A Debugging Environment for Forth

Peter C. Lind and N. Solntseff

Department of Computer Science and Systems
. McMaster University
Hanmilton, Ontario, Canada L8S 4K1

Abstract

This paper outlines the design and implementation of a visually oriented debugger and execution
tracer for Forth. The utility is coded in Turbo Pascal and provides a visual user intetface for controlling
the execution of a Forth system and a machine-language monitor which performs the context switching
between the user interface and Forth and handles a variety of software interrupts. k

Introduction

A facility to trace the execution of Forth words is a very useful feature, not only for the
examination of error conditions during progtam development, but also as a help for the under-
standing of forth implementation details.

Several approaches to the provision of execution traces have appeared in the Forth literature.
These may be classified as follows: ~

(1) Simulation of the high-level Forth code definition to determine the run-time behavior of
a word. This approach is described in [ASP80], [BLA83], and [BROS83]. The proposal in
[BLA83] is noteworthy in that it combines word-by-word interpretation with the use of a screen
editor. This represents a first step towards avisual Forth environment.

(2) Compilation of calls to a break-point monitor or their definition of : and ; to provide
such calls. The former strategy is suggested in [BRO83], [JOO83], and [VANS1], while the latter
strategy has been adopted in the highly successful public-domain F83 ([LAX85] and [TINS6]).

(3) Replacement of an executable address in compiled code by the executable address of a
debugging monitor. As this break point can be readily moved at run time from one executable
address to the next, single-step operation of the monitor becomes possible. This approach is taken
in [RUS81] and [SOL84].

None of the above provides for the debugging of words coded in machine language. Yet, as
mentioned in the Introduction, Forth implementors need to be able to trace the operation of their
systems at the machine-code level. This is especially true when the new system is being generated
by meta-compilation, as it is not possible to proceed in an incremental fashion [TIN86]. The rest
of the paper is devoted to the description of an environment for Forth which includes a complctc
machine-level debugger.

Specification of TRACER

The TRACER program provides a controlled environment in which a Forth processor may
be executed and tested. In addition, TRACER provides an animated tracer/debugger, so that the
inner workings of the Forth system can be examined as a Forth word executes; in other words,
TRACER is designed as a workbench on which to examine existing Forth kernels or test new
ones. The TRACER program has two major components: The user interface and the monitor.
The former is a Pascal program which gives the user control over the debugging environment.

Journal of Forth Applications and Research Volume 6, Number 3
227

228 The Journal of Forth Applications and Research- Volume 6 Number 3

‘User Forth
Variables Dictionary MEMORY
DATA ADDRESS
PATH PATH
MDR ' MAR
Data Return
Stack Stack
Instruction Pointer PROCESSOR
Data Stack Pointer
Return Stack Pointer
Register Scratch Pad
PAR
DATA o ADDRESS
PATH PATH

i |

Terminal Buﬂ'er—"(—a Terminal
I |

I/0 CONTROLLER

Disk Buffer H Disc

- MAR: Memory Address Register
MDR: Memory Data Register

PAR: Peripheral Address Register

PDR: Peripheral Data Register

: : Figure 1.
The Architecture of the Abstract Forth Machine.

" A Debugging Environment for Forth 229

The latter, written in assembly language, handles context switching between Forth and the user
interface. The monitor manages all exceptions generated by the Forth system.

Although the work desctibed in this paper was done in an MS-DOS environment with a
particular implementation of Forth [LAX84], the design of the debugging environment was
performed in as implementation-independent a manner as possible, on the basis of the concept
of an abstract forth machine. As shown in Figure 1, a Forth system can be described in terms of
an abstract machine [SOL82] consisting of a cpu with four registers, two stacks, memory, and
input and output streams. In the following, this will be refetted to as the Abstract Forth Machine
(AFM).

This section describes the requirements of the monitor, the program that forms the major
portion of the debugging environment. The purpose of the program can be summarized as follows:

(1) Load an executable Forth processor module from disk and, if necessary, perform
relocation; establish the correspondence between the AFM and host-machine CPU registers;

(2) Determine the addresses of all Forth pnmmve interpreters, namely, those implementing
constant,variable, vocabulary, as wcll as those created by means of the cxreate ...
does> mechanism; “

(3) Establish the structure of the vocabulary used by thc Forth implementation being studied;

(4) Make available a high-level Forth de-compiler, as well as a low-level Forth dis-assembler.

Implementation of TRACER

The TRACER progtram is an animated tracet/debugger. The internal workings of Forth are
displayed as execution proceeds and the user can gain a bird’s eye view of the entire system. In
other words, the ptime goal in the desigh and implementation of TRACER is the provision of a
visual interface to Forth giving the user insight into its innermost mechanisms.

The first action of the TRACER program (see Block 1 of Figure 2) is to load a Forth kernel
description which consists of (1) the mapping between the AFM and host-machine cpu registers,
(2) the host-machine addtesses corresponding to the primitive interpreters listed above, as well
as the more important constants such as context, dp, sp0, r®, etc., (3) the sizes of the various
fields (code, link, hame, and view fields) in the words compiled into the Forth dictionary, (4) the
structure of the Forth dictionary, including the number of threads used in the vocabulary
implementation, and, (5) the name of the Forth executable file. This information allows TRACER
to assume control over the execution of the Forth system which it does by opening the Forth file,
allocating a memory area to the executable file, and, finally, loading the Forth system and
relocating it, if necessary.

The second action of TRACER (Block 2) is to place a breakpoint trap at the start of the Forth
inner interpreter (usually implemented as a few host-machine instructions) and transfer control
to the Forth cold-boot routine. This generally initializes the Forth system, displays an initial
message, and transfers control to the outer or text interpreter. Befote this can happen, however, -
the breakpoint previously set will allow TRACER to regain control and record the values of
important variables such as sp0 and rpO. Figure 3 shows the TRACER screen immediately
before the startup banner is displayed.

The last action of TRACER (Block 3) is to display a menu and await input from the user. A
picture of the initial menu is shown in Fig. 3; here, the top half of the screen shows: The AFM
and host-machine registets, the contents of several cells at the top of both data and return stacks,
and the contents of the Forth input buffer. Console output from the Forth system is sent to the
bottom half of the screen. The list of menus is displayed at the top of the screen. The available
options are discussed next.

230 The Journal of Forth Applications and Research Volume 6 Number 3

1
Load Forth Kernel
-2
Boot Forth
3 ,

Display Main Menu

Regular
Execution

Dictionary

Single-Step

Execution Display

Alternative
Input

Slow-Motion

Execution

Figute 2.
A General View of the TRACER Options.

Available Options

The options available from the top-level menus shown in Fig. 3 are described in greater detail
in this section in order of their appearance on the console screen.

1. System Menu. ' : ‘

(a) Kernel: Edit Kernel Description. This option allows the user to edit the kernel description
mentioned in the preceding section. The invocation of this option results in the pop-up window

A Debugging Environment for Forth 231

THACEH §.00

System Dictionary HMemory Console Iuoput Hun
—FORTH—REG ISTERS——DATA—RETURN WORD—TRACE
IP:2BCC

W:2C78

SP:920E

RP:32D6

Flags :001000010
ODITSZAPC

AX:920E CX:6000 « FORTH not booted »

DX:0060 DI:0000 INPUT—BUFFER
CS:5119 DS:5119
ES:5119 SS:5119 |Empty |Empty

LSPACE>=Single Step ESC=juit

' Figure 3.:
The Main Display of the TRACER Program.

Console Input Hum . THACER 3.00

- T DPATA—RETURN———UORD—TRACE
Load Kernel... —FORTH KERNEL SPECIFICATIONS ‘
New Kernel... Name [F83]

Edit Kernel... File [F83.COM 1
Code Labels... Prompt for Forth Parameters: Ho
enVironment. .. Interpreter Addresses (Hex)

- - NEXT:0108 NEST:0123 EXIT:0139
0S Shell
Quit Field Size FER

VIEW 2

About LINK 2

- k CODE A
——ESC=Exit

No. Vocabulary Threads: 4

F[IBIH«»CPU Register Mapping

SegReg Reg SegReg Reg
IP: SI u: BX
SP: SP RP: BP

fZ=0Options f3=Labels 4—=Accept ESC=Abort

; Figure 4.
The Pop-Up Screen for Editing the
Abstract Forth Machine Parameters,

232 The Journal of Forth Applications and Research Volume 6 Number 3

shown in Fig. 4. All of the fields shown there can be changed by the user to tailor TRACER to a
specific implementation.

(b) Shell: Invoke Operating System. This is the standard way of temporarily exiting to the
opetating system to invoke an OS utility, or call a user program.

(c) Environment: Display Vocabularies and System Parameters. This option is hot shown on
the menu screen because of lack of space on the bottom line, but a press of the E key results in
the display of some frequently consulted Forth-system parameters.

2. Dictionary Menu.

(a) Dictionary: Decompiler/Disassembler Option. This is the decompiler and disassembler
option that can be used to obtain a dictionary oriented display of individual Fotth words—be they
colon or code words.

3. Memory Menu.

(a) Memory: Display Memory Contents. This menu option yields a display in ASCII and
hexadecimal of the memory area used by the Forth system. The contents of individual memory -
locations can be changed.

4. Console Menu.

(a) Zoom In/Out. This allows the user to switch between the TRACER screen and the
conventional Forth output screen.

(b) Options: Modify AFM Display Updating. Here, the user is allowed to specify which
sub-windows of the AFM display shown in Fig. 3 are to be updated during auto-execution of
TRACER.

5. Input Menu.

(a) Input: Alternative-Input Option. Here, the Forth input stream is switched from the
standard terminal input buffer to a separate buffer whose contents can be edited as needed. The
alternative buffer is displayed on the screen and used by TRACER to supply input to Forth. The
buffer can be refilled by the user when it empties. Input can be switched back to the regular
terminal input buffer at any time.

6. Run Menu.

(a) Go: Regular Execution from Specified Address. Here, Forth is allowed to execute without -
any constraints starting from an address entered by the user when requested by a pop up secondary
menu which requests a sixteen-bit value for (CS,IP). The TRACER progtam can regain control,
however, when (1) a user-placed breakpoint is encountered, (2) the user presses a user-defined
break-key combination which results in a forced transfer of control even if no break points have
been set (a feature used to escape from infinite loops), and (3) the Forth system terminates
normally.

(b) Run: Resume Normal Execution. Here, Forth is allowed to execute without any con-
straints from the current address, i.e., the value of IP at the point at which the TRACER program
has last regained control.

(c) Single-Step Execution. As the name implies, this option is used to step through a Forth
program one word at a time. It is invoked by pressing the space bar on the keyboard. Control is
returned to TRACER at the end of every word.

(d) Auto: Slow-Motion Execution. In this mode of operation, there is a user adjustable pause
at the completion of every Forth word. As in the case of regular Fotth execution, the TRACER
program is re-entered whenever the user presses the break-key combination, a user-placed
breakpoint is encountered, or the Forth program terminates normally. In addition, the pressing
of any key during slow-motion execution also allows TRACER to regain control.

A Debugging Environment for Forth 233

The next section deals with the operations performed by TRACER when it is given control
from any of the main-menu options.

Context Switching Between TRACER and Forth

Figure 5 shows a block diagram of the TRACER module that handles the three separate
execution modes specified through the main menu .' Each of the blocks in Fig. 5 is discussed below.

1. Initialize TRACER. The main purpose of this block is to place brcakpomts at the start of
the NEXT, NEST, and UNNEST intetpreters, so that control can be returned to TRACER at these
critical stages of the AFM operation. This block is also used to install any user-specified
breakpoints.

2. Call Machine-Code Interface. Call external procedure as entry point to machine code
interface.

3. Save TRACER Registers. The cpu registets relevant to the operation of TRACER are saved.
These include the hardware stack register.

4. Set I/O Traps. All changes to the interrupt vectors tequired to install both user breakpoints
and the user-defined break-key combination are made at this stage.

5. Restore Forth Registers. This block takes care of the placing of the appropriate values into
all AFM registers (including the Forth stack pointers). These values are the result of the
initialization process shown in Fig. 2 or of a previous invocation of the Save Forth Registers
(Block 8 in Fig. 5).

6. Display Machine State. Here, the display of the AFM and cpu registers, the data and return
stacks, the cutrent input buffer, and the current Forth word is updated on the screen.

- 7. Transfer to Forth. Normal Forth execution is resumed at this stage through the execution
of a return-from-interrupt instruction. '

Once Forth execution is re-started as indicated in the last operation, it will proceed autono-
mously until interrupted by a breakpoint event or a trapped Forth I/O request. The former maybe
caused by (1) a user-inserted trap, (2) a trap that implements single-step or slow-motion
execution, (3) the normal termination of the Forth program, or (4) a hot-key interrupt.

The course of TRACER actions in the case of a breakpoint event is as follows:

8. Save Forth Registers. All AFM registers are saved.

9. Remove I/O Traps. The changes to the interrupt vectors made before transferring to the
Forth system are undone.

10. Restore TRACER Registers. The register contents appropriate to TRACER operation
(including the hardware-stack register) are restored.

. 11. Slow-Motion-Execution Control. If slow-motion mode is in effect, the cycle shown in
Fig. 5 is repeated for the next Forth wotd after a user-specified delay. Otherwise, control is
transferred back to the routine which handles the main menu.

The sequence of actions in the case of a trapped Forth I/O event is the following:

12. Service I/O Request. In the case of an input.request, the next character is supplied from
the TRACER input buffer when TRACER is trapping input, otherwise it is taken from the Forth
Terminal Input Buffer. When Forth sends a character to the display screen, the Forth output area
is scrolled when becomes necessary.

13. User-Initiated Break. When the I/O request involves the brcak key combination (hot key
depressed), processing continues as if this were a breakpoint event (see Fig. 5).

234 The Journal of Forth Applications and Research Volume 6 Number 3

@ Initialize ‘ TRACER
>y

@Call Machine-Code Interface

v

@ Save TRACER Registers

v

@ Set 1/0 Traps

v

@ Restore Forth Registers

<
@ Display Machine State

v

{7
9 Transfer to Forth
— -

< .
| (BREAKPOINT EVENﬂ‘ (FORTH 110 EVENT)

....

& : S

' @ Save Forth Registers — @ Service I/O Request

v |
@ Remove I/0 Traps
. * 13

@estore TRACER Registers

Slow Motion
Execution

Figure 5.
Details of Context Switching Between TRACER and Forth.

A Debugging Environment for Forth 235

Details of Operation

Figures 6 to 13 provide a sampling of the capabilities of our debugging system. After the
system is booted and is executing the outer interpreter, a simple colon definition is entered by
means of the Alternative-Input Option as shown in Fig. 6. It should be noted that trapping of

THACEK 3.00

System Dictionary Hemory Console Input - Hun

—FORTH—REG ISTERS DATA—RETURN ORD—TRACE
IP:2BCC
u:2Cc?8 - .

SP:920E

RP:92D6 FORTH INPUT STREAM CONTROL

Flags :0016000 ,
ODITSZA Trap Forth Input: Yes

AX:920E CX:0 Input-Buffer

DX:0006 DI:Ofl: test 1000 © do i . loop :
CS8:5119 DS:5
ES:5119 3S:5

press ctrl-V for verbatim character
4=Accept Changes ESC=Quit

Figure 6.
Use of the Alternative-Input Buffer by Forth.

‘Forth input is enabled, so that when Forth execution resumes, keyboard input will be taken from
the TRACER Input Buffer. The Slow-Motion Option is used to resume Forth execution which
results in the alternative input buffer being read by the outer interpreter. Figure 7 shows the
compilation process-interrupted by the operation of the user-defined break key after the param-
eters of the 1oop have been read.

The remaining figures illustrate the exploratory features of TRACER which become avail-
able when regular Forth execution is suspended in the middle of a colon definition (see Fig. 7).
Figure 8 shows the window displayed when the environment-parameter display is selected. Note
that the system is in the compile state (state=0). The manner in which the Forth dictionary can
be examined is depicted in Fig. 9. Only one thread of a vocabulary can be displayed at a time.

" Immediate words are marked by the symbol I in the foutth column. The highlighted word in the
display (DUMP in Fig. 9) can be decompiled by pressing the enter key. Cursor keys are used for
selection of the word to decompile. The decompiler creates a new window as shown in Fig. 10.
The decompiler recognizes different classes of Forth words, including words defined by the
create ... does> mechanism and code words (see Fig. 11).

Lastly, Figures 12 and 13 illusttate. the use of the Memory-Display Option. The former
exhibits the hexadecimal and ASCII memory dump of the lowest arca of the F83 system. Figure13
shows the cotresponding disassembly. The cold and warm boot transfets at offsets 0100 and 0103

236 The Journal of Forth Applications and Research Volume 6 Number 3

can be seen, as well as the instructions implementing the Forth inner interpreter (offsets 0106 to
010C, respectively).

system Dictionary HMemory Console Input Hun THACLER 3.00
—FORTH-REGISTERS——DATA—RETURN WORD—TRACE
IP:086C '

W:0020

SP:EDOO

RP :EDCE

Flags:001016000 000D

ODITSZAPC EDOE ZOVER
0020 46B1:10D8

AX:000D CX:0020 0020 10DA | 7BRANCH

DX:EDOE DI:0C41 000D 11AD INPUT—BUFFER
CS:46B1 DS:46B1 EDOE 11DB |do i . loop :r

ES:46B1 8S:46B1 0050 | 2B8O

086 Forth 83 Model
Uersion 2.1.0 Modif ied 01Junt4
E test 1000 O

<SPACE>=Single Step ESC=Quit

Figure 7.
A Break-Key Interruption of a Forth Compilation.

system Dictionary Memory Console Input Hun THACEH 4.00

- DATA—RETURN ORD—TRACE
Load Kernel...
New Kernel...
Edit Kernel... :
Code Labels...
- FORTH ENVIRONHMENT
enVironment...
- VOCABULARIES
0S Shell . Current: FORTH
Quit Context: FORTH
About SYSTEM PARAMETERS
- State: 0 BLK:0
ESC=Exit—| UP: 2C?2 DP :000A
B086 Forth B3 Mod TIB: 930E
Version 2.1.0 Mod
t test 1000 O press any key when ready
Figure 8.

Display of the Forth Environment during an Interrupted Compilation.

A Debugging Environment for Forth ' 237

System Dictionary Memory Console THACEK 3.00

Input Hun

—FORTH-REGI
IP :0EAA - UDCABULARY FORTH (555 words)
' W:OES8
SP:9206 rVIEl4 CFAfy p rE———————NAlE————
RP:92CE 4 44 60DD PAGE
Flags :00100 4 44 &0C2 LOGO
ODITS 4 44 60BS L/PAGE

F— 4 34 5CCC (SEE)
AX:0000 CX 4 30 5BD1 DL
DX:0000 DI 4 30 SBB8 DU
cs:s5119 os|[IEEEEES T
ES:5119 SS 4 29 5A95 DLN :
—— 4 29 5A4D D.2

4 21 5772a (UHERE)

4 21 56CC DONE

4 13 4FS6 DARK

4 11 4EAS DELETE

Current Thread = 1
Find Previous Thread VUocabulary
tiav=Move 4—=See ESC=Quit

Figure 9.
Display of the a Colon-Definition Decompilation during an Interrupted Compilation.

System Dictionary Hemory Console iInput Hun TRACEK 3.00
—FORTH-REGI =
IP:2BCC VOCABULARY FORTH (507 words)
W:2C78
SP:100E VIElq (CFfy n M/ ME————y
RP:10D6 4 44 60DD PAGE
Flags:060100 4 44 60C2 LOGOD
ODITS 4 44 6085 L/PAGE
AX:100E DUMP is a Colon Definition
DX : 0000 -
CS:5930 : DUMP BASE @ -ROT HEX .HEAD BOUNDS (DO) 18 I DLN KEY?
ES:5930 (7LEAVE) (LIT) 16 (+LOOP) -14 BASE ¢ ;
press any key when done

‘4 13 4F56 DARK
4 11 4EsS DELETE

Current Thread = 1

Find Previous Thread Vocabulary
tlav=Move <4J1=See ESC=Quit

Figure 10.
Display of a Colon-Definition Decompilation
during an Interrupted Compilation.

238 The Journal of Forth Applications and Research Volume 6 Number 3

dystem Dictionary HMemory Lonsnle toput Hun

TRACEH 3.00

—FORTH-REG] : :
IP:0EAA VOCABULARY FORTH (S55 words)
W:0ESS
SP:9206 rVIEW (CFAy § ———NAME———
RP:92CE 1 37 o4 *
Flags:60100ff 1 36 ©9F9 »D

opITSff 1 32 oesea 2ROT

1 32 0850 20VER

AX:0000 CX
DX:0000 DI 2DROP is Code
CS:5119 DS : v
ES:5119 SS - CODE 2DROF #X POP AX POP NEXT END-CODE

press any key when done ’

25 666C 2-
25 O064F 2+

(S

Current Thread = 3

Find Pfeuious Thread Vocabulary
tlav=Move 4—=See ESC=Quit

Figure 11.
Dlsplay of a Code-Word Disassembly during an Interrupted Compilation.

Sysiem Dictionary Memory Console Input Hun
FUBTH—REGISTEBS——T—DﬂTﬁ—TBETUBH. WORD—TRACE

THACER 3.00

00 01 62 03 04 05 06 07 08.09 6A OB OC 6D OE OF
5119:0100 E9 34 2B E9 2B 2B 52 50 AD 8B D8 FF 27 03 10 06 j4s+i++RP--Xa’.-.
5119:0110 006 85 46 4F 52 54 C8 94 29 DE 66 D2 66 3D 66 ED - -FORTH-)"“fRf=fm
5113:0120 65 00 00 43 43 4D 4D 89 76 00 8B F3 EB DA 04 10 e--CCMM-u-.skZ--
5119:0130 060 00 84 45 58 49 D4 39 01 8B 76 00 45 45 EB C8 ...EXIT9--v-EEKH
5119:0140 04 10 30 01 86 55 4E 4E 45 53 D4 39 01 87 EC 56 --0:-UNNESTS- .1V
5119:0150 87 EC S5E 43 43 53 EB B0 43 43 53 EB AB 05 10 42 '-l“CCSkOCCSk+--B
5119:0160° 01 82 55 DO 58 01 7Z 2C 43 43 8B 07 EB 99 43 43 ‘UPX.r,CC- -k-CC
5119:0176 8B 07 03 06 66 01 EB 8F 05 10 00 00 85 28 4C 49 coef koo (LI
5119:0180 54 A9 84 01 AD EI 2F FF 09 10 OF 01 86 42 52 41 T) —~ios- ... BRA
5119:0190 4E 43 C8 95 61 8B 34 E9 6E FF 09 10 00 60 87 IF HCH-:-4ina----- ?
5119:01A0 42 5Z 41 4E 43 CB A8 61 58 09 CO 74 EB 46 46 E9 BRRNCH(X-@thFFi
5119:61B0 56 FF OB 10 7A 01 86 28 4C 4F 4F 50 A9 BF 01 B8 Vs..z.-(LOOP)7-8
5113:01C0 ©1 00 01 46 00 71 CE 83 C5 06 46 46 E9 39 FF 6B .-.F.qN-E-FFi9a-
5119:0106 10 B4 01 B7 28 2B 4C 4F 4F 50 A9 DD 01 58 EB EZ -4-..(+LO0OP)1-Xkb
5119:01E6 OC 10 D1 01 84 28 44 4F A9 EB 01 58 5B. 4D 4D 8B . -Q.- (DODK-XIMM-
5119:01F6 14 89 56 00 46 46 81 C3 00 80 4D 4D 83 SE 00 29 ..U.FF.C--MM-".)

11A1=Houé new Address Unaséemble ESC=Done

Figure 12,
Display of Memory Contents during an Interrupted Compilation.

A Debugging Environment for Forth: - : : 239

System Dictionary
FORTH-REGIS

flemory Cownsole Input Hun THACER 3.00
UNASSEMBLE MEMORY
0100 E9342B 11060 JMP
0103 -E92B2B 11051 JHP '
0106 52 DX PUSH +RP--Xa’ .- .
0107 - 50 . AX PUSH TH:)cfRf =f'm
0108 AD WORD LODS MM-v-.skZ- -
0109 8BDB AX BX MOV IT9- -v-EEKH
010B FF27 [BX1 JMP UNNEST9- -1V
010D . 0310 [BX+SI1 DX ADD SkOCCSk+- -B
010F 0000 AL IBX+SI1 ADD -r,CC--k-CC
0111 - 85464F5254 ~ DX [BP+SI+84]J TEST ikeoooas (LI
0116 C8 777.(5C8) isa. ... -BRA
0117 9A296366D2 :6329 FAR CALL .
011C 66 277 (566) H(-X-@thFFi
011D 3D66ED -4762 AX CHMP -« (LOOP)T-8
0120 65 717 (565) gqN-E-FF19a.
0121 0000 AL [BX+SIY ADD +LO0P3>1-Xkb
0123 43 BX INC : (DOYk -X[MM-
0124 43 BX INC F-C--MM-*.3
0125 4D BP DEC

0126 4D BP DEC

4-!=Continue new Address ESC=Quit

Figure 13.
Display of Disassembled Memory Contents
during an Interrupted Compilation.

Discussion and Conclusions

The TRACER program is an animated tracer/debugger. The internal workings of Forth are
displayed as execution proceeds and the user can gain a bird’s eye view of the entire system. In
other words, the prime goal in the design and implementation of TRACER was the provision of
a visual interface to Forth giving the user insight into its innermost mechanisms. The use of
TRACER in a graduate course on Forth is planned for the 1991/92 Academic Year. In addition,
TRACER has proved to be of considerable value in testing new versions of Forth obtained
through metacompilation [Lax85]. At present, TRACER works well with F83 and all functions
of the program have been implemented. TRACER has been designed to work equally well with
16-bit or 32-bit addressing models, although the latter feature has not been tested. A desirable
feature which has not yet been implemented is a facility for user-inserted breakpoints in Forth
words. This will be included in the next version of TRACER.

References

[ASP80] T. Asprey, “A Forth execution simulator for debugging, »Proc. 1980 FORML Conference,
Forth Interest Group, San Catlos, CA94070 (1980), pp. 181-187.

[BLAS83] T. Blakeslee, “Debugging from a full-screen editor,” FORTH Dimensions, V, No. 2
(July/August 1983), p. 30.

[BRO83] L. Brodie, “Add a break point tool,” FORTH Dimensions, V, No. 1 (May/Tune 1983), p.
19.

[COI81] B. A. Cole, “A stack diagtam utility,” FORTH Dimensions, 111, No. 1 (May/June 1981), pp.
23-32.

!

240 The Journal of Forth Applications and Research Volume 6 Number 3

[JOO083] R. Joosten, “Tracer for colon dcﬁnmons FORTH Dimensions, V, No. 2 (July/August
1983), pp. 17-18.

[LAX84] H. Laxen and M. Perry, Public Domain distribution of F83(1984).

[LAX85] H. Laxen and M. Perry, F83 Source, Offete Enterprises,Inc., San Mateo, CA 94402 (1985),
209 pp.

[LIN88] P. C. Lind, Towards Object Oriented Forth, M.Sc.(Computation) Thesis, Department of
Computer Science and Systems,McMaster University, Hamilton, ON L8S 4K1 (1988), 206 pp.

[RUS81] T. Rust, “Terse debugging package, ” Proc. 1981 Rochester Forth Conf., Univ. of Rochestet,
Rochester, N.Y. 14623 (1981),pp. 373-374.

[SOL82] N. Solntseff, “An abstract Forth machine,” Proc. 1982Rochester Forth Conf., Univ. of
Rochestet, Rochester, N.Y. 14623(1982), pp. 149-156.

[SOL84] N. Solntseff, “A break point utility for Forth,” Proc. 1981 Rochester Forth Conf., Univ. of
Rochester, Rochester, N.Y.14623 (1984), pp. 373-374.

[TIN86] C. H. Ting, Inside F83, Revised Edition, OffetcEnterprises, Inc., San Mateo, CA 94402
(1986).

[VAN81] P. van der Eijk, “A stack diagram utility,” FORTHDtmenszons I, No. 1 (May/June 1981),
pp- 23-32.

