UP2 (--) \ Allocates scratch space
L#ROWS L#COLS
LMAT->ADDR UNI MAT ORIGINAL TEMP ALLOT ADDR->LMAT

(Creates floating point array based on size of LMATRIX .)

M RESTORE2 (--) \ Freeing of Scratch space
LMAT->ADDR UNI_MAT ORIGINAL TEMP_DEALLOT ADDR->LMAT

\ SCREEN 48
\ MATMATH - Dynamic Memmory Mgmt. D&G 05/04/92
\ (for DETERMINANT and SOLVE)
LMAT->0RIG (--) \ Used to preserve "original" argument
SET-UP2 \ Creation of the work .space, ORIGINAL
0 0 LMATRIX PERFORM \ Copies "original" matrix (active
0 0 ORIGINAL \ argument) to temporary matrix.
LH#ROWS L#COLS ?LHBYTES * = \ Similar to MCOPY.
CMOVE
ORIG->LMAT (--)

0 0 ORIGINAL \ Transfers "original" matrix back
0 0 LMATRIX PERFORM \ to matrix vectored to LMATRIX,
L#ROWS L#COLS ?LHBYTES * * \ then, free the scratch space.
CMOVE \ Similar to MCOPY.

M RESTORE2 \ Restore memory space.

The Journal of Forth Application and Research Volume 6

224 Number 3
\ SCREEN 49
\ MATMATH - Matrix Utility (DETERMINANT) D&G 05/04/92
\ [PREIS87] p. 39
DETERMINANT (-- } \ Usage: UNI MAT TEST DETERMINANT
LMAT - >ORIG \ The determinant is calculated from a
LUDECOMP__ \ LU decomposition of the matrix.
O/E @ S>F
L#ROWS 0
DO I DUP LM@ F*
LOOP
M RESTCRE \ Free scratch space of LUDECOMP
ORIG->LMAT \ Transfer "original" and free space
\ Requires Screens 4, 6, 7, 11, 12, 14, 32-44 & 47-49.
\ SCREEN 50
\ MATMATH - Matrix Utility (SOLVE) D&G 09/20/90
\ Forward and Backward Substitution used in SOLVE follow same
\ algorithm as those in LUDECOMP
\ Inner Loops of forthcoming code
: UPDATE TEMPi (--) \ TEMP = TEMP - LMAT[i,j]RMAT[j,0]
TEMP F@ .
EYE @ JAY @ LM@
JAY @ 0 RM@ F* F-
TEMP F!
\ SCREEN 51
\ MATMATH - SOLVE (continued) D&G 05/04/92
\ Forward Substition
: --) \ Equation 2.3.6 (Do loops 12 &11) [PRES87]pp.36-8
L#ROWS 0 /
DO I 0 RECORD @ ELEL !
ELEL @ 0 RM@ TEMP F! I 0 RM@ ELEL @ 0 RM! EYEEYE @ -1 <>
IF EYEEYE @ JAY !
BEGIN I EYE ! UPDATE TEMPi
1 JAY +! JAY @ I >=
UNTIL
ELSE TEMP F@ F0<>
IF I EYEEYE ! THEN
THEN
TEMP F@ I 0 RM!
LOOP
\ SCREEN 52
\ MATMATH - SOLVE (continued) D&G 09/17/90
Backward Substition

--) \ Equation 2.3.7 (Do loops 14 &13) [PRES87]pp.36-8.

0 L#ROWS 1-
DO I 0 RM@ TEMP F! I L#ROWS 1- <

IF I 1+ JAY !
BEGIN I EYE ! UPDATE TEMPi
1 JAY +! JAY @ L#ROWS >=
UNTIL
THEN
TEMP F@ I I LM@ F/ I 0 RM! -1

+LOOP

MATMATH — A Matrix Handling Package for Forth 225

\
\

SCREEN 53
MATMATH - SOLVE (continued) D&G 05/04/92
SOLVE (--') \ Usage: BI MAT A B SOLVE
LMAT->ORIG \ Solves a set of linear equations Ax = B
LUDECOMP_ \ The solution vector is returned in B
-1 EYEEYE !
FWD
BWD L

M RESTORE \ Free memory space from LUDECOMP _ temp. arrays
ORIG->LMAT \ Transfer "original" matrix; free assoc. space

\ Requires Screens 4, 6, 7, 11, 12, 14, 32-44, 46-48 & 50-53.

~ g

S S

Pl

P

SCREEN 54
MATMATH - SOLVE D&G 09/20/90
SOLVE (--) \ SOLVE; assumes LUDECOMP performed;
-1 EYEEYE ! \ scratch space not recovered; integral part
FWD BWD \ of INVERSE

Requires Screens 4, 6, 7, 11, 12, 14, 32-44, 46-48, 50-52 & 54.

SCREEN 55
MATMATH - Dyn. Memory Mgmt (for INVERSE) D&G 05/04/92

Scratch space/arrays are created when the routine is
executed; at the end of the operation this space

Interm data storage & initialization for dynamic memory alloc.
VARIABLE NN

TEMP MATRIX INVERTED \ Scratch space

TEMP_MATRIX COL_INV

SCREEN 56
MATMATH - Dyn. Memory Mgmt (for INVERSE) D&G 05/04/92
SET-UPI (--) \ Allocates scratch space

L#ROWS DUP LMAT->ADDR UNI_MAT INVERTED TEMP ALLOT ADDR->LMAT
(Creates floating point matrix based on size of LMATRIX)
L#coLs 1 LMAT->ADDR UNI MAT COL INV TEMP ALLOT ADDR->LMAT
(Creates floating point column vector based on L#COLS }

M _RESTOREI (--) \ Freeing of Scratch space
IMAT->ADDR UNI_MAT COL_INV TEMP DEALLOT ADDR->LMAT
LMAT - >ADDR UNI_MAT INVERTED TEMP_ DEALLOT ADDR->LMAT

SCREEN 57
MATMATH - Matrix Utility (INVERSE) D&G 05/04/92
(for INVERSE) [PRES87] p.38.

EXTRACT COL. (n --) \ n is selected column #
NN ! THROWS 0
DO I NN @ INVERTED F@
I0 COL_INV F!
LOOP

REPLACE COL (n --) \ n is selected column #
NN ! LH¥ROWS 0
DO IO COL INV Fe@
I NN @ INVERTED F!
LOOP

These routines could be cobbled from MINSERT & MEXTRACT.

226 The Journal of Forth Application and Research

Volume 6 Number 3

\ SCREEN 58

\ MATMATH - INVERSE (continued) - D&G
INVERSE (--) \ Usage: UNI_MAT A INVERSE

LUDECOMP
SET-UPIL
LMAT->ADDR UNI_MAT INVERTED IDENTITY ADDR->LMAT
L#COLS 0

DO I EXTRACT COL [‘] COL_INV RMATRIX ! SOLVE_

I REPLACE_COL

LOOP .

0 0 INVERTED 0 0 LMATRIX PERFORM

L#ROWS LHCOLS ?LHBYTES * * CMOVE ADDR->LMAT
M RESTOREI M RESTORE

’

\ Requires Scns 4, 6-8, 11, 12, 14, 22, 32-44, 46-8,

05/04/92

50-2. &:54-8.

