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Abstract o

Dreams is a message passing object oriented programming system. It allows for before, after, and
around methods, multiple inheritance, and operator overloading. It is based on a prototype model of
object oriented programming and dynamic scoping, rather than the more traditional class model and
lexical scoping. Designed for real-time, Dreams has a fixed, predictable overhead.

Adream object is implemented as a contiguous data structure, and is therefore a suitable candidate
for JJO. This makes it possible for objects and messages to be sent and recieved over a communications
link or network, and for objects to be written to and read from a file or database.

Implementation techniques based on indirect threading, direct threading, token threading, and
subroutine threading are discussed. The threading scheme chosen has a significant.effect upon the
efficiency of multitasking and MIMD parallelism. A hardware implementation of the dynamic binding
mechanism used in Dreams is discussed. This hardware will permit determination of the currently
active binding of any object w1thout the addition of any processor cycles. :

Introduction

The Dreams system provides a framework for a form of message passing object oriented
programming. It makes use of a dynamic binding mechanism to permit the local view seen by a
program to be temporarily altered. Within a dream, those words with local meaning to that dream
have their execution behavior changed. When the dream finishes, the otiginal meaning that was
in effect at the dream’s onset is restored. ‘ ,

We first discuss the application programmer’s view of the Dreams system.-Next we discuss
the ways a systems programmer might go about implementing Dreams within a particular Forth
programming system. Finally, we discuss ways to implement much of the underlying mechanism
of Dreams in hardware, thereby eliminating most of the run-time overhead.

The inspiration for Dreams came from an experimental port of a Lisp Flavors package
[Moo86], and then a Lisp closures package [Ric87], to Forth. After using this Forth closures
package for a while, a number of significant changes were made that resulted in the current
implementation of Dreams. '

Dreams is currently written in LMI UR/FORTH [Dun87] and UR/FORTH-386 [Dun91]
Different Forth systems present different problems to the implementor of Dreams. A classical
indirect threaded Forth intetpreter, such as FIG-FORTH [Tin89][Rag80] and many FORTH-83
[Dun85][Tin86] systems use, requites a rather difficult approach. A direct threaded Forth, such
as Zimmer’s F-PC [Tin89a], or Duncan’s LMI UR/FORTH is quite well suited to a single tasking
vetsion of Dreams. A token threaded system is an excellent choice for a multitasking implementa-
tion of Dreams. A subtroutine threaded systein can be a good choice for a multitasking system if
access to the compiler source code is available, but this approach can be-difficult if the compllct
optimizes some words into in-line code instead of subroutine calls. : ‘
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Background

The advantages of an object oriented approach to software design have been widely discussed
in the literature. Project Smalltalk at Xerox PARC was the first heavily funded investigation into
the object oriented approach to software [Gol83]. The Department of Defense sanctioned
language, Ada, has many provisions to support a form of object oriented software design
[ANS83][Boo83]. The C++ extension to the C language provides object support for C
[ENI90][Eck90].

The Lisp language [McC60] has been the breeding ground for a number of object oriented
approaches, including Closures [Abe85] Flavors [Moo86], LOOPS [Bob86], Objcct Lisp
[Dre85][Tel87][Tel89], and CLOS [Gab89][Kee88][Ste90]. The Whitewater Group’s Actor is
also an object oriented system [Fra89]. The X-Windows system [Nye88] and Microsoft’s
MS-Windows [Pet88] and Presentation Manager [Pet89] are all object oriented systems of a sort.

We have been developing an object oriented system called Dreams based on the Forth
language. Although most currently popular object oriented programming systems operate with a
class based object model, Dreams makes use of a prototype object model. The prototype model
for objects is becoming more widespread, however. This is due to its simplicity. The SELF object
oriented language [Ung91] uses prototypes. '

Another Forth object oriented approach has been developed, but it uses an early binding
strategy similar to Ada and C++ [Pou87]. TILE Forth is a portable Forth system written in C that
tuns under the unix operating system [Pat90]. TILE Forth is freely available under the Gnu
Software License [Sta87]. It contains object oriented extensions for both class based and
prototype based object models, thereby providing Forth-based examples of both approaches.

All this concern over object orientation is a result of a desite to make software easier to write,
easier to re-use for other applications, easier to maintain, and generally easier to understand.
Whereas conventional programming methodologies separate algorithm from data, the object
oriented approach unifies the two with objects that behave in certain ways depending on what
they are told and on what they already know. -

The message passing practice of many object oriented systems is' analogous to the way we as
humans operate when we delegate a task to another person: we send them a message that tells
them what to do. What they actually do is a function of what we told them, and what they already
understand. In dreams, the messages are called thoughts. The objects are called dreams. They
impose the understanding. Thoughts are interpreted, or “pondered”, in the understanding of a
dream.

Terminology

The terminology of Dreams (A glossary of Dreams terms is provided as an appendix.) is in
parity with that of the Flavors [M0086] OOP for the Symbolics Lisp Machines. The hardware of
these machines is very similar to the hardware of Forth machines [Sym84][Ko0089]. Lisp was a
very strong influence on the design of the Forth language. Charles Moore, the inventor of Forth,
took a graduate course in Lisp at MIT from John MeCarthy himself, the inventor of Lisp, before
starting to design Forth. (Personal conversation with Charles Moore, 1990.)

Flavors

The Flavors OOP is based on a metaphor that was inspired by an ice cream parlor near the
MIT campus. Plain vanilla was the basic starting point for all of the store’s confections. Many
different mix-ins, such as sprinkles, nuts, fudge, fruit, etc. could be added to the vanilla and mixed
in with it to produce new flavors. With only two dozen or so mix in additives, literally millions
of flavors of ice cream deserts could be produced. This was the metaphor that inspired one of the
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most complete and widely used OOPs in the Lisp community. This metaphor accurately describes
multiple inheritance in simple language anyone can understand. The base is plain vanilla, and
the other flavors are mixins to the base.

This ice cream patlor is how a veritable shrine in the Lisp inner circle, somewhat like the
National Radio Astronomy Observatory in Charlottesville, Virginia [Tin89] is to Forth. Visitors
to ICAD, Inc. — vendors of an object oriented modeling system that is based on Flavors — make
the pilgrimage from the ICAD training facility to the ice cream parlor on the last day of classes.
When these newly indoctrinated students are told they are going out to get ice cream, they
invariably ask, “Is this the ice cream Parlor?” They are answered with a softly whispered “yes,”
or maybe just a nod of the head. It is the high point of the week long training session.

Since we like Flavors very much — both in soft ice cream and in software — we used that
package as a starting point in the design of what later became Dreams. This is appropriate: since
Forth is Lisp inspired, a Forth OOP might well benefit from being likewise Lisp inspired.

But the Forth version of Flavors was clumsy to use. It was awkward to write to the Forth
accustomed tongue. Remember, Forth is the only programming language, with the possible
exception of COBOL, that was designed to be spoken as well as tead and written. We needed to
rethink the metaphor to fit Forth better.

Flavors is a late binding, lexically scoped, class based object oriented programming system.
We viewed late binding as a requirement, since it provides a level of flexibility unobtainable with
carly-binding schemes, but the lexical scoping forced run-time look-up of methods, and that
slowed down the implementation. Worse yet, it made the timing variable. Determinism was lost
and performance was reduced from what we had desired.

Dreams

We eventually realized the si gnificance of the fact that everything in a program is dynami¢ —
changing with the passage of time as the program executes. This parallels real life as we live it.
Each person has a slightly different petception of reality. A person has a different perception of
his world when he is dreaming than when he is awake. In a dream, reality is warped, either
slightly, or gteatly, depending upon the dream. Much of a dream mirrors reality, but some things
are not quite the same; they differ enough to make a dream world. When we are dreaming, we -
think we are awake, but we are not perceiving reality: we are perceiving the dream as though it
were teality. We act out our lives in a dream, and experience the dream dynamically, just as we
do reality. While we are dreaming, we cannot tell the difference.

We then consideted recutsive dreams — dreams that started not from the wakeful aware state
of reality, but from within anothet dream. Here the warping is not with respect to reality, but with
respect to the dream within which this other dream started. We saw great expressive power. We
saw information hiding, We saw multiple inheritance. We saw polymorphism. We saw a hew way
for us to think about the OOP problem. ‘

The dream is the object. Its purpose is to provide a way to warp the meanings of certain words,
run some code (interpret the message), and then unwarp the meanings of the warped words. The
result looks like a system based upon operator shadowing, since Forth is an operator language.
Another view would say that it is a frame-based system where all the frames are related by
exception links. The use of exception links in a frame based system of inheritance is hot without
theoretical difficulties. The difficulties of exceptions in inheritance based systems of represen-
tation are well explored by Brachman [Bra85]. .

The new approach lent itself to a very clean implementation, and a fast, deterministic run-time
execution. It is based upon the nesting of closures to shadow the bindings of selected operatots.
The inheritance is multiple, but unlike Flavors, which exhibits lexical scoping, the scoping in
Dreams is dynamic. ' '
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Dreams uses dynamic scoping because a program is dynamic itself, and also because it permits
a very run-time efficient and predictable implementation, as far as execution timing is concerned.
The dynamic scoping seemed natural for the Dreams way of thinking, and the fall-out was that
it can be made to run faster than lexical scoping, and that it is simpler to implement.

Lisp Machines Inc., the “other” Lisp machine company (besides Symbolics), proposed an OOP
called Object-Lisp [Tel89] (pp 142-144)that was based on the same idea of nested closures and
operator shadowing. They submitted the specification as a candidate for an OQOP standard for
Common Lisp [Ste90], but this was defeated in favor of CLOS [Kee88][Ste90] instead.

Considerations for Real-Time

Although the advantages of an object oriented approach are well documented, there have been
some very real problems making use of this approach in embedded real-time systems. Many
object oriented systems, such as-Smalltalk [Gol83] and Flavors [Bro87], make use of sophisti-
cated development environments that are difficult to eliminate after the software has been
developed. Othets, like Flavors, tequire extensive breadth first searches through a tree structured
hierarchy of multiple inheritance to determine the applicable method to employ. Some require
elaborate list structures and the overhead of garbage collection [Ric87]. Mark and sweep garbage
collection causes a real-time system to go into a petite mal epileptic seizure: until the garbage
collection finishes, no other processing can go on [Knu68] (pp 406-422,594). This is usually
unacceptable. Ephemeral, or generation scavenging, garbage collection [Jac90] introduces
shorter delays, but can still destroy deterministic timing,.

Alternative attacks to this are seen in C++ and Ada. Both of these languages use object oriented
techniques, but their power is somewhat lacking because they must determine at compile time
which definition of an object is to be visible at run time. Some advanced techniques in object
otiented programming cannot operate with this restriction.

To be applicable to a real-time environment, an object oriented system should be deployable
on a minimal platform. To meet the demands of real-time operation, it should not make use of
garbage collection or extensive method searching. It would be most desirable if the overhead to
activate a particular object was fixed and determinable. To be truly flexible, it should not require
that method determination be petformed at compile time.

Dreams is written in Forth, and is therefore readily targetable to a wide rangc of deployment
platforms. Forth is implemented on some of the largest and fastest computers in the world
[Dor86][Dor89], and also on some of the smallest and most humble microcontrollers available
[Dun86]. It is the machine language of a hew generation of RISC machines that are particularly
well suited to real-time applications [Dun89][Har88][Koo86]. Due to Forth’s ability to extend
the compiler, the implementation of dreams is very stralghtforward thereby easing portability
and maintainability.

Dreams makes use of a dynamic binding mechanism that has a fixed and known overhead
going into and coming out of a dream. Dynamic binding permits powerful late binding program-
ming strategies to be used without the associated cost of run-time method searchmg overhead.
Dreams was dc51gned for real-time and written in a language that was designed for real-time.
Forth is now directly executable as the machine language of several high performance RISC
processots. At least one of these processots is available as a component of a standard cell library,
thereby making incorporation of that processor into a custom integrated circuit quite straightfor-
watd and routine. This is the kind of deployment platform needed for many cmbeddcd applica-
tions.

In most cases, the chrhcad of dynamic binding should actually be less than the alternative
overhead of basing all local instance variables on a pointet. The soutce code written using dreams
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will be devoid of cryptic pointer qualified variable references; it will use variables in the
conventional manner. Indeed, dreams may even be used to retrofit existing code to a multiply
instantiated application, even where that code’s use of variables would normally prohibit-its use
in such applications. ‘This is often the:case when re-using code in a re-entrant multitasking
application if that code was originally developed under a single-tasking, non-re-entrant assump-
tion.

The Dreams System

. A dream is the dynamic instantiation of a binding environment. In the context of a dream,
certain symbols, represented as Forth wotds, have a different meaning, or effect, than they
normally would have in the usual Forth sense. In the Dreams. system, the underlying Forth
environment — where all the Forth words have their usual meaning — is called Reality. When
execution occurs in a dream, certain Forth words, either system defined, or user defined, take on
a meaning peculiar to that dream, and potentially different from reality.

For those words that embody data storage, such as vatiables, a dream provides another data
storage area that is local to the dream. This permits variables to have an existence in a dream that
is different from that same variable in either reality or another dream. This allows dreams to be
used to provide local variables, but it goes further than that. When local variables are maintained
on the stack, they are created at the beginning of a routine, and destroyed at the end. For this
reason, they must be initialized each time the routine is executed. Dream based variables provide
for “instance variables™. Instance variables continue their existence between one execution and
the next. For this reason, they presétve local state. Dream vanablcs can be used to rcmcmbcr
values from one inivocation of a toutine to the next.

Dream variables could be used, for instance, to keep track of the cursor position in a text output
routine. The cursor position would persist from the outputting of one character to the next. Ina
windowed display system, each window could be represented by a separate dream. Each dream
could keep track of its own window’s cursor position by the same named variables, but each
dream would have its own private copy of them. Because the same variable names are used, but
the data that those variables represent is different in each dream, a common set of low level words
that reference those variables can be shared among all the window dreams:

Unlike most other object oriented approaches, where the dbj'c:ct is a static ‘entity that is
manipulated by sending it messages that result in the application of methods to the object, dreams
are consequences of the dynamic execution of a program. They only have a completely defined
meaning while they are actually executing. The static-data structure that holds the information
needed to maintain instance variables and the alteration of word meanings is called the essence
of that dream.

Dreams execute by pondetring thoughts within the understanding of the dream. There are no
specifically declared methods as such. Any Forth word may be pondered as a thought in a dream;
howevet, ahy Forth word may take on a locally defined meaning within the understanding of a
dream. If that word embodies data storage, the dream can provide a local private data storage
area for use by that word. A dream can also provide ah operator overloading capability that
permits a word to have a locally different meaning within the understanding of the dream. For
instance, a colon definition can be locally redefined within a dream to refer to a different sequence
of threaded code than what that same definition refers to in the understanding of reality.

Consider again the windowed text output package alluded to above. If such a package had to
operate with a range of different display terminals, the method for addressing the cursor would
most likely be different for each terminal. We could have a different dream for each type of
terminal, and have that dream provide a local definition for the cursor addressing routine as well
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as all other terminal dependent operations. When outpuiting to a particular window, that
window’s dream could have an over-loaded word for the type of terminal on which the window
was displayed. This would permit the same code to display text for all windows on all terminals
in the system without that code having to make any direct reference to what type of terminal it
was being used on.

An Example

The appendix gives the advertised interface to the Forth words defined as part of the dreams
package. Listing 1 gives a sample interactive session showing some exploratory programming
using the dreams package. The reader should study the code and the results obtained, as it clearly
demonstrates the different values that the same variables represent in the understanding of
different dreams. It also shows how operator overloading of colon definitions is requested and
the effects that this has.

First, three variables, X, ¥, and Z, are deﬁned and initialized. Then a word, ?, to print a
variable’s value is defined. The word DOT is defined to print a value in a different format than .
provides.

>

Instance Variables

The dream snooze is created with local instantiations of the variables X and Y. A copy of
this dream is made and called nap. A thought that prints the variables X, Y, and Z, is defined and
given the name hmm.

The thought hmm is pondered in reality to demonstrate its effect. It prints the values of X, ¥,
and Z, as they exist in the Forth system. This same thought is then pondered in the dream snooze,
which produces the same effect: the same values of X, ¥, and Z are displayed.

Now the values of X, ¥, and Z ate altered in the understanding of reality. When hmm is again
pondered in reality, these new values are displayed, but when it is pondered in snooze, the old
values of X and Y are displayed together with the new value of Z.

What has happened here? When snooze was created, it contained local versions of X and Y.
The values of these variables were inherited from the values that they had when the copy was
made, but snooze now has its own private versions of these variables. When hmm was first
pondered in 8nooze, the original values were displayed. When the values of these variables
were later changed, this change had no effect on the private copies of X and Y in snooze.
Therefore, when hmm was again pondered in snooze, the old private values were still displayed.
The hew value of Z was displayed, however, because Z was not local to snooze, and so the
same Z was known both to snooze and to reality. '

An unnamed thought is then pondered in snooze to modify the values of the three variables
within the understanding of that dream. When these variables are displayed in the understanding
of snooze, the latest values are output, but when they are displayed in the understanding of
reality, only the value of Z shows the change made in snooze. When the variables are displayed
in the understanding of the dream nap, the values that were active when nap was copied are
still active. All of these exercises serve to demonstrate the way dreams provide suppott for a form
of local variables.

Classes

Now FUE, a progenator of dreams, is defined by the class defining word TRANCE. FUE defines
a class of dreams in which the definition of . has local meaning. Since . is the Forth word to
print a humber, changing the definition of . will change the way numbers are printed. FUE is
used to create two dreams, FOO and BAR. The thought hmm is pondered in each of these dreams
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to demonstrate that they both behave exactly the same as the understanding in which they were
created.

Overloading

FOO is next told to imagine that the behavior of . is defined by the behavior of DOT. When
hmm is pondered in FOO, the display of the variables is done according to the definition of DOT,
with leading zeros and a trailing cartiage return. The same thought is also pondered in BAR, which
has not had its understanding of . changed. BAR displays the variables in the usual fashion. This
demonstrates the locally defined operator overloading capability provided by dreams.

Multiple Inheritance

A thought is now pondered in FOO, but that thought causes the thought hmm to be pondered
in BAR. Thus hmm is being pondered in BAR within the understanding of FOO. Although FOO
has overloaded the definition of . with DOT, BAR still has the conventional definition of . in its
understanding. This overloads the overload resulting in the conventional behavior of . being
exhibited in spite of FOO’s different understanding.

FOO then ponders hmm within the understanding of snooze, causing the values of snooze’s
version of the variables to be displayed using FOO’s version of the printing word. This shows
multiple inheritance as a function of nested execution of dreams. The next example shows a
doubly nested thought being pondered, resulting in a triply nested execution of a dream.

The dream nap is then pondered within the understanding -of FOO to demonstrate that the
overloaded behavior of . is inherited in the dream within a dream. The understanding at any
given point is a result of the cumulative nested understandings of all dreams that are cutrently
executing. This is one mechanism of inheritance in dreams. The other mechanism of inheritance
occurs when the essence of a dream is created and the then active values and behaviots for all
words local to that dream are copied over into the essence of the newly created dream.

Regression

Regression permits access to an understanding that was active when the cutrent dream was
invoked. In the next example, FOO ponders a thought that causes hmm to be pondered in the
regression of FOO. Thus in this example, hmm is actually pondered in reality, since FOO was
invoked from reality. Regression permits backwards havigation from a dream to the dream which
that dream started in. The next example regresses back from FOO and then on into another dream,
nap, where the thought hmm is pondered. This shows that the dteam world may be visualized as
having a tree structure, and thoughts may be pondered along forward, backward, and lateral
pathways in that tree. '

Early Binding

Early binding permits access to the definition of an individual word that was visible when a
thought was compiled. Normally, the definition of a particular word is a function of the
understanding in which the thought that contains a reference to it is pondered. This is late binding,
or more particularly, since scoping is not lexical, dynamic binding. The word REALLY compiles
a literal containing a'copy of the pfa of the word following it. This is sufficient to teference a
variable, as this is its address. To execute a colon definition that is early bound by REALLY, the
word DID is required. DID executes a colon definition given its pfa in a manner analogous to
the way that EXECUTE executes a colon definition given its cfa.

The thought { X ? } pondered in snooze displays the value of X in the understanding of
snooze, but the thought { REALLY X ? } displays the value of X in the understanding of
reality, since the thought was compiled in reality, even though it is pondered inh snooze. This
demonstrates early binding to variables. Early binding to colon definitions is demonstrated in the
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next two examples. When the thought { X @ .. } is pondered in FOO, the definition of .
imagined in FOO is used to display the value of X, but when the thought { X @ REALLY .
DID } ispondered in FOO, the definition of . that was active in reality, when the thought was
compiled, displays the value of X without the leading zeros.

Visions

Multiple inheritance occurs so frequently in advanced applications of object oriented program-
ming that the dreams package provides a special construct for dealing with it explicitly — the
vision. A vision is an ordeted set of dreams. A thought may be seen in a vision the same way that
a thought may be pondetred in a dream. When a vision is activated, each of the dreams listed in
the specification of the vision ate activated in turn. The first dream specified has dominance and
subsequently specified dreams have successively lesser influence over the undetstanding of the
vision. When the vision is later deactivated, all the dreams are deactivated in reverse order.
Complex factoring schemes, called inheritance netwotks, may be constructed by building a series
of visions that share several dreams among themselves in different ways. ‘

The next four lines of the example demonstrate the concept of visions. There are two visions,
BAZ and BOK. They are both constructed from the same component dreams, but the dream
ordering is different. When hmm is seen in BAZ, the definition of . in the understanding of BAR
dominates, and the variables are displayed in the usual way, but when the same thought is seen
in BOK, the definition imagined in the understanding of FOO dominates, and the variables are
displayed with leading zeros and trailing carriage returns.

The next example demonstrates that a dream may be used as an atgument to SEE in place of
a vision. The effect is the same with respect to pondering the thought, only SEE incurs slightly
more ovethead than PONDER. When used this way, thc dream is considered to be a vision with
respect to lifting by DEJA - VU,

A nested vision, BACH, contammg the dream FOO and the vision BAZ, is created and sent the
thought hmm. Since FOO has precedence over BAZ, the imagined behavior of . prcdomlnates and
the display of humbers appears with leading zeros and carriage returns.

Another nested vision is created with BACH as a component. The inheritance from BACH is
overshadowed by the inheritance from FOO and COMA, but since COMA is the null vision, it will
conttibute nothing to the understanding of HANDEL. This demonstrates the ability of a vision to
be composed of multiply nested dreams and visions. :

Next, the vision MOZART is created from the dream BAR and the vision HANDEL. HANDEL
inherits the leading zero behavior of . from FOO’s understanding, but this is overshadowed by
the higher priority inheritance from BAR, which understands . in the normal sense. The result is
that the numbers display without lecading zeros when hmm is seen in MOZART.

Reality
The word REALITY regresses all the way back to reality, pondets a thought, and returns to
the understanding active before the regression. This is demonstrated by sending' HANDEL a

thought that ponders hmm in REALITY. Normally HANDEL would have displayed the numbers
with leading zeros, but the numbets are displayed without them in reality.

Dynamic Binding
Since the concept of dynamic binding is at the heart of any implementation of Dreams, we
must discuss what dynamic binding is. Binding is a term that refers to the semantics, or action,

associated with a name, or symbol. In Forth, we frequently use the term word to refer to the name
of a subroutine, and also to the action of that subroutine, or the instructions that comprise it. For
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the purposes of this discussion, we shall use the terms name and action, and allow the term word
to contifiue to have its customary meaning(s).

There are several different kinds of binding that need to be distinguished from each other:
early binding, late binding, and dynamic binding. The closely related concept of scoping also
comes in two varieties: lexical scoping, and dynamic scoping. Algol derived languages (the so -
called “structured” programming languages in vogue these days) operate accordlng to the
principles of early binding and lexical scoping.

Lexical scoping means that objects, such as variables, subroutines, etc., that are declared
within a block of code are visible only within that block, and perhaps within blocks inside of that
block if the particular:language permits nesting of blocks. Ada, Modula, and Pascal do permit
this, but C only permits a limited form of this, and FORTRAN does not permit it at all.. -

Early binding means, in this case, that it is the responsibility of the compiler, at compile time,
to determine what action is associated with each hame. The compiler compiles -code that will
produce this action when that code is later executed. '

Since Forth is not generally considered to be a block structured programming language, we
must reconsider what lexical scoping means in a Forth programming system. If we consider a
word-list (which used to be called a vocabulary before the ANS X3J14 effort [ANS91] ) to be
the logical analog of the block in a block structured language, then lexical scoping and early
binding means that the actions associated with the names in the curtent search order at the time
of compilation will bé compiled into the definitions of all new words. It should be apparent that
this is just exactly what the Forth compiler does.

What dbout late binding? How does it differ from the early binding that we are familiar with?
In late binding, the compiler does not compile code to perform the action associated with a name.
It compiles code to determine the action associated with a hame, followed by code to perform
the action that has been determined.

Considet a late binding variation of the object oriented approach described by Pountain
[Pou87]. In such a system, the compiler would compile code to search the list of methods
belonging to an object, and when the name of the current word matched the hame of the method,
then the action associated with that method would be petformed. This is khown as run-time
method searching, and is a characteristic of some late binding object oriented systems. Pountain
realized that the overhead of method searching was too expensive for a real-time system, so he
factored the method searching into compile time, resulting in an early binding implementation.
This solved the speed problem, but made operations such as holdlng a message in a variable
unfeasible. Late binding is needed if this is to be done.

So what is wrong with carly binding? Why bother with a late binding strategy at all? In an
early binding message passing object otiented system, the messages must be compiled at compile
time, and the actions associated with the names of all the words comprising a message must be
determined. This usually means that all the methods applicable to a particular object must be
declared with that object at compile time. The messages that such an object may receive must be
testricted so as to limit the words in the messages to only those words that have been declared
valid for that object. In fact, the messages themselves are actually compiled as just more code in
the sender’s instruction stream, and the mefhods appear lexically following the recipient object.
This is in violation of normal Forth usage, where an operator receives the data and acts on it. In
this case, the message is the action, and the recipient of the message is actually passive. In an
early bound system, it is not generally possible to have a variable hold a message, since the
message needs to be compiled into the code that sends it to its recipient.

In a late binding system, a message can be an object too. A vatiable can hold a pointer to it.
The message is passed passively on the stack to its recipient, which acts to interpret the message.
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If the implementation uses run-time method searching, then each name in the message will be
looked up and performed. This gives the applications programmer an additional flexibility over
an early binding system.

In Dreams, a message is called a thought, and it is known by the execution token of any word,
such as a colon-definition, variable, constant, etc. The execution token is passed on the stack to
a dream that is to ponder that thought within its own understanding. While Dreams does not use
an early binding apptoach, it does not use a method searching late binding approach either.
Dreams uses a dynamic binding approach, which is a late binding technique with dynamic rather
than lexical scoping.

The dynamic binding technique permits altering the action associated with a name. Since a
name is known at execution time by the execution token compiled by the compiler from the name
found in the source code, the dynamic binding implementation must tely upon knowledge of the
inner workings of the compiler and intetpreter. What is done in the cuttent Dreams implementa-
tion is to provide a way to read and write the parameter ficld address of a word. This permits
providing a different parameter field for a word local to a dream. Since the threaded code is
deposited by the compiler into the parameter field, then by modifying the parameter field address,
a word can be given an action at run time that is different from the action associated with it at
compile time.

By reading the original parameter field address of a word and pushing it on an active bindings
stack before writing the hew parameter field address in its place, a means of restoring the original
action is provided. Each dream has an associated list of execution tokens and substitute parameter
field addresses that specifies that dream’s contribution to its understanding. When a dream
becomes active, the list of execution tokens and parameter field addresses is traversed. For each
execution token in the list, the original parameter field address is read and pushed on the active
bindings stack. After this, the hew parameter field address, obtained from the list, is written in
its place. When the dream finishes, the old parameter field addresses ate restored by popping
them from the active bindings stack. Since this list is of a fixed and known length, a fixed and
known execution overhead results. This propetty of deterministic timing is generally desirable
in many embedded and real-time systems applications.

An Implementation

The cutrent Dreams project implements the Dreams system as an extension to LMI UR/Forth
1.03 [Dun87]. It has also been ported to LMI UR/Forth-386 [Dun91]. UR/Forth uses a direct
threaded interpreter with a 16 bit cell size in the segmented real mode address space of an IBM-PC
compatible running MS-DOS. UR/Forth-386 uses direct threading with a 32 bit cell size in the
linear protect mode address space of an 80386 under MS-DOS with the Pharr-Lapp DOS
extender. Listing 2 contains the source code for the UR/Forth Dreams implementation.

Direct Threading

The direct threading technique employed by UR/Forth compiles an execution token for each
word that is the address of the native 8086 machine instruction to branch to in order to perform
the action associated with that word. In the case of variables, the sequence of code loads the
parameter field address into a register and then branches to the routine common to all variables.
In the case of a colon definition, the sequence of code loads the parameter field address, which
points to the compiled execution tokens for that word, into a register and branches to the code
common to all colon definitions. :

In both of these cases, the parameter field address is compiled into the immediate portion of
a load immediate native machine instruction. This means that the address of the parameter field
address may be determined from the execution token, which gives the code field address. This
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is fortunate, because we may always determine the address of the parameter field address from
the execution token. Some similar situation should probably exist in other ditect threaded Forth
implementations. :

In this Dreams implementation, the word *p£a convetrts the execution token of a word into
a pointer to the parameter field address of that word. The words pfa® and pfa! fetch the
parameter field address, and store a new parameter field address, respectively, when given the
execution token of a word. These words ate tailored to the UR/Forth model. If a different direct
threaded Forth is to host Dreams, these words would need to be edited accordingly.

The wotds new-bindings and o1d-bindings are not advertised as part of the interface
to Dreams. They ate used to implement PONDER. The wotd Find-Binding is used by
IMAGINE to look up the element in a Dreams list of local objects so that the local undetstanding
of that object may be changed. This look-up only occurs when IMAGINE is executed, hot every
time that the dteam is activated. Typically the use of IMAGINE is infrequent when a program is
funning. The words bind-vision and unbind-vision perform a function for visions
analogous to the functions petformed by new-bindings and old- bindings for individual
dreams. All other words in Listing 2 have already been described.

Other Tizreading Techniques

When implementing Dreams on an existing Forth system, the implementor must provide some
way of modifying either the code field address or the parameter field address associated with an
execution token,

Indirect Threading

In indirect threading, such as is found inh FIG-Forth [Rag80][Tin89] and numerous other
Forths [Dun85][Dun86]{Tin86], the execution token is the address of the code field address. The
parameter field address is typically the execution token plus one cell. These considerations make
alteration of the code field address more practical than alteration of the parameter field address.
A difficulty arises because the parameter field address is derived implicitly from the execution
token, making it onerous to associate a separate patameter field with each new binding. If access
to the source code for the Forth system compiler and inner interpreter is available, the implemen-
ter can change the implementation so that the parameter field is indirectly addressed like the code
field.

Lacking this, all words that are intended to be rebound in a dream could be declared with
special defining words, or these words could be given the names normally reserved for their
nontrebindable counterpatts. This last approach is only partially acceptable, because it does not
permit rebinding any of the words that are already present in the kernel. This may be cir-
cumvented, albeit clumsily, by redefining each of these ketnel words with the new defining
words. This produces a new set of words with the same names and actions as the originals, except
that they are repackaged to permit rebinding in a dream. Nonetheless, words that were compiled
before the repackaging will not exhibit the expected altered behavior if they are pondered in a
dream, since they were early bound when the kernel was compiled. The major disadvantage of
such an approach is that extra overhead has been added to each and every word in the application.

Trampolines

Another approach to implementing Dreams in an indirect threaded Forth interpreter makes
use of the concept of trampolines. Trampolines are short fragments of machine code that are
created as needed and inserted into the otherwise notmal sequence of machine code that supports
a high level language function.
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Iir an indirect threaded Forth system, the instruction pointer (IP) points to the execution token
(ET). This execution token, in turn, points to the code field address (cfa). Typically, the IP is used
to fetch the ET, and then the IP is inctemented. The ET is used to fetch the machine instruction
address to execute the Forth word associated with the ET. This machine code is typically the same
for all words of the same kind, such as colon definitions.

If: the behavior of a word’s name is to be changed — if it is to be re-bourid — the re-binding
mechanism must fetch the cfa of the word, given its execution token. If this cfa does not point
to a trampoline (which is determined by comparing to a skeleton trampoline), then a trampoline
is allocated on the dictionary and the old cfa is pushed on the active bindings stack. The new
trampoline is filled in to cause the newly bound action to occur instead of the old behavior. If the
. word already had a trampoline associated with it, then the trampoline’s old machine instruction
address would be pushed (just like a cfa) on the active bindings stack, and the new address would
be stored in its place.

This technique. has the advantage of not requiring modification to the Forth inner address
interpreter. It also.allows rebinding to different types of words, such as binding a variable name
to the behavior of a colon definition. Its disadvantage is that once a word has been rebound, it
will never be quite as fast, since the overhead of bouncing off of the trampoline will always be
there once it has been inserted. co

This overhead also exists in the unreclaimable storage associated w1th each trampoline.
FORGET must never be used after any trampolines have beenallocated, since a trampoline could
be forgotten while its associated word was still in the dictionary. If such a word were to be
executed, it would jump off to a trampoline that was no longer there. Great would be its fall!

Repackaging

The direct threading technique in the example exhibits no extra ovethead during execution,
but it has one shortcoming: a word may only be rebound to another word of the same type. This
means colon definitions may only be rebound to other colon definitions; variables may only be
rebound to other variables. Code words may not be re-bound at all. This makes it difficult to use
before and after methods to place demons at watch over a vatiable, because the demons are colon
definijtions, and the variable may not.be bound to colon definitions. These demons are necessary
in otder to implement active values. (Active values are vatiables that produce some extra action
when they are referenced.) The kludge solution is to wrap the variable up as a colon definition
that looks like: i

VARIABLE my-var \ def ine the var iable :

! my-var my-var ; \ repackage it as a colon def ini’cion
which solves the problcm in a way similar to the repackaging approach dcscrlbcd for indirect
threading above.

Both the direct and indirect threadmg implementations of Dreams producc an approxlmatlon
to the ideal behavior. Indirect threading implementations will introduce extra overhead with
every subroutine call. Direct threading implementations are restrictive in the kinds of rebinding
that may be done: a word may only be rebound to the action associated with another word of the
same kind, and code words may not be rebound at all. It is desirable to be able to rebind any word
to any other word without regard to its type.

Multitasking | _ _
So far we have only considered single tasking situations. What happens in.a multitasking

situation? How do we perform a context switch when the very semantics of the words in the
system need to be saved and restored? Since we have saved the old bindings of all altered words
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on the active bindings stack, we can unbind them back to their original behavior. A concurrent
thread of execution must have, in addition to its own parameter and return stacks and instruction
pointer, its own copy of each of the stacks in the Dreams implementation.

When a context switch occurs, the context switching mechanism must restore all the bindings
pushed onto the old task’s active bindings stack, and then rebind all the bindings implicated by
all the dream essence pointers pushed on the new task’s active essences stack. The first operation
removes the understanding of the old task and restores the understanding of reality as a backdrop
for the understanding of the new task. This is similar to regressing all the way back to reality.
The second operation then recreates the understanding of the new task. ,

While this approach is semantically sound, and might setve for a user interaction application,
it is generally far too slow for any demanding real-time situations. Because the active binding
context is distributed all over-the place in-the various modified parameter field addresses or code
field addresses, it is a very difficult thing to quickly save and restore. The slow and laborious
process of unbinding each altered behavior of the old task one by one and restoring each altered
behaviot of the new task one by one seems to be the only way to 1mplcmcnt a context switch
under these threading schemes.

Token Threading

With a token threaded Forth, each execution token is an offset into a table of code field
addresses. The inner interpteter fetches the execution token pointed to by the instruction pointer
and indexes into the token table, where it fetches the code field address of the word. Parameter
fields may be addressed in various ways, depending upon the details of the implementation. One
approach would be to have any word needing a parameter field load its address ‘with a load
immediate instruction in a manner similar to the direct threading scheme. In this case, it is more
convenient to alter the code field address of a word, and have thc new code field provide a new
parameter field if necessary. :

The beauty of the token threaded approach is that all of the altered bindings are convcnlently
contained in a single table. Each task can be provided with a save buffer to hold its version of
the altered token table. To perform a context switch, we can merely copy the token table off to
the old task’s token save buffet, and copy the new task’s save buffer into the token table.

If we have access to the source code for the inner interpretet, we can even do better than that:
we can have the inner interpreter find the token table by an actlve token table pointer. This
eliminates all the copying and provides a context switch that only requires that we swap pointers
to the token table rather than swap the contents of the table. On a machine with a double indexing
capability, the active token table pointer can be held in an index register, thercby reducing
interpretation ovethead to a minimum. If double indexed indirect addressing is available, the
entire inner interpreter may be reduced to a couple of instructions. If post-incrementing and
chained indirection are also available, the inner interpteter might even be implemented as a smglc
lnstmctlon ‘

Subroutme Threading

‘In Forth systems that use subroutine threading, a form of tokenization can-be lmplcmented by
using doubly indexed indirect addressing so that subroutine calls are vectored through the active
task’s token table, If the compiler optimizes certain words as inline native instructions instead of
subroutine calls, this will present a problem if it is desired to alter the behavior of these words
by dynamic binding. If access to the compiler source code is possible, the words can be
implemented as subroutines also, thereby eliminating the problem; otherwise, it may be possible
to repackage these words in the manner described above for indirect threaded systems. If the
compiler is particularly good at optimization, it may be smart enough to desubroutinize these
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repackagings and thwatt our effotts. In this case, the implementation may have to forgo complete
freedom of dynamic binding and restrict these words from being rebound.

Hardware Assistance

We have devised a hardware implementation of the dynamic binding mechanism used in
Dreams. This hardware technique permits determination of the currently active binding of any
execution token without the addition of any processor clock cycles. Since the establishment of a
new binding only involves a few instructions on a processor-equipped with the Dreams hardware,
and the use of any such binding is absolutely free with respect to CPU time, this invention
provides real-time embedded systems with a very effective way to incorporate object oriented
programming. This invention can switch the binding environment to a totally different environ-
ment in only one machine cycle. This is advantageous in multi-tasking interrupt driven embedded
real-time systems.

For example, the Harris RTX-2000 series of Forth-based RISC microcontrollers can service
an interrupt by performing a context switch on the processor registers in 400 ns, which is 4
machine cycles [Har88][Har90]. With the Dreams hardware, only 1 additional machine cycle is
needed to perform a context switch, including the switching of the complete active binding
environment. To petform a complete context switch between two processes in an object oriented
program in only 5 machine cycles, or 500 nanoseconds, is imptessive.

The hardware itself is composed of a bank of fast static RAM inserted into the instruction
fetch logic of the processor. This RAM petforms a programmable address translation on the
destination address of each subroutine call. This RAM token translation table, or TTT, is divided
into pages, with one page for each task: When a task switch occurs, the active TTT is changed
by switching the active page in RAM. Since the processor uses a significant portion of a clock
cycle to determine the type of an instruction, the TTT can translate the destination portion of a
subroutine call instruction into a new destination by addressing the TTT with the destination of
the original subroutine instruction and using the contents fetched from the TTT as the actual
subroutine address. This translated address is then placed into the program counter to determine
the next instruction address. The translation is performed in parallel with the instruction decode,
so ho time penalty is paid.

To change the binding of an execution token, all that is needed is to store the new binding
address into the associated token slot in the TTT. Of course, to support the Dreams system, the
old binding must be read and pushed onto the active bindings stack, but this is a detail that is
handled by the software in the Dreams programming system. To perform a task switch, the
bindings active in the old task must be saved, and the new task’s bindings must be restored. This
is done very quickly by having enough pages in the RAM to supportt all the time-citical tasks in
the application, and at task switch time, performing an output operation to select the active page
of the RAM. This saves the old bindings and restores the new ones in a single machine cycle.
Typical embedded applications should not use over 1 K tokens in RAM per task. The RAM must
be fast enough to keep up with the processor instruction decode operation. The TTT must be wide
enough to hold a destination address. On the RTX 2000, this is 15 bits for the small memory
model, and 19 bits for the large memory model.

On the RTX-2000, the machine cycle is 100 ns, and 25 ns static RAM would do the job just
fine. Harris has indicated (Personal conversation with Harris marketing representative, 1989.)
that with the RAM on the same chip as the processor, 40 hs RAM would do. They say it is
straightforward to put 8 K cells of such RAM on the same chip as the processor. This would
suppott 8 tasks with a 500 ns context switching overhead running an object oriented program.
The cost for a commetcial grade chip should be around $65.00 in quantity. We do not feel that
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there is another processor around that can come anywhere near this price/performance ratio for
a real-time micro-controller running object oriented applications.

The same ideas are readily adaptable to the John Hopkins University Applied Physics
Laboratory Forth-on-a-chip project [Hay89], and Phil Koopman's WISC machine
[K0086][K0089]. The WISC has a writable instruction set, so the dynamic binding mechanism
could be implemented with writable firmware, which means the additional hardware is not
needed, but the execution time would be a bit slower.

Future Research

The reptesentation of the essence of a dream as a contiguous region of memory was a deliberate
design consideration for a humber of reasons. The defining word for a dream has the disadvan-
tage, in its current form, of requiring the programmer to name those words the dream is closed
over. Only words whose names were declared when the dream was instantiated may have their
bindings altered in that dream.

Dynamic Reslotting

An alternative approach would only require the programmer to specify the number of
rebindable slots the dream should contain, with the system providing a reasonable default value.
In this approach, all of the slots would contain zero. The rebinding mechanism would not loop
through all the bindings, but only as far as a slots-used counter indicated. All slots containing a
value of zeto would be skipped over. Additional Dreams words would allow the dynamic insettion
and deletion of word names from the closure list of a dream.

A problem arises here, however: what would happen if a dream reslotted itself while it was
active? The unbinding mechanism would becomé confused and not restore the old bindings
properly. The same thing could happen if some other task altered the binding slots of a dream
while it was active. Note that this is not the same thing as if the behavior associated with a hame
is altered while the dream is active. This is a fine thing to do, and will cause no such confusion
when restoring old bindings. It is necessary to realize, however, that the new binding specification
will not become active until the dream is activated again, after the new binding has been
specified. But when the name of a word to be closed ovet, not the behavior to bind such a name
to, is altered, the old binding saved on the active bindings stack will get stored into the wrong
memory location at unbinding time. Such a catastrophe should be avoided. The idea of run-time
changes to the closed over name list of a dream is attractive, but some efficient means must be
found to detect whether a dream is active before such a scheme would be very robust.

Another solution would be to keep both the old bound value and its exccution token on the
active bindings stack and to not look at the essence at all during the restoring of the old bindings.
Although this would use twice the space on the active binding stack, it would provide a robust
solution to the problem.

Information Hiding

Another area that needs to be explored is information hiding. Dreams currently provides no
mechanism for information hiding, as is present in most other object oriented programming
systems. The Forth word-list (vocabulary) capability provides control of the Forth name space.
If a defining word for a dream somehow created a corresponding word-list associated with that
dream, then words private to that dream could be put into its word-list, and publicly visible words
could be put into the application’s word-list. We suspect that good use of this facility in a higher
level set of defining words for dreams would be able to provide the information hiding features
that are currently lacking from Dreams,
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Control Delimiters .

We are currently developing a portable unix based Forth system written in C that is desighed
around a token threading scheme. Tt is designed to run Dreams efficiently even when cooperative
multitasking Forth applications are being executed. This system is also desighed to permit
exploring several novel control constructs. Exception handling in ways similar to PL/1, Ada, Lisp
and Scheme have caused us to consider an efficient way to implement these non-local exits in-a
Forth system [Bro90]. This opens the way to a complete Forth implementation of control
delimiters [Sit90]. These are very powerful concepts. It is amazing how hard it is to implement
them in most languages (other than Lisp), but after developing the tree-structured stack concept,
all of these control structures are almost obvious.

Debugging
Another nice capability, .from an incremental development and debugging viewpoint, is that
with these tree-structured stacks, a thread of execution spun off of another thread immediately
inherits the entire stack of its parent thread. This is done with no copying or other overhead. In
actuality, the stack structure is the same fot a subroutine call as it is for a thread spawning
operation. The only difference is that a subroutine call waits for the subroutine to return befote
it proceeds, but the parent thread executes in parallel with the spawned thread.

-Because of this structure, a breakpoint or other error can transfer control to a debugger, where
the programmer can look at data and code, etc. The code can be edited to fix the problem. At this
point, using a conventional Forth system, the programmer would have to reload the program and
rerun it from the beginning, hoping that the problem did not recur. One of the advantages of Forth
over other programming languages has always been the ease with which the programmer could
do these steps, but if the program takes a very long time to tun until it gets to the point of the
etror, a language that compiles slower but executes faster (such as C) would have an advantage.

Rewinding Execution

In the Forth system we are developing, because of the tree-stack architectute, only the edited
routine needs to be recompiled. This is the first time-savings. Then, instead of starting execution
over at the beginning of the program, the program is rewound, so to speak, to the point where
that subroutine was called. Because of the tree-structutred stacks, the status of the stacks is
reclaimable at the point of the call: This permits execution to do a “take two”, as it were, on that
subroutine, without having to run all the rest of the program over. This is only possible, however,
if no global variables have been modified. This includes dream-local instance variables. If the
only variable modifications have been to variables on the stacks, this rewinding can occur. This
can save a tremendous amount of time.

Further more, if the bug showed up during a teal-time run, running the program again cannot
guarantee that the same bug will show up twice, but if the same program is rewound a little bit
and played again, all the data values collected in real-time will still be there, and the situation
that revealed the bug will occur again. This can represent a tremendous savings of the
programmer’s time and of development expense. '

Dreams and Tree-Stacks

But to realize this powerful development environment, Dreams and the tree-stacks will have
to co-exist in the same Forth system. This presents difficulties more profound than one would
imagine. When the control environment changes due to a multi-tasking cofitext switch, we have
seen how to handle the Dreams object binding environment, but what happens when a THROW is
caught by an earlier CATCH? The status of the binding environment must have been saved at the
CATCH in order for the THROW to propetly restore it. A brute force solution would be to save a
copy of the token translation table for every CATCH or other such control point. This would

i
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rapidly get out of hand, both for the time to make the copy, and for the memory that it would
consume. ‘

A central point to the architecture of our Dreams Forth system being developed is a mechanism
to keep track of this binding environment along with the stacks associated with it for every flow
of control that is active. The structure that results is similar to the shallow binding mechanism
used in many Lisp systems [AlI78] (Sec.3.11, pp 149-153). It should still permit the hardware
speed-up by using a hardware token translation table, and also the hardware implementation of
the tree-structured stacks. We are now looking into the feasibility of implementing the shallow
binding mechanism in a programmable gate artay. ‘

Message I/O

A message is a contiguous region of memory, being a colon definition. This pérmits messages
to be transmitted and received, or written to mass storage and read back at a later time.

This only works, however, if the addresses in the dictionary are the same when the message
is input as they were when the message was output. If the addresses are different, assuming an
address threaded Forth, such as indirect or direct threading, this scheme fails.

If a token threading system is used, the only requirement is that the same tokens be bound to
the same behaviour, but if the behaviour that a token is bound to is different, the metaphor is still
good: it is just that a different mechine may provide a different view of reality — it is really a
different dream. ~ ' '

If these requirements are not met, or even if different machines altogether are used, the
message can still be transmitted by decompiling it back to source format (or storing it as a source
text character string), and then sending it to thé remote machine where the compiler on’ that
machine can produce a representation of the message intelligible to that Forth system. Remember,
a message is'a command, exptessed in Forth, either as source text or in compiled form.

Object I/O '

Dreams was deliberately designed with a representation that uses a single contiguous region
of memory to store the essence of a dream. This allows the essence to act as a buffer for I/O
operations. This way, a dream may be sent over a communications link to another processor, or
written out to a mass storage device to implement a perslstcnt object.

The only problem with this, using the implementation described earlier, is that addrcssmg of
dream local instances will fail if the dream is not input back at the same address from which it
was written. The solution to this is to use a position independent representation, such as IPrelative
addressing, or addressing by an offset from the base address of the essence of the dream. This
should not be too dificult to implement, cspcc1ally if the Forth system is dcmgncd for pOSltlon
independent ¢oding to begln with.

Migrant Workers

A particularly interesting 1dca is to have the context of a thread of exccutlon be: contalncd
inside of a dream, using local instance variables. This would allow multitasking by juggling the
execution of different dreams. One could even swap a dream out to mass storage and swap-it back
in later, or send a drcam to another processor, implimenting a sort of vagabond task, or migrant
worker.

The use of such migrant Workcrs holds promise as a representational schcmc in appllcatlons
such as factory automation and CIM. In these applications, a peice of work typically moves from
machine to machine to have different operations performed on it, such as. drilling, milling,
welding, deburring, ancaling, etc. A migrant worker task could be associated with each such
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object, and the task would travel with the object, from machme to machine, as the manufacturing
progressed.

MIMD Paralellism

The J/O capabilities of messages and dreams make them ideal to implement MIMD (Multiple
Instruction Multiple Data, as opposed to SIMD — Single Instruction Single Data.) parallelism
[Hil85]. Each processor can communicate with other processots by sending messages. Objects
can likewise be exchanced between processors. Even tasks can travel across the hetwork between
processors. Multiple processor systems can exist over local atea networks, tightly coupled shared
memoty backplanes, ot even wide area switched networks, such as the public telephone system.
All of these architectures could benefit from the cohesive object otiented representation used in
Dreams. Remember, position independent token threaded compiled code is portable across a
network even if non-homogeneous processots ate deployed.

Summary

The Dreams object oriented system has been described and dcmonstrated as a message passing
object oriented extension to the Forth language. It is rather unusual as object oriented systems
go since it uses a dynamic binding technique. The advantages of dynamic binding are that it
permits determination of object binding at run time instead of compile time, and that it eliminates
the need for run time method searching and the associated run time overhead. These advantages
make Dreams a viable candidate for real-time object oriented applications.

Several types of binding and scoping have been described and differentiated. Dynamic binding
has been described and contrasted to early binding and to method searching late binding. The
importance of dynamic binding in implementing the Dreams system has been brought out.

Techniques for implementing Dreams in various Forth systems employing different threading
strategies have been elaborated upon, with emphasis placed on what restrictions might apply, and
the efficiency of the implementation.

Multitasking introduces the need for a context switching mechanism, and the context in a
Dreams based application includes all of the altered bindings currently active in each of the tasks.
The complications of context switching in a dynamically bound multitasking environment have
been exposed and the efficiency of such a context switch studied for different implementations.

An example of a working implementation of Dreams has been discussed, and source code for
the implementation has been provided.

A description of a hardware implementation of the dynamic binding mechanism used by
Dreams has been presented. This hardware appears viable for embedded systems applications
that need maximum performance in multitasking situations. The added hardware for typical
embedded systems could probably be placed right on the chip with the Forth engine and stack
controller. If larger binding environments need to be supported, more expensive off-chip im-
plementations could be developed.
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Availability _
The source files for Dreams are available for downloading from the Elijah Laboratories, Inc.
customer support bulletin board system as the file DREAMS.ZIP. The modem phone number is:

(606) 567-2102. Modem parameters are 2400 Baud, 1 stop bit, 8 data bits, no parity, xmodem,
ymodem, or ztnodem protocol.
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Glossary

After Demon A demon that exccutes after the main method. Useful for postprocessing operations
peculiar to a particular class or object, such as type conversion of results, or maintaining the integrity
of a database or table, etc.. Also useful for debugging purposes, as it may be used to log or display
the results of an operation independently of the main operation itself.

Before Demon A demon that executes befote the main method. Useful for preprecessing operations
peculiar to a particular class or object, such as type conversion of input parameters. Also useful for
debugging purposes, as it may be used to log or dlsplay the arguments to a function before the
function is called.
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Binding ~ Binding is the process of forming an association betweéen a name and an action. This may
be the responsibility of the compilet, or of the executing program. With a late binding system, a
name may be bound to an action at any point during the execution of a program,

Class A class is a model for an object. Many different objects may be generated that all follow the
pattern of the class. Thus, a class is a sort of defining word for objects. In Dreams, a class is called
a trance. ‘

Dream A dream is an altered situation that looks pretty much like rcahty except that a few things
are different. In a dream, the definitions of certain specified words are altered. For variables and
other data objects, this alteration may be obtained by providing a local data storage area for these
words. This atea is private to a patticular dream. For any definition, the alteration may also be a
refetence to a different named or unhamed word. This permits the-behavior of colon definitions to
be modified within the setting of a dream.

Dynamic Binding Dynamic binding is binding that occurs during the execution of a program. Which
action is associated with a particular hame is a function of what path the execution of the program
has taken, that is, the dynamic execution of the program.

Early Binding Early binding occurs when an action is bound to a name sometime prior to thc
execution of that name. The eatliest bindihg would be at compile time, when the compiler makes
the association. Eatly binding can also occur during program execution if dynamic binding facilities
are available. In this case, the binding would be eatly if the association between a hame and an
action occured in a different understanding from that in which it was used.

Essence The essence of a dream is the data structute that defines the local objects of that dream.
The essence of a dream is an object that may be manipulated and given a name. Due to the dynamic
scoping of dreams, the essence of a dream is insufficient to fully characterize a dream: the dream
only takes on a meaning within another dream, or reality itself. The understanding of a dream is
only defined while the dream is actually occuring, and is a function of the essence of the dream
together with the understanding in which the dream occurs. » '

Imagine A dream may imagine that the definition for a word is different from reality. When this

" occuts, the reference that the dream makes for that word is bound to a different definition than the
reference that is bound in reality.

Inheritence Inheritence permits a dream to acquire default behavior without having to explicitly
specify that behavior. It is a-powerful factoring technique to reduce the complexity of programs.
Inheritence occurs when a dream is created, since the behavior of all its locally known objects
matches that of the understanding in which the creation occurs. Inheritence also occurs when a
dream is created from a class defining word, since the behavior of the class is passed on by the act
of copying the class essence to make the dream’s essence. Both of these kinds of inheritence occur
‘at the birth of a dream. This is inheritence from parents. Another kind of inheritence occurs when a
thought is pondered in the undetstanding of a dream. The understanding of a dream inherits the
undesstanding in which the dream occurs. Any locally known words in that dream have locally
undetstood behavior which overshadows, or ovetloads, the dynamically inherited behavior of those
words passed on at run time, but the dynamically inherited behavoir of all words that do not have

locally understood behavior in that dream is still visable and in effect. This is inherited from the
environment. ,

Late Binding Late binding occurs when the association between a name and its action is defered
until the time of that word’s execution. Late binding is desirable because it permits the same message
to be sent to different types of objects with different methods being invoked. This in turn permits
polymorphism.
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Message A message is a request for an object to perform anh operation. The message is sent to the
object for the object to interpret in its own understanding. In Dreams, the messages are called
thoughts. Thoughts are pondered within the dynamically late bound understanding of a dream.

Method - A method is an operation peculiar to an object or class. In many object oriented systems,
methods must be specifically declared; but in Dreams, any word may be a method, lncludmg colon
definitions, variables, and defining words.

Milieu Milicu is the essence of the curtent dream. It is the self-referential dream object. A thought
may use milieu to make reference to-the dream in which it is being pondered. If such a thought is
pondered in several different dreams, milieu will always provide the essence of the current dream
in which the thought is being pondered.

Object - An object is the recipient of a message. In dreams, the dream is the object that receives
messages. Messages ate pondered in the understanding of the dream. In Dreams, messages, called
thoughts, are colon definitions, and they are sent to a dream by passing the execution token of the
message on the parameter stack. The dream cotisumes the thought, along with any parameters passed
on the stack under the thought, ponders it in its own understanding, and returns any results on the
parameter stack just like any other Forth word.

Overloading - - Overloading of methods or operators occurs when a new action is boimd to a name
in a dream, thereby hiding the old binding. When the dream finishes, the old binding is restored,
thereby making the original meaning visible again.

Polymorphism  Polymorphism refers to the ability of the same message to be sent to dlffercnt objects
with different results. Thus the + operator might be sent to an integer to perform integer arithmetic,
or to a floating point number to perform floating point arithmetic, or to a string to perform
concatenation. Dreams exhlblts polymorphism implicitly due to the dynamic binding naturc of
method determination. ‘

Ponder To ponder a thought is to invoke the Forth inner, or address, interpreter on a thought. A
thought may be pondered in the understanding of reality, or in the understanding of a dream, or in
a dream within a dream, etc. To ponder a thought is to execute its execution token within a particular
understanding.

See A thought may be seen in a vision in the same manner that it may be pondered in a dream.

Reality Reality is the normal Forth programming environment, whete all the usual words have all
their usual meanings. This is what is usually meant when reference is made to Forth. All dreams
have their origins in reality, in that they either begin in reality, or in a dream that began in reality,

etc. ,

Regress = A dream may regress by sending a thought back to be pondered within the understanding
from which that dream was invoked. When that thought has been pondered, control will return to
the dream that sent the thought back. This is not the same thing as sending a thought to the essence
of the invoking dream, since in the first case, the active dream’s understanding is unbound, the
thought pondered, and then the sender’s undetstanding is tebound, and the sender is allowed to
continue the dream. In the second case, the bindings of the invoking dream are rebound as a new
dream within the understanding of the sender. In this case, it is not the same dream, since the sender’s
understanding will be visible, whereas in the case of regression, the sender’s understanding is lifted
to make visible once again the invoker’s understanding.

Relapse A relapse of a drcam is a new instance. of the essence of that dream. Ttis a physlcal copy
of the data structure of a dream. This produces no new effect on alterations by reference in a dream.
Where modifiable data is involved, a relapse creates a new copy of that data. The data will initially
have the same value as the original, but it has a separate and distinct existence, and modifications
to the original have no effect on the relaspe, nor do modifications on the relapse have any effect
upon the original.
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Stupor A dream about nothing. This provides a mechanism to ponder thoughts in the current
understanding. It has a minimal essence, and is like any other dream in every respect.

Thought - A thought is a Forth word, known by its execution token, or cfa. A thought is an object
that may be manipulated and even given a hame. A thought is a message that is passed to a dream.
This thought is interpreted within the understanding of the dream, that is, using the dream local
definitions of the words in the thought.

Understanding An understanding is the ensemble of all the currently visible Forth words and their
associated. definitions. In teality, the understanding is the normal Forth. In a dteam state, this
understanding is altered because of thc altered bindings of those words whose meanings have been
imagined inside the dream.

Vision A vision is an ordered set of dreams. Visions provide a cleanly packaged way to cause a

thought to be pondered in a set of nested dreams. Visions provide a simple way to speclfy and control
a network of multiple inheritence.

Advertised Interface
{ wordl ... wordn } ' ( — cfa)
This word compiles a colon definition from word1 ... wordnand compiles a literal holding

the execution token of that colon definition. Thus an unnamed colon definition is produced. This
is similar to the lambda special form of Lisp.

'2VAR[ v1 ... vn] ( - sizel cfal ... sizen cfan )
This word is like VAR [ except that it is used for 2VARIABLES.

AFTER ( after-cfa method-cfa “essence — )
Attaches an after method to the main method specified in the understanding of the dream specified

by the essence pointer.

BEFORE ( before-cfa method-cfa *essence )
Attaches a before method to the main method specified in the understanding of the dream
specified by the essence pointer.

COMA ‘ ( guzintas... thought — guzoutas... )
This is the null vision. It is a vision of zero dreams. It is an object like any other vision. It may

be used as a place holder in a set of multlply nested visions, or wherever an empty vision is
needed.

Copy-Essence ( “old-essence — “new-essence )
This wotd takes a pointer to the essence of a dream and makes a copy of that essence, returning

a polnter to the new copy.

- DEJA-VU : ( guzintas thought — guzoutas )
Lifts the current understandlng back to the-previous vision a vlslon at a time. Like REGRESS,

only works on visions instead of dreams. , :
DID ' k ( pfa — )
This word executes a colon definition when given its pfa, in muich the same fashion that EXECUTE
executes a colon definition when given its cfa. This word is used in-conjunction with REALLY
to execute the definition of a colon definition that was visable during compilation instead of
during dynamic execution.

DREAM name ‘ - ( NIL sizen cfan ... sizel cfal )
This is the defining word for a dream. It takes a NIL-terminated list of size/cfa pairs oh the stack.
The cfa’s specify wotds to which the dream is to attach local meaning, and the size’s specify how
much private storage is to be allocated to the parameter field of each word.



Dreams . 303

EARLY ( word-cfa essence —  word-pfa )
Compiles the compile-time binding of word-cfa in the understanding of essence. This permits
eatly binding to the understanding of a drecam other than the one that is executing while the
compilation is occuring.

ESSENCE dream (.— *essence.)
This word is a macro to extract the essence of a dream. It rcads the next source stream input
token, and assuming that this is the name of a dream, it returns a pointer to the data structure for
that dream. !

FANTASY ( vision — dream )
Convetts a vision into a dream that has identical bindings, except that variables will have new

pfa’s. _ \

IMAGINE . ~ ( new-cfa old-cfa “essence )
This word is used to modify a dream’s understanding of a word local to that dream. The word
whose hame is given by old-cfa will cause the action given by new-cfa when pondered in the
dream given by essence.

Make-Essence ( NIL sizen cfan ... sizel cfal — *“essence )
This word takes a NIL-terminated list of objects to be made local to a dream, together with each

of their types, represented by the object’s size, and allocates storage for and initializes a data
structure for the essence of a dream. A pointer to this data structure is returned on the stack.

make-vision ( NIL *essencel ... *essencen — vision )
This word makes a vision from a NIL-terminated list of dteam essence pointets, and returns a

pointer to it on the stack.

MILIEU " ( — *essence )
This word returns the essence of the currently active dream. It is the self-referential dream.
NIL ( - null-pointer/false )

This word returns a pointer to nowhere, which is also interpreted as a false logical value. Thus
in ANS-Forth, it is zero. ' '

PONDER ( guzintas... thought “essence — guzou tas )
This word causes a thought to be pondered in the undetstanding of a dream. It takes a pointer to

the essence of the dream, a thought, and any input patametets to that thought. It returns the result
of applying that thought in the understanding of the dream to the input parameters.

REALITY ( guzintas... thought — guzoutas )
“This word ponders a thought in reality by regressing repeatedly until the true understandmg of

reality is reached.

REALLY word ( - pfa)
This word compiles a litetal containing the pfa of the wortd whose name follows the word

REALLY in the input stream. It is used to force early binding to words that would otherwise have
a dynamically bound local definition.

REF[ namel ... namen ] ( —» sizel cfal ... sizen cfan )
This word is a macro like VAR [ and 2VAR [ only it is used for reference bindings. These are used

for colon definitions and other words that do not have a modifiable data storage area associated
with them. '

REGRESS ( guzintas... thought — guzoutas )
This word is used to cause a thought to be pondered in the undetstanding in which the current

dream was invoked. It causes the undetstanding of the cutrent dream to be lifted, or undone,
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thereby making the understanding in which that dream was invoked again visible. After the
thought has been pondered, the current dream’s undcrstandlng is restored.

RELAPSE new-dream : : ( “essence — )
This defining word creates a new named copy of a dream whose essence is passed to it. It reads
the next soutce stream input token and creates a dictionary entry for that name as a dream which
is a-copy of the original dream.

SEE ( guzintas ... thought *vision — guzoutas... )
This word causes a thought to be seen in a vision the same way that PONDER causes a thought

to be pondered in a dream. It may also be used to ponder a thought in a dream, since a dream is
an atomic vision; or equivalently, visions are molecules fotrmed of dreams.

STUPOR ( guzintas... thought — guzoutas... )
This word is a dream with no local meanings. It may be used to cause a thought to be pondered

in the current understanding. Its essence may be manlpulatcd exactly like any other dream. It is
the milieu of reality.

THOUGHT O (cfa - )
This is a defining word that is used to give a name to a thought. When that name is later used, it
returns the associated thought as an execution token, or cfa. :

TRANCE name .~ ( NIL sizen cfan ... slzel cfal — )
This is a meta-defining word. It is used to cteate a word that creates dreams with similar essences.

TRANCE reads the next soutce stream input token and creates a word of that name which is itself
a defining word. When the offspring word is used, it teads a token from the input stream and
creates a dream of that name with the local objects specified to the trance. In conventional obJ ect
oriented parlance, TRANCE is a class defining word.

VAR[ varl ... varn ] (= sizel cfal ... sizen cfan')
This word is a macro to ease coding and improve readability. It is used to build a list of variables

for Make -Essence. The syntax of its use is as follows: VAR[ . varl. ... varn 1. Scethe
example session for an example of its use. ~

VISION name - ( NIL “essencel ... “essencen — )
This is the defining word for a vision. The essences of the dreams comprising the vision are

passed on the stack, with the dominant dream pushed fitst.
VISION[ dreaml ... dreamn ] name : > )
This is a macro for declaring visions at compile time. It takes a list of dream names from the
source stream and builds a vision with the specified name. :

[EARLY] word dream (- )
Compiles the compile-time early binding of word in the undetstanding of dream.

Llstmg 1

This listing is a log of an interactive demonstration run. The indented lines are
inputs to the Forth system, and the non-indented lines are the output from the
Forth system.

VARIABLE X. 1xX 1 \ make some variables...
VARIABLE Y 2Y1

VARIABLE Z 321 )

: ? ® . ; (variable -- ) \ print the value of a variable

: DOT (n ~--) \ ‘another way to print a numbex
O <H % ## # > \ with leading zeros

TYPE CR ; . \ and a carriage return
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NIL VAR[ X Y ] DREAM snooze
ESSENCE snooze RELAPSE nap
{X?Y? Z ? } THOUGHT hmm

hmm STUPOR
123

hmm snooze
123

100 X !

200 Y !

300 2 1

hmm STUPOR
100 200 300

hmm snooze
12 300

\ a dream about a couple of variables

\ a different version of the same dream
\ a thought about 3 variables

\ ponder it in reality

\ and again in a dream

\ change the variables

\ ponder it again in reality

\ and again in the dream

{10 X! 20 Y ! 30 Z | } snooze \ make a change in the dream

hmm snooze
10 20 30

hmm STUPOR
100 200 30

hmm nap
12 30

NIL REF[ .

FUE FOO

FUE BAR

hmm FOO
100 200 30

hmin BAR
100 200 30

1 TRANCE FUE

* DOT * . ESSENCE FOO IMAGINE

hmm FOO
0100
0200
0030

hmm BAR
100 200 30

{ bmm BAR ]
100 200 30

{ hmm FOO ] snooze
0010
0020
0030
{ { hmm BAR ] FOO ] snooze
10 20 30 ’ :

{ hnm nap 1 FOO

0001
0002
0030
{ hmm REGRESS ] FOO
100 200 30

FOO

{ { hmm nap } REGRESS } FOO

12 30 :
[ X ? ) snooze
10
{ REALLY X ? ] snooze
100
{Xe.
0100

} FoOO

\ what was the effect?
\ what was the effect on reality?
\ what is the other dream thinking?

\ a class of dreams about a colon definition
\ a dream of that class

\ another dream of the same class

\ try it out

\

try that one too

\ imagine that . behaves differently
\ exhibit the new behavior

\ ‘show that  BAR was unaffected

-\ a dream within a dream

\ same dream, but within a different dream

\ fhis can go as far as you likel!

\ showing FoO’s . still holds in nap

\ regress back from foo to reality
\ more advanced navigation of the dream world

\ show ‘snooze’s understanding of the variable

-\ show early binding to a variable

\ show F0O’s understanding of .
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{ X ® REALLY . DID } FOO \ show early binding to a colon definition
100
VISION[ BAR FOO snooze ] BAZ \ make a vision to show how that works
hmm BAZ \ should be same as:
10 20 30 \ { { hmm BAR } FOO } snooze
VISION[ FOO BAR snooze ] BOK \ should print with leading zero
hmm BOK \ try it and see
0010
0020
0030
hmm ESSENCE snooze SEE \ test of atomic dream passed to SEE
10 20 30
VISION[ FOO BAZ ] BACH \ make a nested dream
hmm BACH \ test of a nested dream
0010
0020
0030
VISION[ FOO COMA BACH ] HANDEL \ doubly nested dream with null in middle
bhmm HANDEL \ try that one on for size!
0010 .
0020
0030
VISION[ BAR HANDEL ] MOZART \ exception link to override FOO
hmm MOZART \ show that it works
10 20 30
{ hnm REALITY } HANDEL \ test reality word
100 200 30
Listing 2 DREAMS.4TH
DREAMS

An Object Oriented System
For LMI UR/Forth 1.03
Written By: - R. J. Brown
Copyright 1989 Elijah Laboratories Inc.
All Rights Reserved Worldwide

This code may be freely copied and
distributed under the terms of the
Gnu Public License. [See gnu.txt]
",...and the dream is certain, and
the interpretation thereof sure."
Daniel 2:45

The dreams system arose out of an expérimental port of a Flavors and a dynamic
closures package from Lisp to Forth.

)
\ State which prerequisite source files must be present.
CONSULT ANS , \ X3/J14 BASIS6 compatibility for LMI UR/Forth.
CONSULT MACROS . \ Eli Lab’s macro defining words.
CONSULT EDO \ George Hawkins’ structured data types.
CONSULT STACKS \ Stack defining and manipulating words.
\ Define the stacks to hold o0ld bindings and active closures.
100 Stack ABStk ’ \ active bindings during dreams
25 Stack AEStk \ active essences during dreams
25 Stack UEStk \ unbound essences during regressions

10 Stack AvStk \ active visions stack
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\ Define data types used in the structure of an essence of a dream.

cell DEF pointer \ an address of something else
\ Define the data structure for a dream’s essence.
S{ cell :: dream-size \ the size of this dream
cell :: #-of-bindings \ the number of local objects
\ a dream has one of these slots for each local binding
8{ pointer :: pfa-pointer \ points at a pfa we are closed over
pointer :: pfa-contents \ our local value for that pfa
cell :: local-type }8 * \ the type of this local
DUP DEF local-binding \ the type of a slot !
[*] local-binding[] \ the slot index operator
:: local-bindings \ the name the vector of slots

}8 local-binding - DEF dream-header \ this is called a dream-header
( There is one slot in the local-bindings vector for each locally bound object.
Following this, a region of dictionary is ALLOTed to hold the BODYs of each of the
locally bound objects. An ALLOTment is made for each object equal to the size of
that object, which is alsoc the object’s type. Reference type bindings have a size
of zero.) )
\ LMI UR/Forth memory model dependent words.
: “pfa ( cfa -- “pfa ) BYTE+ ; \ Convert a cfa to a ptr to the pfa.
: pfa® ( “pfa -- pfa ) CS0O SWAP OL ; \ Fetch a pfa from the code segment.

pfal ( pfa *pfa -- ) CSO SWAP !L ;

H \ Store a pfa into the code segment.
\ Instantiate the essence of a dream and return a pointer to it on the stack:

: Make-Essence ( NIL size-n cfa-n ... size-1 cfa-1 -- “essence )
HERE >R \ save pointer to instantiation
dream-header ALLOT allocate the header
BEGIN ?DUP WHILE for each locally bound object...
HERE >R remember start of slot
local-binding ALLOT allocate a local binding slot
“pfa R@ pfa-pointer 1| store pointer to pfa
R> local-type | REPEAT store the object’s length
HERE R® local-bindings - compute size of local binding vector
. local-binding / compute number of local bindings
R® $-of-bindings ! save it for dynamic binding routines
HERE point to start of local data area
R® local-bindings point to the local-bindings vector
?DO HERE I pfa-contents | set pointer to local data slot
local-type @ ALLOT reserve space for it
pfa-pointer @ pfae@ point to original data
pfa-contents @ point to mew data slot
local-type @ MOVE get length & copy data to new slot
local-type © 0= is it a reference binding?
IF I pfa-pointer @ pfae yes, inherit old pfa
I pfa-contents | THEN instead of copy of data
local-binding +LOOP repeat for each local object
HERE R@ - compute overall size of this essence
R® dream-size ! store for future RELAPSE calls
R> ; \ return pointer to this essence

HHHMHHMHAH
P PPl P P PP AP VAV A A 4 & PPV  a e

\ Copy an essence to produce a new essence with the same initial bindings.

: Copy-Essgence ( “old-essence -- “new-eassence )
HERE \ destination address
2DUP OVER dream-size @ \ length to copy
DUP ALLOT \ allocate space
MOVE \ make the copy
SWAP OVER - \ compute ptr adjustment
OVER #-of-bindings @ 0 \ for each local binding
?DO OVER local-bindings \ point to...
I SWAP local-binding{] \ ...its slot
DUP local-type @ \ locally instantiated?
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Ir pfa-contents DUP @ \ yes, get old binding
2 PICK - SWAP | \ adjust to new binding
ELSE DROP THEN LOOP DROP ; \ loop till done
\ Establish new bindings for local objects.
: new-bindings ( “essence -- )
DUP AEStk Push \ stack dream occurrence
DUP local-bindings SWAP k \ point to bindings vector
#-of-bindings @ 0 ‘ \ for each local binding
?DO I OVER local- bxnding[] \ point to its slot
DUP pfa-pointer @ \ point to its pfa
DUP pfa® ABStk Push \ save old binding
SWAP pfa-contents © \ get new binding
SWAP pfal \ establish new binding

LOOP DROP ; \ clean up exit’
\ Re-establish stacked old bindings for local objects.
i old-bindings ( --)

AEStk Pop \ point to most recent dream
DUP local-bindings SWAP \ point to bindings vector
#-of-bindings @ ?DUP 0= \ are there any bindings?
IF DROP EXIT THEN ) \ no, do nothing and exit
1- O SWAP ) "\ yes, for each local binding
DO I OVER local-bindingl] \‘point at its slot
pfa-pointer © \ point at pfa
ABStk Pop . \ get. stacked old bindlng
SWAP pfal \ restore old binding
-1 +LOOP DROP ; . \ clean up exit
\ Cause a dream to ponder a thought.
: PONDER ( guzintas... thought-cfa “essence -- guzoutas... )
new-bindings ; \ bind to- local objects
EXECUTE : \ do your thing!
old-bindings ; \ unbind from local objects
\ Declarations of lists of objects local to a dream.
: VAR[ { cell * } [COMPILE] IRP[ ;  \ declare variables
: 2VAR[ { 2 CELLS * ] [COMPILE] IRP[ : \ declare 2variables
: REF[ { NIL * } [COMPILE] IRP[ ; \ declare ‘reference bindings
\ Defining word for a dream.
: DREAM ( NIL size-n cfa-n ... size-1 cfa-1 -- ) \ name \
Make-Essence CREATE , \ give it a name
DOES @ PONDER ; _ \ 'and a behavior
\'A dream about nothing provideé a way to ponder thoughts in the here and now.
NIL DREAM STUPOR \ ponders thoughts in the current understanding

\ Transform a dream’s name to its essence, or data structure address.
s ESSENCE ’ >BODY @ STATE @ IF [COMPILE] LITERAL THEN ; IMMEDIATE -
\ Defining word for a copy of a dream.

RELAPSE ( “essence -- ) \ new-dream \
\ Syntax: ESSENCE old-dream RELAPSE new-dream
Copy-Essence CREATE , DOES> @ PONDER ;

\ Defining word for a class of dreams.

: TRANCE ( NIL size-n cfa-n ... size-1 cfa-1 -- ) \ name \
Make-Essence CREATE , \ make the prototype
DOES> @ RELAPSE ; _\ replicate the prototype
\ Reference to the essence of the current dream.
: MILIEU ( -- “essence )
AEStk Empty? \ is there currently any active dream?
IF ESSENCE STUPOR ELSE \ no, return empty dream’s essence
AEStk Top THEN ; -\ yes, return currént dream’s essence

\ Defining word for a named thought.
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"¢ THOUGHT CONSTANT ; \  Syntax: { blah blah blah } THOUGHT name

\ Find a word’s local-binding slot in an essénce.
: Find-Binding ( pfa "essance -- *slot )
DUP local-bindings >R
#-of-bindings @ ?DUP 0=
IF R> 2DROP NIL EXIT THEN yes, give up search!
BEGIN DUP 1- R@ local-bindingl[] no, point to slot

\ save pointer to vector
\
\
\
DUP pfa-pointer @ 3 PICK = \ is this right slot?
\
\
\

is number of slots zexo?

IF -ROT 2DROP R> DROP EXIT yes, return its pointer!
ELSE DROP THEN no, keep looking
1- ?DUP 0= UNTIL update index

DROP NIL ; : \ search failed, return NIL!
\ Alter the understanding of an object local to a dream.
: IMAGINE ( new-cfa old-cfa “essence --)

SWAP “pfa SWAP \ point to old pfa pointer

Find-Binding ?DUP \ find its binding in the essence

IF DUP local-type @ \ make sure its a reference binding
IF DROP EXIT THEN \ if not reference, don’t bind it
SWAP “pfa pfa@ SWAP _\ point to new pfa
pfa-contents ! ] "\ replace old pfa with new pfa

ELSE DROP THEN ; ; \ if not found, do nothing

\ Regress back to an earlier dream state. '
: REGRESS ( guzintas... thought -- guzoutas... )

AEStk Empty? \ are we already in reality?

IF EXECUTE \ yes, can’t regress further

ELSE AEStk Top UEStk Push \ no, remember where we are
old-bindings \:go back a level: '
EXECUTE \ ponder the thought there
UEStk Pop new-bindings THEN ; \ return to where we came from

\ Regress all the way back to Reality. )
: REALITY ( guzintas... thought -- guzoutas... )

BEGIN AEStk Empty? NOT WHILE \ till there’s no bindings left
AEStk Top UEStk Push \ remember what we undid
old-bindings REPEAT \ un-do a binding

EXECUTE \ think the thought

BEGIN UEStk Empty? NOT WHILE ) \ till they’re all re-bound
UEStk Pop \ get a binding
new-bindings REPEAT ; \ re-bind it.

\ Early binding support: compile time pfa value.
REALLY ( -- pfa.) \ name \ :

‘ >BODY [COMPILE] LITERAL ; IMMEDIATE \ pfa of name in reality
\ Execute early bound colon definition.

: DID ( pfa -- ) \ syntax: REALLY word DID \
R> DROP >R ; \ execute body and return
\ Build data structure for a vision, which is a set of dreams.
: make-vision ( NIL “essence-1 ... “essence-n -- *vision )
HERE >R \ remember where vision starts
NIL , \ backwards terminator
BEGIN ?DUP WHILE \ for each dream in the vision
+ REPEAT \ remember its .essence
NIL , \ forward terminator
R> ; \ return pointer to vision

\ Establish the understanding of a vision.

: bind-vision ( “vision -- )
DUP @ IF DUP new-bindings \ handle atomic dream case
ELSE BEGIN CELL+ DUP @ ?DUP WHILE \ for all dreams in vision
DUP @ IF new-bindings \ bhandle dream in this slot
ELSE RECURSE THEN \ handle nested vision
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REPEAT THEN AVStk Push ; \ remember tail for unbinding
\ Disestablish the understanding of a vision.
: unbind-vision ( -- )

Avstk Pop \ point to the vision’s tail
DUP © IF old-bindings \ handle atomic dream case
ELSE BEGIN CELL- DUP € WHILE \ for all dreams in vision
DUP @ @ IF old-bindings \ handle dream in this slot
ELSE RECURSE THEN \ handle nested vision
REPEAT THEN DROP ; \ clean up before exit

\ See a thought in a vision.

¢

¢ SEE ( guzintas... thought “vision -- guzoutas... )

bind-vision \ establish the understanding of the vision
EXECUTE ) \ ponder the thought therein
unbind-vision ; \ remove the understanding of the vision

\ Defining word for a vision, arguments are on the stack.

: VISION ( NIL “essence-1 ... “essence-n -- )

make-vision CREATE ,
DOES> @ SEE ;
\ A vision about nothing makes a useful place-holder in another vision.
NIL VISION COMA \ analogous to STUPOR, the dream about nothing

( Note that the essence of a vision may be extracted just like the essence of a
dream. The use of the word ESSENCE is exactly the same ln both cases.)

\ Defining word for a vision, arguments are names in the source stream. .

: VISION[ ( -- ) \ Syntax: VISION[ dream-1 ... dream-n ] name
NIL [“] ESSENCE [COMPILE] IRP[ VISION ;

\ Words to permit early binding to the understanding of another dream.

: EARLY ( word-cfa “essence -- word-pfa )
[’] >BODY SWAP PONDER ;
[EARLY] ( -- )} \ word-name dream-name \ 7

* [COMPILE] ESSENCE EARLY [LITERAL] ; IMMEDIATE
\ Words to plant before and after demons into other words.
: BEFORE ( before-cfa method-cfa ~essence -- )
2DUP EARLY \ get o0ld method
HERE >R SWAP >R \ save cfa & essence ptr
ROT , [LITERAL] COMPILE DID COMPILE EXIT \ compile new method
R> R> -ROT IMAGINE ; \ replace old method with it
: AFTER ( after-cfa method-cfa “essence -- )

2DUP EARLY \ get old method

HERE >R SWAP >R \ save cfa & essence ptr

ROT SWAP [LITERAL] COMPILE DID , COMPILE EXIT \ compile new method

R> R> SWAP IMAGINE ; \ replace old method
Listing 3 ' ANS.4TH

{ .
BASIS6 Compatibility Suite for LMI UR/Forth 1.03
Written by: R. J. Brown
Copyright 1989 Elijah Laboratories Inc.

See the ANS X3/J14-TC BASIS6 document for stack effects and
other documentation regarding these words.

)
: 2>R >R -ROT >R >R >R ;
: 2R> R> R> R> ROT >R ;
: [ASCII] [COMPILE] ASCII ; IMMEDIATE
\ : ASCII [COMPILE] [ASCII] ;
\ : ASSEMBLER ASM ;
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: BYTE+ 1+ ;

: BYTES ;

: CELL+ WSIZE + ;

: CELLS WSIZE % ;

1 CELLS CONSTANT CELL

\ : D! 2t ;

: D>8 DROP ;

\ : D@ 2@ ;

( Ray Duncan says he has a workable definition for this woxrd... )

\ : EVALUATE ." EVALUATE is not yet implemented! " ABORT ; IMMEDIATE

: FOR COMPILE 0 [COMPILE] DO ; IMMEDIATE \ This is fudged! A real FOR-NEXT
: NEXT [COMPILE] LOOP. ; : \ loop doesn’t alter the R-stackl

: MOVE ?DUP IF >R 2DUP R@ - IF R> CMOVE>
ELSE R> CMOVE THEN
ELSE 2DROP THEN ;

: OCTAL 8 BASE ! ;
UNDO R> R> R> 3DROP ;

\ The following words are not ANS X3/J14, but are close relatives.
\ They are included for the sake of convenience here.
1 CELLS CONSTANT cell \ a single forth virtual machine cell
: CELL- cell - ; \ back up a pointer by one cell
Listing 4 EDO.4TH
(
Extended Data Objects for Forth.
Written by George Hawkins
Moderator of the "Fifth" Conference
On the East Coast Forth Board )
Modified by R. J. Brown, Elijah Laboratories Inc.
Modified to be compatible with ANS X3/J14-TC BASIS6,
and also to permit more flexibility in structure declaratioms,
especially with regard to vectors.
)
: DEF ( type -- ) \ C \ Define a scalar type.
\ <type> \
( -- type ) \ R
CONSTANT .
: 8( ( -- offset ) \ Initiate a structure definition.
0 ;
: 1: ( old-offset type -- new-offset ) \ C \ Define a structure component.
\ <component> \
( -- pew-offset ) \ R
CREATE OVER , +
DOES> @ + ; .
)8 ( offset -- type ) \ End a structure definition.
{*] ( object-definition -- ) \ C \ Define a vector operxator.
\ <vector-operator> \
( index base-addr -- element-addr ) \ R
DUP CREATE ,
DOES> @ ROT * + ;
: DEF[] ( element-type elements -- ) \ C \ Define a vector.
\ <vector-type> \
( -- vector-type ) \ R

* CONSTANT ;
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Listing 5 MACROS.4TH

(
MACRO Support for LMI UR/FORTH
Copyright (c) 1988
Elijah Laboratories Inc.
Written by:
R. J. Brown
Elijah Laboratories Inc.
201 West High Street
P. O. Box 833
Warsaw KY 41095
1 606 567-4613
This file defines a words useful for the writing of defining and compiling woxds.
Especlally noteworthy is the EVAL word that allows processing of one token in the
- input stream by the outer interpreter, and then returns control to the word that in-
voked EVAL. '

)

CONSULT UTIL \ prerequisite modules

( This word is used by the override words for bases and vocabularies. It takes the
address of a variable and a new value for that variable, and returns the old value
of that variable and its address so that the old value may be restored with a sim-
ple | operation. ) - .

: XCHG DUP >R @ SWAP R@ " R> ; ( new addr -- old addr )

( These words will evaluate one word from a text string, and one word from the
input stream. They are useful for overriding things like the BASE or the VOCABULARY
that is normally in effect, and then restoring it after that onme word has been eval-
uated. )

: eval FIND CASE ( str -- ; evaluate the word in str )
0 OF NUMBER? 0= ABORT" is undefined! " DROP ( number )
STATE @ IF [COMPILE] LITERAL THEN ENDOF .

-1 OF STATE @ IF , ELSE EXECUTE THEN ENDOF ( word )

1 OF EXECUTE ENDOF ENDCASE ; ( immediate woxd )

: EVAL BL WORD eval ; . ( -- ; read and evaluate a word )

( These words allow the current base to be overridden for the execution/interpreta-
tion/compilation of the next word from the input stream. They restore the original
base when the overridden word is finished executing. )

: base’ ( n -- ; causes next word to operate in base n )
BASE XCHG >R >R EVAL R> R> ! ;

( compact forms for the most popular bases. .. )

t X’ 16 base’ ; IMMEDIATE ( force hexadecimal )

: D' 10 base’ ; IMMEDIATE ( force decimal )

: O 8 base’ ; IMMEDIATE ( force octal )

: B 2 base’ ; IMMEDIATE ( force binary )

( These words work in a fashion analogous to the base overriding words, only they
override the vocabulary instead of the base, restoring it after the next word has
been executed. )

HE A4 (" <vocab>" v’ <word> )
CONTEXT @ >R ( save orig vocab )
eval ( execute temp vocab )
EVAL ’ ( read and execute overridden word )
R> CONTEXT ! VOCORDR ; ( restore orig vocab )

HEA A4 BL WORD v’ ; IMMEDIATE ( V7 <vocab> <word> )

( This special version of CREATE will act the same way CREATE does unless the name
read from the input stream is *not-used* in which case QREATE will not create a dic-
tionary header and will exit not only itself, but also the word that called it. The
value returned by *not-used*? is true if QREATE found the special "*not-used*"
token in the input stream. Embeded comments are handled in the expected way, and
not treated as names to be created.)

VARIABLE ?not-used? ( *not-used* flag, T if not CREATEAd )
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: *not-used*? ?not-used? @ ; ( predicate is T if no CREATE )
: _gr ( factored helper for QREATE )
R> R> DROP >IN @ >R >R NIL ; ( update IN for comments )
: QREATE ( -- ; Qreate ame ... a gueer CREATE [!! )
>IN @ >R { remember place in input stream )
?not-used? NIL! ( assume we will do a CREATE )
BEGIN BL WORD DUP ( read next token )
COUNT " *not-used*" COUNT STRCMP ( special case? )
0= IF R> 2DROP ( yes, clean up stack, )
?not-used? T! 2EXIT THEN ( set flag, double return )
FIND IF CASE ( allow embedded comments... )
[*] (- OF [COMPILE] ( _gr ENDOF ( parenthesis )
[*] \ OF [COMPILE] \ _qr ENDOF ( back-slash )
T SWAP : ( none of the above... )
ENDCASE ELSE DROP T THEN ( token not found at all )
UNTIL ( keep looking for non-comment tokens )
R> >IN 1 ( restore input stream )
CREATE . ; ( do a normal CREATE )

( The following words make use of the QREATE word to implement conditionally gener-

ated constants and variables. These are particularly useful when macro-type words
generate a family of constants or variables, and certain of the members of these
families are not really used. It is nice to have *not-used* as a place holder for

the vacant slots, without generating unneeded dictionary headers and a host of ’is
re-defined’ messages. )

\

QONSTANT QREATE , DOES> @ ; ‘( conditional constant )

2Q0NSTANT QREATE , , DOES> 2@ ; ( double precision const. )
: QVARIABLE QREATE 2 ALLOT DOES> ; { conditional variable )

The Forth version of the indefinate repeat macro.

IRP[ ( cfa --\ { words to repeat } IRP[ tkn-1 ... tkn-n ] ) )

>R \ save c¢fa

BEGIN \ for the following tokens
>IN @ >R \ save input pointer
BL WORD COUNT \ read the next token
" ]% COUNT STRCMP WHILE \ until we encounter a ‘]’
R> >IN ! \ back up to token again
R® EXECUTE \ apply the cfa to the token °

REPEAT i \ loop till done

R> DROP : \ trash saved input pointer

R> DROP \ trash saved cfa

IMMEDIATE \ this is a read macro word ..
Give names to bit masks in order read.
: BITS[ ( -- BITS[ bito bitl bit2 ... bitn ] )

1 ] \ mask for first bit

{ DUP QONSTANT 2% } \ do this

[COMPILE] IRP[ \ for each bit name

DROP ; \ trash leftover mask

Give indices to symbols, starting with ival returning oval.
v ENOM{[ ( -- ival ENUM[ tagl tag2 ... tagn ] -- oval )
{ DUP QONSTANT 1+ } \ do this
[COMPILE] IRPI[ ; \ for each tag
A block compile word.
COMPILE[ ( -- \ COMPILE[ wordl ... wordn ] )

{ \ for each token
COMPILE COMPILE : \ compile the value of
EVAL ‘ \ its evaluation

} : \ this is the action to repeat

[COMPILE] IRPI[ ~ \ until a "]’ is encountered

~~

IMMEDIATE \ this is a read macro word
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{ This word 1s a macro to declare several VARIABLEs at a time. It is used as fol-.
lows: VARS[ varl var2 ... varn ] )

: VARS[ \ multiple variable declaration
[*] VARIABLE \ perform VARIABLE
[COMPILE] IRP[ ; ‘ ; \ for each token in the list

( This word is a macro to declare a list of tokens to be forward references. These
words must later be resolved with the R: word.

111 LMI UR/FORTH Only 11! ) :

: FWDI[ ) \ declare many forward references. .
[*1 F: . \ perform F:
[COMPILE] IRPI[ ; . \ for each token in the list

( These words are used to create a "stub" word that just displays its name when it
is executed. These words are useful when doing a top-down implementation with test-
ing before all words are coded. )

VARIABLE here \ variable needed to thwart compiler security

: STUB HERE here 1 : ‘ \ stub off a word
here @ BODY> >NAME [COMPILE] LITERAL \ make nfa literal
COMPILE CR COMPILE .NAME [COMPILE] ; ; \ code to show name

: STUB[ [’] STUB [COMPILE] IRPT ; \ stub a list of words

( This word consults a list of files ) . ‘

: CONSULT[ ( -- \ CONSULT[ f1 ... fn ] ; consult listed files )

[’] CONSULT [COMPILE] IRP[ ;

Listing 6 ' STACKS.4TH
\ Defining wozd and methods for stacks.
CONSULT ANS \ ANS Forth X3J14 BASIS6é compatibility.
: Stack CREATE ( size -- ) \ stack \

HERE CELL+ , CELLS ALLOT

DOES> ; (-- sp)
: Push ( w stack -- ) \ push a word onto a stack

DUP >R @ \ fetch sp

cell + i \ pre-increment sp

DUP R> | ] \ save new sp

[ ’ ‘ \ store word in stack
: Pop ( stack -- w ) \ pop a word from a stack

DUP >R @ \ fetch sp

DUP @ \ fetch word from stack

SWAP cell - \ post-decrement sp

R> 1 ; \ save new sp
: Top ( stack -- w ) \ fetch top of stack

ee } \ fetch the word the pointer points to
: Empty? ( stack -- flag ) \ test for an empty stack

DUP @ = ; \ its empty if pointer points to its 'self
Listing 7 UTIL.4TH

(

Utility words
Copyright (c) 1988
Elijah Laboratories Inc.

Written by: '
R. J. Brown
Elijah Laboratories Inc.
201 West High Street
P. O. Box 833
Wargaw KY 41095
1 606 567-4613
rj brown @ ecfb / 1lmi
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This file defines various useful utility words. It is basically a catch-all repos-
itory for miscelaneous widgets.

The material contained in this file is Copyright [c] 1988 Elijah Laboratories
Inc. All rights reserved world wide.

Permission is hereby granted to reproduce this document in whole or in part pro-
vided that such reproductions refer to the fact that the copied material is subject
to copyright by Elijah Laboratories, Inc. No changes or modifications may be made
to the copied material unless it is clearly indicated that such changes were not in-
corporated in the original copyrighted work.

) ‘
( Machine independent word size tools. )
WSIZE CONSTANT 1w ( -- bytes/word ; machine word size )
1 CONSTANT 1b ( -- bytes/byte == 1 always in F83] )
- 1w CONSTANT 1W 1b CONSTANT 1B ( allow upper or lower case )
PWE QW+ o W oW ) (n -- n+lw ; add 1 word offset )
tw- 1w - ;2 W- w- (n -- n-1w ; subtract 1 word offset )
T wR dlw v ;o W we (n -- n*lw ; n words offset )
DoWRE WR 4+ ) 1 WRE whe ’ (kn -- ktn*lw ; add n words offset )
rw/w/ s Wow (nb -- nw ; bytes to  words )
1w 2% CONSTANT 1d : \ no upper case equiv because of name clash
1 d+ 1d + ; \ with Forth-83 standard D-words.
: d- 1d - ;
1 d* 1d * ;
1 A%+ d* + ;
:d/1d / ;
EXISTS? FPSIZE .IF FPSIZE CONSTANT 1f 1f CONSTANT 1F
s E+ Af + ;o1 P+ £+ ;o3 £- 1f - ;1 P- £-
: f* 1f *» ; : Fx f% ;o f¥+ % + 7 : F¥+ f¥*+

€/ 1£/ ; : ¥/ £/ ;

: IFIX FIX DROP ; ( float -- int ) .THEN ]

\ Determine the implementation dependant pointer size.

\ HERE \ dictionary position before ptr

\ NULPTR PTR P \ allocate a pointer

\ HERE \ dictionary position after ptr

\ FORGET P ) \ get rid of pointer

\ SWAP - CONSTANT 1p \ compute size and.give it a name
lw CONSTANT 1p \ for UR/Forth-386 !!!

\ Define pointer word size tools.

: p+ ip + ;

: p- ip - ;

: p* ip * ;

: p*+  p* +

:p/ I/

( Words for handling segmented address space transparently. )

\ 1w 4 = .IF .

\ : >s:0 ADDR>S&O ;

\ : 8:0 SEO>ADDR ;

\ .ELSE

t >8:0 ( Do nothing! ) k ; IMMEDIATE
: 8:0> ( Do nothing! ) ; IMMEDIATE
\ .THEN !

( The above is for LMI Forths. Do whatever you have to here for your own favorite
brand of the language. )
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Convenient words to have around. )

—

0 CONSTANT NIL ( -- false ; logical False value )

NIL NOT CONSTANT T ( -- true ; logical True value )
:TI - T SWAP ! ; ( v -- ; sets to T )
: NIL! NIL SWAP ! ; ' . ( v.-- ; sets to NIL )
: FLIP DUP @ 0= SWAP | ; ( v -- ; reverses truth )
: SETQ ’ SWAP 1 ; - ( vec -- vec SETQ worxrd )
HIR LS 1 SWAP +! ; ( addr -- ; increments word )
5 -- -1 SWAP +t ; ( addx -- ; decrements woxd )
: R++ R> 1+ >R ; ( -- ; increment top of R-stack )
t R-- R> 1- >R ; ( -- ; decrement top of R-stack )
: SWOOP SWAP DUP ; (xy -- yxx; for combining' tests )
i ... ; IMMEDIATE ( elipsis "noise word" for stubs, etc. )

3DUP 2 PICK 2 PICK 2 PICK ; ( copy top 3 stack elements )

?IF COMPILE ?DUP V[COMPILE] IF ; IMMEDIATE
: NDUP BEGIN DUP WHILE 1- (...mn-- ... ... ; DUP n items )
: OVER SWAP REPEAT DROP ;
: NDROP 0 ?DO DROP LOOP ; 7 ( ... n -- ; DROPs n items )
: NSWAP (a..bc..dn -- ¢..d a..b ; SWAPS n word elements )

DUP 2% 1- SWAP

0 ?DO

DUP >R ROLL >R
LOOP DROP ;

( Compile time, or "early binding", literal definition.
Use as: #[ bitl bit2 ... 1# for autocombining bit names,
as: #[ f£f141 fi1d2 ... 1+ for constant structure offset,
or as: [23+7*5/]1# for compile time expxession. )
: #I 0 [COMPILE] [ ; IMMEDIATE ( begin compile time literal )
¢ 14 [COMPILE] 1 [COMPILE] LITERAL ; IMMEDIATE ( end it )
1+ [COMPILE] 1# COMPILE + ; IMMEDIATE ( end cmp time offset )
1- [COMPILE] ]1# COMPILE - ; IMMEDIATE ( end negative offset )
( These words are used to give names to bits.

Usage:
#bits{ #bit <bit-1> ... #bit <bit-n> #bits )

: #bite{ 1 ; ( begin a series of bit definitions )

#bit CREATE DUP , 2* DOES> @ OR ; ( n -- 2n 2n ; name bit )
: }#bits DROP ; ( end a series of bit definitions )
8 CONSTANT BITS/BYTE \ number of bits in a byte

¢ TRANSLATE-TABLE CREATE ( -- TRANSLATE-TABLE name B , ... )
DOES> + C@& ; (n --m; translate a byte )

TRANSLATE-TABLE >MASK ( bit# -- bit-mask ; return a bit-mask )
1¢,2¢,4C, 8¢C, 16 C, 32 C, 64 C, 128 C,

: BITI[] { n -- mask offset ; to index into a bit string )
BITS/BYTE /MOD SWAP >MASK SWAP ;

: BIT[]l® { n base -- flag ; fetch truth value of a bit )
SWAP BIT[] ROT + C@ AND 0<> ;

: BITI]! ( flag n base -- ; store truth value to a bit )
SWAP BIT[] SWAP >R + \ flag addr <-P R-> mask
DUP @ R@ NOT AND \ turn off addressed bit
ROT 0<> R> AND OR : \ OR in flag’s truth value
SWAP 1 ; \ replace entire byte

: +BIT{] T -ROT BITI[]! ; ( n base -- ; set a bit )

: -BIT[] NIL -ROT BITI[]! ; ( n base -- ; clear a bit )

: “BIT[] ( n base -- ; toggle a bit )
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2DUP BIT[]@ NOT -ROT BIT[]! ; \. could be faster...

\ symbols ala Lisp

( Retrieve the unique tag associated with a symbol. If the symbol is not defined,
then create it, otherwise just return its address. )

: $ ( cfa \ § <token> ; create <token> 1f needed )
>IN @ BL WORD FIND ( save input ptr find token )
IF NIP ( trash ptr return cfa if found )
ELSE DROP >IN | CREATE ( else create it )
LAST @ NAME> THEN ; ( and return its cfa )
[$] (compile time version of § )
LAST © § ( save so UNSMUDGE won’t get confused! )
[COMPILE] LITERAL LAST | ; IMMEDIATE ( £fix for UNSMUDGE )

\ Embedded colon defs

( Braces defin "literal words" similar to unnamed LAMBDA expressions in Lisp. The '
code> : foo bar baz ;

: moby ... ["] foo ... ;
may be replaced by .---> : moby ... { bar baz } ... ;
and acheive the same effect without making foo a word too. )
{ ( --- branch-patch-addr init-state unnamed-pfa )
STATE @ DUP >R IF ( begin an unnamed word definition )
COMPILE branch ( build skeleton branch around it )
HERE 0 ,

ELSE ] THEN
R> HERE ; IMMEDIATE

: } ( branch-patch-addr init-state unnamed-pfa -- unnamed-cfa )
' COMPILE EXIT ( end definition with EXIT )
CP, @ SWAP- PFA, nest JMP, SWAP \ build code field
IF SWAP HERE OVER - SEAP ! ( patch offset into branch skel )
[COMPILE] LITERAL
ELSE [COMPILE] [
“THEN ; IMMEDIATE ( compile cfa as literal 0 )

\ odd exits & tock
( A good old fashioned GOTO is sometimes quite useful. )
t GOTO R> DROP >BODY >8:0 >R ; ( %word - - \ [’] word GOTO )
: GO * [COMPILE} LITERAL COMPILE GOTO ; IMMEDIATE \ GO word
( These words retuirn from the word that called them. )
2EXIT R> R> 2DROP ; { double whammy return )
HE- COMPILE R> COMPILE DROP [COMPILE] ; ; IMDIATE \ ditto
: ?EXIT IF R> DROP THEN ; ( conditional exit ala mulisp )
( ¢ , pronounced "tock" does either a : or R: as needed. If tick provides the ad-
dress, tock provides the data. )
: ¢ >IN @ >R BL WORD R> >IN ! FIND IF R: ELSE : THEN ;
\ Debugging aids
: . BL EMIT BASE @ 16 BASE !
SWAP 4 U.R BL EMIT BASE ! ; (n -- ; hex print)
: . * CRDOP " cfa " X. \ show.name & addresses
DUP >BODY ." pfa " X.
BL EMIT >NAME .NAME ;

\ Stolen from C

| OVER @ OR SWAP ! ; } ( addr bits -- ; *addr ]|= bits )
\ Stolen from from FORTRAN IV’
e (kn -- k**n ; raise integer to an integer power )

1 SWAP 0 DO OVER *. LOOP NIP ;

( This word delays execution for the specified number of timer ticks. Since the
need to delay occurs frequently in the source code, and it is isolated here to pro-
vide a single point of change for maintenence reasons.)

VARIABLE #ticks \ timer cell
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: ticks-delay (n--) : \ delay n ticks
#ticks 1 \ initialize tickex
#ticks TICKER DROP \ start ticker
BEGIN #ticks @ WHILE REPEAT ; \ wait till expired
: BETWEEN? (x 13 -- £lag ) \Tifi(#x<=jelseNIL

>R OVER <= SWAP R> <= AND 0¢<> ;
ASCII A CONSTANT ‘A ASCITI Z CONSTANT 'Z*
ASCII a CONSTANT ‘a‘ ASCII z CONSTANT 'z’

: TO-UPPER ( *string "STRING -- “STRING ) \ convert a string to upper case

OVER C® OVER C! \ copy length
OVER C® 1+ 1 ?DO \ ‘copy & convert string
OVER I + C@ \ get source char
DUP ‘a’ ’z’ BETWEEN? \ is it lower case?
IF ‘a’ - 'A’ + THEN \ yes, make it upper
OVER I + C! LOOP NIP ; \ put in STRING. &ct.
DECIMAL 13 CONSTANT <CR> .\ carrilage return in line delimiter

1.\ <CR> WORD COUNT TYPE CR ; IMMEDIATE \ for messages in INCLUDE files
: D>8 COMPILE DROP ; IMMEDIATE \ for symetry with D>D



