Introduction to Object Oriented Approaches

Steven M. Lewis, Ph.D.

RhinoDiagnostics Corp.

Introduction

In the past several yeats object oriented programming has become extremely popular. It is
important for the Forth community to undetstand this approach and the reasons for its populatity.
This introduction defines some of the critical concepts in object oriented programming and some
‘of the reasons for its popularity. It discusses the basic methods and vocabulary of object oriented
programming. Finally it discusses some options for implementation of objects within Forth.
Several general principles must be realized from the outset.

A Paradigm

First, object oriented programming is not a language or a specific set of programming tools,
rather it is a paradigm. A paradigm is a new way of viewing the world, in this case the entire
concept of a program. As Thomas Kuhn [Kuh62] points out in his book The Nature of Scientific
Revolutions, when a paradigm shift occuts, it may force people to rethink almost everything they
ate doing. Programmers developing object oriented software will eventually find that their code
looks nothing like what they have written before. Object oriented Forth code will grow to be as
dissimilar from conventional Forth as Forth is from C or PASCAL.

The popularity of object oriented programming is the result of trends in computer design
over the past several decades. The speed and memory of ‘typical® machines has roughly been
doubling every two years or less. Today a ‘typical’ machine might be a 33 MHz *386 class
machine with at least 8 MB of memory. In a few years we expect systems to be *586 class with
at least 32 MB memory. While machines have been getting faster, larger and smarter, program-
mets stopped getting smarter at some time in the late Pleistocene. As a result, the balance between
the three tesources under a programmet’s control: the computer’s time, the computer’s memory
and the programmer’s time has shifted. Compared to earlier approaches, object oriented programs
cohsume mote memory, usually take more time to compile and more time to run. The tradeoff is
that good object oriented programs tend to be easier to write and to have fewer errors than
conventional programs. Thus, the system’s resoutces are used to allow programmers to write
better, *safer’ software.

Concepts

The impottant ideas in object oriented programming may be represented as a collection of
concepts. Many of the important gains may be realized by systems written in conventional
languages such as C or Forth which use ideas and approaches espoused by object oriented
programming. These benefits come from careful adherence to specific rules. The advantages are
similar to those obtained writing structured code in FORTRAN by eschewing GOTO statements.
More object otiented coding forces changes in the style and the language. Thus, object oriented

Journal of Forth Applications and Research Volume 6, Number 4
269

270 7 The Journal of Forth Applications and Research Volume 6 Number 4

software represents a continuum. This discussion seeks to outline the major steps and the
decisions in approaching object oriented coding.

Structures =

The first important concept is the notion of collections of data. This corresponds to a C struct,
Pascal record or ADA packet. There is no direct equivalent in Forth, but the tools exist to easily
implement such approaches. I will term such a collection as a STRUCTURE. A structure is a
group of data items which can be passed to execution units (C functions or Forth words) as a
packet. Consider, for example, a structure describing a person’s bank account to an ATM. ATM
operations may need access to the person’s name, current balance, credit history, credit line and
an encrypted form of the PIN, Rather than passing each of these items to a routine, it is faster,
safer and cleaner to create a structure containing all the information and pass in a reference to
that structure. I will talk about each of the terms in a STRUCTURE as a FIELD. Thus, for
example, in a bank account, the account numbet, PIN, balance and holder name will all be fields
within the Account structure. Most high level words take not single arguments but rather
organized collections of data. Grouping of data makes most functions cleaner since passing a
data group -guarantees that all required data is present. While this ability to group data is not
sufficient for object oriented programming it is a- vital prerequisite. Older languages, such as
FORTRAN and BASIC, lack the ability to define data groupings. Forth lacks this ability in the .
core word set but it is easy to add.

Data Byping

Once structs are introduced into a language, argument typing becomes important. In class1cal
Forth rclatlvely few explicit data types are used. Typically, Forth programs deal with cells,
addresses (which are treated as cells), doubles, characters and floats. With structs, a large variety
of other types are introduced. Cleatly it is an error to pass the address of a RECTANGLE structure
to a routine expecting a COLOR structure. Traditional languages such as C (or Forth) lack a way
to tell the programmer when a routine is being called with the wrong structure. ANSI C offers
type checking. Typically type checks are performed by the compiler which will flag as an error,
an attempt to pass the address of one type of structure to a routine expecting another. Smalltalk
can detect these errots at runtime (and pays a significant performance penalty for this ability).
In theory, Forth stack comments can be used to test the use of routines. However, in practice,
type safety will require major changes in the Forth language and to Forth compilers, While type
safety is not critical to object oriented programming, the proliferation of data types in object
oriented systems make tools to help the developer test proper use of types become increasingly
ctitical.

Data Hiding

Once data can be grouped, another important property is the notion of data hiding. Once one
has defined a grouping of data and a number of functions to operate on that group, it is apparent
programmets shouldn’t know-the internal data. Suppose a developer is charged with developing
a complex structure, say a window on a graphic screen. He could give other developers-a list of
functions (Forth words) which operate on a Window. There might be a word to create a Window,
a word to destroy one. Other words would hide, show, move and tesize windows. In a typical
GUI a couple of dozen functions describe everything that one can do with a Window. Suppose
we say that those few dozen functions represent the ONLY possible uses of a Window. Then, if
the only thing we can do with a Window stricture is to cteate it, pass it to functions which
understand a Window and later destroy it, then there is no necd to understand the internal data
within that structure since there is ho meaningful opetation we can perform with that data. This
ignorance is a real advantage. If there are multiple programmers using the structure, they can

Introduction to Object oriented Approaches 27

write their code given only the set of words which can use the structure. Furthermore, the
programmer ot group charged with maintaining the code operating on the structure can modify
the internals of that structure secure in the knowledge that as long as all publicly announced
routines operate correctly no code will be broken by changes in the structure.

Data hiding breaks a program into two sections. There is a public declaration of a structure’s
" functionality which are the calling arguments (stack diagrams) of the routine. These are published
and may be used by any developer. There is also private information about the precise field of a
structute which is only available to the programmers responsible for maintaining the code
associated with that module. This arrangement allows a complex problem to be broken up into a
collection of independent modules, each maintained separately and, in theory, supported by
separate teams. The ADA language makes extensive use of the concept. At this stage of this
discussion, developets have created a structure and a collection of functions operating on that
structure. In principle, any language which supports structures may be used to write structures
in this manner.

Objects

Previously we viewed data as a collection of application specific data elements. Later, with
date hiding, we began to associate a limited collection of functions with a particular data structure.
The structure and the functiotis associated with it can be treated as a unit. The next step is to make
the structure representing the data include the relevant functions. Imagine a Forth structure
including an array of code field addresses (CFA's). Instead of calling for a function by name one
can wtite code asking for the fifth function in the array. Once the collection of functions is
grouped with the data we have an Object. An Object has two parts: a collection of data and a
collection of functions which can operate on that data. What advantages accrue from placing
functions with the data? First, if the only operations possible on an object are to execute code
accessed through the Object, one guarantees that the Object will not be misused. It becomes
impossible (well at least more difficult) to pass an Object to-a word expecting different data.
Second, by tightly associating functions with data, there is an assurance that the functions cannot
be altered without also altering all calls to those functions.

Another important change in coding style is that as functions are associated with a structure,
the concept of a structure is broken into two terms. A CLASS describes the fields of an instance
of a structure. It tells the type and name of each field and the type and name of each function
associated with the structure. An instance is a specific structure created by the CLASS. The
relationship between CLASS and INSTANCE is the same as that between a Forth defining word
and the word produced by the defining word. In essentially all Forth implementations of objects,
a class is merely a special form of a defining word. Thus, for example, a class might by an IBM
~ PC with a 386 processot. An instance might be the computer on John’s desk with a specific serial
number. ’

Grouping the functions within the Object without other modifications, such as inheritance
and late binding, represents largely a semantic difference from earlicr approaches. One has moved
from a structure and a collection of functions to the structure and functions embedded within the
structure. Although the calling sequence is slightly different, and safer since it is harder to misuse
an object, the coding functionality and style are similar.

~ Functions associated with objects are called methods. In object oriented compilers there is
a way to associate a method with a name. By convention in this discussion I will end the names
of methods with a : , so a method called Print will be Print:. If one has a Window object named
foo, one may invoke a Resize: method to resize the Window foo. In all object oriented systems
one either writes Resize: foo or foo Resize: to accomplish this. Objcct oriented systems differ in
their view of what happens when the text Resize: foo is encountered. In all cases the text Resize:

272 The Journal of Forth Applications and Research Volume 6 Number 4

is used to locate a Window-Resize function which is executed. This process is called binding.
Binding associates an internal function with a call to that function. However, object oriented
systems may differ in two respects.

The first is when the binding takes place. Systems which use early binding look up the
function when the code is compiled and compile it. Systems which use late binding look up the
function when the code is executed. These seemingly minor differences make major differences
in the power and style of coding. A second difference is the relative roles of the object and the
compiler in binding. In heavily object otiented systems, the object plays a major role in
interpreting and binding. In object otiented systems mote heavily based on compilation such as
C++, the compiler plays a much more major role in binding, limiting the role of the object. Both
approaches have been separately used in Forth.

Classes ‘ /

Typically, a class may be thought of as a description of a structure and the code for all of
that classes” methods. One important function of a class is to create an instance of that class. An
instance is a specific object representing an object created to fit the class description. Consider
a class describing a Person. The class will describe data fields such as NAME, AGE, SO-
CIAL_SECURITY - The class Person describes the structure of any Person. An instance of
Person will be a structure with NAME set to “John Smith”, AGE to 34 — Usually a class will
have a number of instances. _

A major new programming approach is inheritance. The idea of inheritance is to build new
classes of objects from existing classes. Usually new classes add new data, new methods or both.
For example, one might build a class MilitaryPetson as a specialization of Person. A MilitaryPer-
son might add fields for RANK, SERIAL_NUMBER and SUPERIOR. New methods might be
KP: and coutt-martial: which lack meaning outside the military. A major concept in inheritance
is that a MilitaryPerson is a specialization of Person. Any routine which can use a Person can
also use a MilitaryPerson. All of the data in the class person is also present in MilitaryPetrson and
all of Petson’s methods may be applied as well. Inheritance represents a major gain since we
have to write very little code to build the class MilitaryPerson. The only code we need to write
is where a MilitaryPerson behaves different from ordinary Persons. As a specialized class of
Person, Military Person is a SUBCLASS of the class Person. Person is called the SUPERCLASS
of MilitaryPerson. Another name for the class hierarchy is the IS_A hierarchy, i.e. a MilitaryPer-
son is a Person.

Hierarchies

Object oriented systems represent hierarchies of classes. A root class will declare some
general behaviors and subsequent classes will speclallzc the behaviors. One might, for example
construct a hierarchy of class for:

PhysicalObject - things with size, weight, position

Toy - physical object used in games

Ball - spherical toys

Billiard Ball

Cue Ball

In developing the hierarchy we define properties once at the apptopriate level. Because a
Cue Ball is a Toy we know it is used in games. This fact is encoded once while developing the
Toy class. Because Cue Ball is a Ball we know it is round and rolls because this information is

in the Ball methods and applies to all balls. Finally, Cue Ball has special behaviors such as being
the only ball which can be hit with the cue and penalties when it is sunk.

Introduction to Object oriented Approaches 273

Inheritance is an extremely powerful aid to programming because it allows the developer to
specify only those behaviors which cause a new object to be different from a known object.
Furthermote, developets can build ABSTRACT objects to allow many objects to share code. For
example, a developer may be describing the behavior of Billiard Balls, Soccer Balls and
Baseballs. In order to facilitate code reuse, he develops the ABSTRACT CLASS, Ball. He will
never actually create an instance of Ball, only a specific specialization, say Soccer Ball. However,
the fact that a ball is round and rolls is common to-all balls and may be placed in the abstract
class. »
Another major innovation in object otiented programming is the ldea of late binding. Late -
binding is the idea that if a group of objects share a method with the same name (but usually
different function) the actual code executed depends on the type of object sent the message when
the program is run, The developer can write code without knowing what type of object will
ultimately execute the code. For example, consider a function like Print. In Forth when we want
to print a number we say . , when we want to print a DOUBLE, we write D. , for a float we say
F. . If there is a complex structuie such as a STUDENT, we will write a special word such a
PRINT_STUDENT. In writing code we need to know what is on the stack and what word will
print that data. In an object oriented system, we can define a method PRINT. Sending Print: to
an object representing a float will perform F. , sending it to a STUDENT object will print name,
classes and grades, sending Print: to a CHAPTER object might print a chapter in a book. For all
objects suppotting that method we can simply send the message Print:.

Polymorphisms

This ability to use same method, in this case Print:, to execute different code for different
objects is called POLYMORPHISM. An essential feature of polymorphism is that the code
executed by one class may be replaced by different code in a subclass. This process is call
OVERRIDING the method. Overtiding may entirely replace the code for the method or merely
extend it with the newer code calling the older code as part of its execution.

Finally, the relationships among objects is a recurring theme. The functioning of any object
of significant complexity can depend on that object’s relationship to other objects. If, for example,
one is building an object to represent a course, then the Course object will make reference to an
Instructor, a collection of Students, one or more Textbooks, and perhaps a collection of Exams.
Each of these will reptesent separate objects. Much of the development of a system comes from
defining the nature of the relationships between objects. Some objects, Exams for example, are
dependent on the Course object. If Computer Science 342 ceases to exist, the exams for that
course would have no reason for independent existence. Other objects such as the Instructor will
continue to exist in most systems. The designer of object oriented systems spends a large fraction
of his time worrying about relationships among objects. Some relationships are one to one, such’
as the relationship between a Student and an Exam (Students take an exam only once.) whereas
others are many to one, such as the relationships between a course and the students (Students
may take a number of courses and Courses contain a number of students.). A designer has to
worry about whether a course has a single Instructor or may have several Instructors.

Coding

Once relationships are defined, much of the coding can be written in terms of rclatlonshlps
One can, for example write the pseudo code to print a grade sheet as:

ThisCourse Name: Print:

Instructor Name: Print:

ForEach Student -

274 The Journal of Forth Applications and Research Volume 6 Number 4

ThisStudent Name: Print:
For each Exam
ThisStudent Print: Grade Print:

Here Print: is a method to print an object, string, number or a complete object. Name: gets
the name of an object.

Methods in polymorphic codmg are almost always implemented as late binding if the system
supports the concept. The power of late binding is the ability for an developer to apply the same
operation to a group of objects of indeterminate class including classes which may have been
created long after the code was written. This style is used extensively in most object oriented
projects.

Implementations

Any object orlcntcd systcm has to address the issue of polymorphism, that is that the same
method, Print: for example, will execute different code depending on the object it is associated
with. Object oriented implementations differ in the way this code is selected: Those differences
involve three issues: first, when the selection is made, whether at compile time (Early binding)
or run time; second, the distribution of responsibility with making the selection between. the
method word.and the instance word; and, third, the selection mechanism. In Forth thetre ate a
number of possible object implementations. Almost all implementations make a class a defining
word which relates instances in the DOES pottion. There is much more ﬂexlbllxty in the
implementation of instances and methods.

A method is invoked by pairing an instance (or a reference to an instance) with a method,

i.e. by writing Print: FOO or FOO Print: . The actual code executed may be associated with either

the method or the instance. Similarly, the responsibility for selecting the proper code to execute
may be assigned to code within the method or the instance. In all cases, Instance has the
responsibility for leaving its address on the stack at run time. Different approaches have been
used to allocate responsibility for selection of the code.

- Inmost cases I will assume that the code that is ultimately executed when a method is invoked
is passed the address of the affected. instance on the top of the stack with any other argument
lower on the stack. In the case of Print:, the instance is-the only argument. Suppose George is an
object of class Person, SomePerson is a reference to an object of class Person which will be set
at run time and Print: is'a method defined in Person. The following discussion deals with the case
when an object is paired with a method, for example, Print: GEORGE. It is a separate, interesting
problem to deal with the case when an object such as: GEORGE is executed without a method.
Most implementations will have the object leave its address on the stack in this case. Determining
that no method has been passed to an object is a non-trivial problem which I will not address
here. :

Early Binding Approaches

Eatly binding almost always makes either the mcthod the instance, or both, an immediate
word. This is because computations to select which of several implementations of a specific
method need to be performed at compile time.

Immediate Instances - Executable Methods - Vocabulary Classes

A common approach to early binding is to associate a hierarchy of vocabularies with a class.
Person, the class, is a vocabulary with methods such as Print: defined within that vocabulary. In
this case Geotge can be an immediate word with the following actions. Fitst, George compiles
code to place his address on the stack at run time. Second, George looks up the next word in the

* Introduction to Object oriented Approaches o 275

Person vocabulary with the search proceeding to higher class vocabularies if needed. If find
succeeds, the resultant word, the method, is compiled. At run time, George’s address is placed
on the stack and consumed by the Print: method.

The syntax is:
George Print:

with the immediate instance preceding the method.

SomePerson must also be immediate and must act in much the same manner as a known
instance. Pountain uses this general approach in his work [Pou87].

Immediate Instances - Methods tokens - methods in class

A second approach is to make the method a token which is associated with a piece of code
contained within a structure created with the class. In this case the method is simply a token used
in searching for the appropriate code. Because a method is just a token, methods may be global
and need not be associated with any piece of code. Also, the developer has control over the search
process instead of relying on the standard Forth vocabulary search. The syntax is similar to that
described above:

Immediate Methods - Immediate Instances

In this approach, both the method and the instance are immediate words. The method reads
the next word which must be the name of an object or appropriate class. The method looks up
the instance in the current vocabulary and in some manner, there are a variety of ways this might
be accomplished, finds the appropriate code for that class of object. The code to place the
instance’s address on the stack at run time is compiled along with the appropriate code to execute.
References to objects of a particular class must be detected and handled in the same manner as

the original object: The code may be located through the class of the instance or inay be held in
a complex structure within the method itself,)

Approaches to Late Binding

In late binding, the type of object is not known untll run time. At run time an object must
determine whether it is being sent a method and if so what code to execute. As described above,
there are several approaches. These may be separated into those placing intelligence in the
method and those placing intelligence in the instance.

Method is a Token

In this approach the method places a number on either the parameter or a separate methods
stack. The object reads that number and uses it to determine the appropriate code to execute. The
most common implementation builds a table of code addresses for each class. The most efficient
approach is to make the Method hold an index into the appropriate entty in the table. Thus, Print:
might hold the number 11. For all classes supporting the method Print:, Print: is the 11th entry
in'the table. This makes late binding an extremely fast operation, one fetch + offset for the table,
one fétch + offset for the code atid an execute. Evety class has its own copy of the table. The size
of the table for each class is proportional to the number of methods applicable to that class.
Methods are ovetridden by placing the address of the new routine in the appropriate slot in the
table. The method is used to retrieve the appropriate code from the table and execute.it. This
approach requires the every class to generate a table large enough to hold the addresses of all
methods an object in the class might use. Because a single table is used for all instances of a
class, there is no penalty for having a number of instances. Tables will get large as the number
of classes grows. The most direct version of this approach requires method names to be globally

276 The Journal of Forth Applications and Research Volume 6 Number 4

‘unique although more sophisticated versions can allow different class trees to share a method
name. In this approach Print: FOO will translate to something :

11 METHODPUSH » (Place 11 on the method stack)

FOO Put address of FOO on stack

DUP TABLE®@ : Get Foo’s jump table

METHODPOP SWAP Get the Method index (11) from method stack
METHODCODE®@ . Get 11th item in the method table

EXECUTE Do it

Here, the methods are pushed onto a method stack to slmpllfy parameter stack manipulations.
This is the approach used by Boron, [Lew87].

Method is an Identifier

An alternative apptroach is to treat the method as an identifier and to search a list of possible
methods for the identifier, code pair. Each class has a list of those methods defined for that class.
The list for the current class is searched and if the method is not found, then the superclass list
is searched. Because the fitst entry encountered is executed, methods can be overridden by adding
a new identifier, code pair. This approach minimizes the amount of memory used since method
addresses are not replicated in all classes but require an expensive search at run time. This is
advantageous in memory-limited systems where the number of methods is small and run time
performance is not critical. The tun time penalty imposed will be roughly propottional to half
the number of methods defined, since on average half of all methods will have to be tested.

Method is a Patch

Dreams [Bro94] presents yet a third approach which uses a context switch to patch the CFA’s
of all affected words at run time. This approach allows code to look mote like generic Forth than
object oriented code. It imposes a run time penalty since every time a new class is invoked all
methods must be patched. The run time penalty when objects of differing classes are invoked
will be roughly proportional to the number of methods defined, since all methods must be
patched. However, patching need only be done when there is a context shift between two classes
(Dreams).

Instance Holds a Token

A second approach to late binding is to place an instance within the Method references to all .
possible implementations, typically as a table or list. The instance then holds a key to access this
table and find the appropriate code. The same basic approaches discussed above are available.
The method may hold a table of all classes and the class token may be an index into this table.
Alternatively, a list of class, method pairs may be searched for the proper class. Both of these
approaches present some difficulty in implementation. Because the size of the table for a method
must be the number of classes, as new classes are defined, the tables for all methods must grow.
Contrast this with the previous approach where the methods ate patt of the class and as new
methods are added, they are only applicable to the new classes in which they are defined.

Searching class, method paits also presents some difficulties since there is no guarantee that
the class will be present in the table and it is possible that the entry is for some ancestor class.
Then each entry must be tested to see if it represents the target class ot any ancestor class. On
the order of the number of implementations times the number of ancestors needs to be tested at
run time. If both of these number are small, this approach may still prove more efficient than
searching all methods.

Introduction to Object oriented Approaches 277

Comparison of Various Approaches

Three criteria are important in considering various approaches to object oriented design.
These are run time performance, memoty requirements, and independence. The first two are
straightforward. There is a natural tradeoff between time consuming activities at run time such
as searching and patching, and memory requirements for multiple jump tables. The designer has
to make decisions about the resource requirements he wishes to impose and select an apptopriate
tradeoff. Independence is a more difficult requirement to define. As an object oriented program
grows, there is no way for the developer of the higher, base classes to know how many sub classes
will be generated, what new methods these classes will define and how many times existing
methods will be overridden. Whatever approach is used should be prepared to deal with systems
that are potentially quite large. There are several pitfalls to consider early in the design. Fixed
size tables will invariably be outgrown. When tables are generated, there has to be a means to
guarantee that the possible number of entries is limited only by system memory. Also, once a
table has been generated, a way must exist to either extend the table as new methods and classes
are defined or to guarantee that no extension is required. Globally unique name spaces are another
problem. In large projects employing multiple developers, it is extremely difficult for all
developers to keep track of all names employed. Schemes, such as vocabularies, can partition
name spaces, but it is still important to guarantee that the correct name space is searched at run
time.

Correspondences between Conventional Terms and Brown's Terms in Dreams

Dreams [Bro92] is an unusual implementation in that all Forth words are treated as methods
of some root class which Brown terms Reality. All variables are treated as fields within this vast
root, Reality. Dreams differ from objects in that the instances of objects. alter the execution
context only to process a single method. Dreams alter the execution context for a relatively large
number of instructions..

Dream - A dream is roughly analogous to a class. The CFA values set at initialization may
be seen as methods overridden by the Dream. Dreams ate both classes and instances, the
difference between the template nature of a class and its implementation is not distinct in dreams.

Essence - If a Dream is an object, the essence of a dream is a pointer to that object, that is,
the address of the data which defines the object.

Fantasy - A Vision, see below, is a collection of Dreams. Each overrides certain words and
declates certain local varjables. A Dream (class) which is the union of these is a Fantasy. This
corresponds roughly to a subclass in conventional system.

Imagine - Override, this changes the meaning of a word in a specific context.

Melieu - The currently active object. The concept has little meaning in conventional object
oriented programming since objects are active only for a single method.

Ponder - execute within a context of a dream. Since all words are treated like methods,
pondering is equivalent to executing a method of the dream object.

Relapse - This corresponds to a applying the copy operator to an instance to produce a new,
identical instance.

Reality - A root class, but encompassing the entire base Forth system.

Regress - Call superclass method.

278 The Journal of Forth Applications and Research Volume 6 Number 4

Thought or Message - Method or Forth word. The distinction is unclear but a thought seems
to be the word, Print: for example, and a Message is the code executed within a spcc1fic
cnvn‘onmcnt

Understanding - This is a concept not usually encountered in object oriented.

Vision- Vision is a nested set of dreams and corresponds to a class hierarchy such as the
PhysicalObject - Toy - Ball hierarchy discussed above. Unlike the usual hierarchies in whlch the
order is fixed, v1s10ns may rcprescnt arbltrary nesting.

Conclusions

There are a humber of options involved in the development of an object orietited system.
Forth gives the developer the freedom to select from a humber of different approaches depending
on the nature of the problem. In systems which make small use of objects, any approach is
adequate. When a large fraction of the code is object oriented, the words that handle objects and
methods become as important as words that handle the stack. Developers must carefully weigh
alternative implementation for reliability, speed and resource utilization as cholccs hete are
critical to successful application development.

Dreams gives an interesting new view of the problem.

References

[Bro94] Brown, R.J., 1994, “ Dreams: A Message Passing Object Oriented Systcm for Forth”,
J. Forth Appl and Research, 6(4) p-275

[Pou87] Pountain, R., 1987, Object Oriented Forth Implementatlon of Data Structures, Aca-
demic Press, London, England.

[Lew87] Lewis, W. M., 1987, “BORON: An Object Oriented Forth Extension™, Rochester
Forth Conference Proceedings. -

[Kuh62} Kuhn, T, 1962, The Structure: of Sczentzﬁc Revolutions, University of Chicago Press.

