Finite State Machines in Forth

J. V. Noble
Institute for Nuclear and Particle Physics
University of Virginia
Charlottesville, Virginia 22901

Abstract

This note provides methods for constructing deterministic and nondeterministic finite
state automata in FORTH. The “best” method produces a one-to-one relation between the
definition and the state table of the automaton. An important feature of the technique is
the absence of (slow) nested IF clauses.

Introduction

Certain programming problems are difficult to solve procedurally even using structured
code, but simple to solve using abstract finite state machines (FSMs) [2, 10]. For example,
a compiler must distinguish a text string representing—say-a floating point number, from
an algebraic expression that might well contain similar characters in similar order. Or a
machine controller must select responses to pre-determined inputs that occur in random
order.

Such problems are interesting because a program that responds to indefinite input
is closer to a “thinking machine” than a mere sequential program. Thus, a string that
represents a floating point number is defined by a set of rules; it has neither a definite
length nor do the symbols appear in a definite order. Worse, more than one form for the
same number may be permissible-user-friendliness demands a certain flexibility of format.

Although generic pattern recognition can be implemented through logical expressions
(i.e. by concatenating sufficiently many IFs, ELSEs and THENs) the resulting code is gener-
ally hard to read, debug, or modify. Worse, this approach is anything but structured, no
matter how “prettily” the code is laid out: indentation can only do so much. And programs
consisting mainly of logical expressions can be slow because many processors dump their
pipelines upon branching [8]. These defects of the nested-IF approach are attested by the
profusion of commercial tools! to overcome them: Stirling Castle’s Logic Gem (that trans-
lates and simplifies logical expressions), Matrix Software’s Matrix Layout (that translates
a tabular representation of a FSM into one of several languages such as BASIC, Modula-2,
Pascal or C), or AYECO, Inc.’s COMPEDITOR (that performs a similar translation).

ForrH is a particularly well-structured language that encourages natural, readable
ways to generate FSMs. This note describes several high-level FORTH implementations.
Finite state machines have been discussed previously in this journal [3, 9]. The present
approach improves on prior methods.

A Simple Example

Consider the task of accepting numerical input from the keyboard. An unfriendly
program lets the user enter the entire number before informing him that he typed two
decimal points after the first digit. A friendly program, by contrast, refuses to recognize or
display illegal characters. It waits instead for a legal character or carriage return (signifying
the end of input). It permits backtracking, allowing erasure of incorrect input.

IThese CASE tools were available at least as recently as 1993 from The Programmer’s Shop and other
developer-oriented software discounters.

The Journal of Forth Application and Research, Volume 7
1

Finite State Machines in FORTH

To keep the example small, our number input routine allows signed decimal numbers

without power-of-10 exponents (fixed-point, in FORTRAN parlance).

Decimal points,

numerals and leading minus signs are legal, but no other ASCII characters (including
spaces) will be recognized. Here are some examples of legal numbers:

0.123, .123,1.23, -1.23, 123, etc.
From these examples we derive the rules:
— Characters other than 0-9, - and . are illegal.
— Numerals 0-9 are legal.
— The first character can be -, 0-9 or a decimal point.
— After the first character, - is illegal.
— After the first decimal point, decimal points are illegal.

A traditional procedural approach might look something like

VARIABLE PREVIOUS.MINUS?
VARIABLE PREVIOUS.DP?

\ history semaphores

\ tests

PREVIOUS.MINUS? !

: DIGIT? (c - 1) ASCIT O ASCII 9 WITHIN ;
: DP? (c—-— 1) ASCII . = ;
: MINUS? (c--f) ASCII - = ;
: FIRST.MINUS? MINUS? PREVIOUS.MINUS? @ NOT AND
: FIRST.DP? DP? PREVIOQUS.DP? ¢ NOT AND
: LEGAL? (c -- f) \ horrible example
DUP DIGIT?
IF DROP TRUE DUP PREVIQUS.MINUS?
ELSE DUP FIRST.MINUS?
IF DROP TRUE DUP
ELSE FIRST.DP?
IF TRUE DUP PREVIQUS.DP?
ELSE FALSE
THEN
THEN
THEN
The word that does the work is (with apologies to Uderzo and Goscinny, creators of
Asterix)
: Getafix

FALSE PREVIOUS.MINUS? ! FALSE PREVIOUS.DP?
\ initialize history semaphores

BEGIN KEY DUP CR <> WHILE
LEGAL? IF DUP ECHO APPEND THEN
REPEAT

What makes this example—whose analogs appear frequently in published code in vir-
tually every language—horrible? Each character whose legality is time-dependent requires
a history semaphore. It is therefore difficult to tell by inspection that the word LEGAL?’s
logic is actually incorrect, despite the simplification obtained by partial factoring and log-

ical arithmetic.

Finite State Machines in FORTH 3

Input

State O0THER? DIGIT? MINUS? DP?
0 X—-0 E—1 E—1 E-—2
1 X—-1 E—-1 X—=1 E—2
2 X—-2 E—2 X-—=-2 X-=2

Figure 1: State table summarizing the rules for fixed point numbers.
E stands for “echo” (to the CRT) and X for “do nothing”.

Forth Finite State Machines

The FSM approach replaces the true/false historical semaphores with one state variable.
The rules can be embodied in a state table that expresses the response to each possible
input in terms of a concrete action and a state transition, as shown below in Figure 1.

In the state table,

— The illegality of “other” characters is expressed by the uniform action X and the absence
of state transitions.

— The special status of the first character is expressed by the fact that all acceptable
characters lead to transitions out of the initial state (0).

— An initial - sign or digit leads to state 1, where a - sign is unacceptable.

— A decimal point always moves the system to state 2, where decimal points are not
accepted.

While some FSMs can be synthesized with BEGIN. .. WHILE. .. REPEAT or BEGIN...UNTIL
loops, keyboard input does not readily lend itself to this approach. We now explore three
implementations of the state table of Figure 1 as FORTH FSMs.

Brute-Force FSM

The “brute-force” FSM uses the Eaker CASE statement, either in its original form [6] or
with a simplified construct from HS/FORTH [7]. HS/FORTH provides defining words CASE:
; CASE whose daughter words execute one of several words in their definition, as in:

CASE: CHOICE WORDO WORD1 WORD2 WORD3 ... WORDn ;CASE
3 CHOICE (executes WORD3)

HS/FORTH’s CASE: ...;CASE incurs virtually no run time speed penalty relative to
executing the words themselves. Now, how do we use CASE: ... ;CASE to implement a
FSM? First we need a state variable (initialized to 0) that can assume the values 0, 1 and
2. To test whether an input character is a numeral, minus sign, decimal point or “other”,
we define WITHIN as used here returns TRUE if a < n < b, which is different from the ANS
specification?.

VARIABLE mystate mystate 0!

: WITHIN (n a b -- f) DDUP MIN -ROT MAX ROT
UNDER MIN -ROT MAX = ;

: DIGIT? (c -- f) ASCII 0 ASCII 9 WITHIN ;

: DP? (c-—£f) ASCII . = ;

: MINUS? (c —— f) ASCII - = ;

Now, to use CASE: ;CASE we define 3 words to handle the tests in each state:

2The ANSI Standard [12] renames ASCII to CHAR and UNDER to TUCK; also DDUP is specific to HS/FORTH
and should be replaced with 2DUP for ANSI compliance.

Finite State Machines in FORTH 4

(9] (char --) DUP
DIGIT? OVER MINUS? OR
IF EMIT 1 mystate ! ELSE DUP DP?
IF EMIT 2 mystate ! ELSE DROP THEN THEN ;

(1) (char --) DUP DIGIT?

IF EMIT 1 mystate ! ELSE DUP MINUS?
IF 1 mystate ! ELSE DUP DP?
IF EMIT 2 mystate ! ELSE DROP

THEN THEN THEN

(2) (char --) DUP
DIGIT? IF EMIT ELSE DROP THEN ;

Finally, we define the words that use the above:
CASE: <Fixed.Pt> (0) (1) (20 ;CASE

: Getafix 0 mystate ! \ initialize state
BEGIN
KEY DUP 13 <> \ not CR 7
WHILE mystate @ <Fixed.Pt> \ execute FSM
REPEAT

A Better FSM

While the approach outlined above in Brute-Force FSM (essentially the method de-
scribed recently by Berrian [4]) both works and produces much clearer code than the
binary logic tree of A Simple Example, it nevertheless can be improved. The words (0),
(1) and (2) are inadequately factored (they contain the tests performed on the input
character). They also contain IF...ELSE...THEN branches (which we prefer to avoid for
the sake of speed and structure). Finally, each FSM must be hand crafted from numerous
subsidiary definitions.

We want to translate the state table in Figure 1 into a program. The preceding attempt
was too indirect—each state was represented by its own word that did too much. Perhaps
we can achieve the desired simplicity by translating more directly. In FORTH such transla-
tions are most naturally accomplished via defining words. Suppose we visualize the state
table as a matrix, whose cells contain action specifications (addresses or execution tokens),
whose columns represent input categories, and whose rows are states. If we translate input
categories to column numbers, the category and the current value of the state variable (row
index) determine a unique cell address, whose content can be fetched and executed.

Translating the input to a column number factors the tests into a single word that
executes once per character. This word should avoid time-wasting branching instructions
so all decisions (as to which cell of the table to EXECUTE) will be computed rather than
decided. For our test example, the preliminary definitions are:

VARIABLE mystate O mystate !

: WITHIN (nab--£f) DDUP MIN -ROT MAX
ROT TUCK MIN -ROT MAX = ;

: DIGIT? (n -- f) ASCII 0 ASCII 9 WITHIN ;

Finite State Machines in FORTH 5

: DP? ASCII . = ;

: MINUS? ASCII - = ;

and the input translation is carried out by

: cat->col# (n--n’)
DUP DIGIT? 1 AND \ digit -> 1
OVER MINUS? 2 AND + \ - -> 2
SWAP DP? 3 AND + \ dp -> 3

; \ other ->0

Now we must plan the state-table compiler. In general, we define an action word for
each cell of the table that will perform the required action and state change. At compile
time the defining word will compile an array of the execution addresses (execution tokens
in ANS-FORTH parlance [11]) of these action words. At run time the child word computes
the address of the appropriate matrix cell from the user-supplied column number and the
current value of mystate, fetches the execution address from its matrix cell, and EXECUTEs
the appropriate action. Since a table can have arbitrarily many columns the number of
columns must be supplied at compile time. These requirements lead to the definitions:

: TUCK COMPILE UNDER ; \ ANS compatibility
: WIDE \ NOOP for clarity
: CELLS COMPILE 2% ; \ ANS compatibility
: CELL+ COMPILE 2+ ; \ ANS compatibility
: PERFORM COMPILE @ COMPILE EXECUTE ; \ alias

: FSM: (width --) CREATE |,]

DOES> (n adr --)
TUCK @ mystate @ * + CELLS CELL+ +
(adr’) PERFORM ;

Here CREATE makes a new header in the dictionary, , stores the top number on the
stack in the first cell of the parameter field, and] switches to compile mode. The run time
code computes the address of the cell containing the vector to the desired action, fetches
that vector and executes the action®.

Now we apply this powerful new word to our example problem. From Figure 1 we see
that transitions (changes of state) occur only in cells (0,0), (0,1), (0,2), (1,0), and (1,2).
These are always associated with EMIT (E in the Figure). No change of state accompanies
a wrong input and the associated action is to DROP the character. There are thus only 2
distinct state-changing actions we need define:

(00) EMIT 1 mystate ! ;
(02) EMIT 2 mystate ! ;

Since we must test for 4 conditions on the input character, the state table will be 4
columns wide:

4 WIDE FSM: <Fixed.Pt#> (action# —-)

\ other num - . \
DROP (00) (00) (02 \ 0
DROP (00) DROP (02) \ 1
DROP (02) DROP DROP ; \ 2

The word that does the work is

3This simple and elegant implementation only works with indirect-threaded ForTHs. An ANS Standard
alternative is provided in the Appendix.

Finite State Machines in FORTH 6

: Getafix O mystate ! BEGIN KEY DUP 13 <> \ not CR
WHILE DUP cat->col# <Fixed.Pt#> REPEAT ;

We can immediately test the FSM, as follows:
FLOAD F:X.1 Loading F:X.1 ok
ASCII 3 cat->col# . 1 ok
ASCII O cat->col# . 1 ok
ASCII - cat->col# . 2 ok
ASCII . cat->col# . 3 ok
ASCII A cat->col# . 0 ok

: Getafix O mystate ! BEGIN KEY DUP 13 <> WHILE
DUP cat->col# <Fixed.Pt#> REPEAT ;

Getafix -3.1415975 ok
Getafix 55.3259 ok

The incorrect input of excess decimal points, incorrect minus signs or non-numeric
characters does not show because, as intended, they were dropped without echoing to the
screen.

An Elegant FSM

The defining word FSM: of A Better FSM, while useful, nevertheless has room for
improvement. This version hides the state transitions within the action words compiled
into the child word’s cells. A more thoroughly factored approach would explicitly specify
transitions next to the actions they follow, within the definitions of each FSM. Definitions
will become more readable since each looks just like its state table; that is, our ideal FSM
definition will look like

4 WIDE FSM: <Fixed.Pt#>

\ input: | other? | num? | minus? | dp? |
\ state: -—————————————m—mm
(0) DROP O EMIT 1 EMIT 1 EMIT 2
(1) DROP 1 EMIT 1 DROP 1 EMIT 2

(2) DROP 2 EMIT 2 DROP 2 DROP 2 ;

so we would never need the words (00) and (02). Fortunately it is not hard to rede-
fine FSM: to include the transitions explicitly. We may use CONSTANTSs to effect the state
transitions:
0 CONSTANT >0
1 CONSTANT >1
2 CONSTANT >2

and modify the run time portion of FSM: accordingly:
: FSM: (width --) CREATE ,] DOES> (col# --)

TUCK @ (-- adr col# width)
mystate @ * + 2% CELLS CELL+ + (-- offset)
DUP CELL+ PERFORM mystate ! PERFORM

Note that we have defined the run time code so that the change in state variable
precedes the run time action. Sometimes the desired action is an ABORT and an error
message. Changing the state variable first lets us avoid having to write a separate error
handler for each cell of the FSM, yet we can tell where the ABORT took place. If the ABORT
were first, the state would not have been updated.

The FSM is then defined as

Finite State Machines in FORTH 7

4 WIDE FSM: <Fixed.Pt#>

\ input: | other? | num? | minus? | dp? |
\ state: -
(0) DROP >0 EMIT >1 EMIT >1 EMIT >2
(1) DROP >1 EMIT >1 DROP >1 EMIT >2

(2) DROP >2 EMIT >2 DROP >2 DROP >2 ;

which is clear and readable. Of course one could define the runtime (DOES>) portion
of FSM: to avoid the need for extra CONSTANTs >0, >1, etc. The actual numbers could be
stored in the table via:

4 WIDE FSM: <Fixed.Pt#>

\ input: | other? | num? | minus? | dp? |

\ state: ———————mm——mm
(0) DrROP [O,] EMIT [1,] EMIT [1,] EMIT [2,]
(1) DROP [1 ,] EMIT [, JDROP [1,] EMIT [2,]
(2) DROP [2 ,] EMIT [2, 1DROP [2, IJDROP [2, 1] ;

However, for reasons given in The Best FSM So Far, it is better to implement the state
transition with CONSTANTS rather than with numeric literals.

The Best FSM So Far

Experience using the FSM approach to write programs has motivated two further im-
provements. First, suppose one needs to nest FSMs, i.e., to compile one into another, or
even to RECURSE. The global variable mystate precludes such finesse. It therefore makes
sense to include the state variable for each FSM in its data structure, just as with its WIDTH.
This modification protects the state of a FSM from any accidental interactions at the cost
of one more memory cell per FSM, since if the state has no name it cannot be invoked.
Second, suppose one or other of the action words is supposed to leave something on the
stack, and that, for some reason, it is desirable to alter the state after the action rather
than before (this is, in fact, the more natural order of doing things). Since there is no way
to know in advance what the stack effect will be, we use the return stack for temporary
storage, to avoid collisions. The revision is thus:

1 20 COMPILE D@ ; \ alias; D@ is ok in ANS
: WIDE 0 ;
: FSM: (width 0 --)

CREATE , ,]

DOES> (col# adr --)
DUP >R 2@ * + (-- col#+width*state)
2% 2+ CELLS (-- offset-to-action)
DUP >R (-- offset-to-action)
PERFORM 7))
R> CELL+ (-- offset-to-update)
PERFORM (-- state?)
R> ! ; \ update state

The revised keyboard input word of our example is

: Getafix 0 ’ <Fixed.Pt#> !
BEGIN KEY DUP 13 <> WHILE
DUP cat->col# <Fixed.pt#> REPEAT ;

Finite State Machines in FORTH 8

Note that the state variable is initialized to zero because we know it is stored in the first
cell in the parameter field of the FSM which can be accessed by the phrase > <Fixed.Pt#>
(or the equivalent in the FORTH dialect being used—see the Appendiz).

Nondeterministic Finite State Machines

We are now in a position to explain why defining a CONSTANT to manage the state
transitions is better than merely incorporating the next state’s number. First, there is
no obvious reason why states cannot be named rather than numbered. The FORTH outer
interpreter itself is a state machine with two states, COMPILE and INTERPRET; i.e., names
are often clearer than numbers.

The use of a word rather than a number to effect the transition permits a more far-
reaching modification. Our code defines a compiler for deterministic FSMs, in which each
cell in the table contains a transition to a definite next state. What if we allowed branch-
ing to any of several next states, following a given action? FSMs that can do this are
called nondeterministic. Despite the nomenclature, and despite the misleading descrip-
tions of such FSMs occasionally found in the literature [5], there need be nothing random
or “guesslike” about the next transition. What permits multiple possibilities is additional
information, external to the current state and current input.

Here is a simple nondeterministic FSM used in my FORmula TRANslator [1]. The
problem is to determine whether a piece of text is a proper identifier (that is, the name
of a variable, subroutine or function) according to the rules of FORTRAN. An id must
begin with a letter, and can be up to seven characters long, with characters that are
letters or digits. To accelerate the process of determining whether an ASCII character
code represents a letter, digit or “other”, we define a decoder (fast table translator):

: TAB: (#bytes --)
CREATE HERE O0OVER ALLOT SWAP O FILL DOES> + C@ ;

and a method to fill it quickly:

: install (col# adr char.n char.1 -—-) \ fast fill
SWAP 1+ SWAP DO DDUP I + C! LOOP DDROP ;

The translation table we need for detecting id’s is

128 TAB: [id]

1 > [id] ASCII Z ASCII A install
1 > [id] ASCII z ASCII a install
2 7 [id] ASCII 9 ASCII 0 install

This follows the F79 convention that ’ returns the pfa. To convert to F83 or ANS
replace ’ by ’> >BODY .

Thus, e.g.
ASCIT R [id] . 1 ok

ASCII s [id] . 1 ok

ASCIT 3 [id] . 2 ok
ASCITI + [id] . 0 ok
\ to convert to ANSI replace ASCII by CHAR

Now how do we embody the id rules in a FSM? Our first attempt might look like
3 WIDE FSM: (id)

\ input: | other | 1letter | digit |
\ state = e
(0) NOOP >8 1+ >1 NOOP >2

(1) NOQOP >8 1+ >2 1+ >2

Finite State Machines in FORTH 9

(2) NOOP >8 1+ >3 1+ >3
(3) NOOP >8 1+ >4 1+ >4
(4) NOOP >8 1+ >5 1+ >5
(5) NOOP >8 1+ >6 1+ >6
(6) NOOP >8 1+ >7 1+ >7
(7)) NOOP >8 NOOP >8 NOOP >8 ;
: state< [COMPILE] °*> LITERAL ; IMMEDIATE

\ compile address of "state" cell of a FSM

\ for F83 or ANS replace ’ with °’ >BODY
: <id> ($end $beg -- f) \ f =T for id, F else
0 state< (id) ! \ initialize state to O
BEGIN DUP Ce [id] (id) \ run fsm
DDUP > \ $end > $beg 7
state< (id) @ 2 < \ not terminated ?
AND \ combine flags
WHILE 1+ \ $beg = $beg+l
REPEAT DDROP \ finish loop, clean up
state< (id) @ 8 < ; \ leave flag

To make sure the id is at most 7 characters long we had to provide 8 states. The table
is rather repetitious. A simpler alternative uses a VARIABLE to count the characters as they
come in. The revision is

VARIABLE id.len 0 id.len !

: +id.len id.len @ 1+ id.len ! \ increment counter
: >17 id.len @ 7 < DUP 1 AND SWAP NOT 2 AND + ;

(-- 1 if id.len < 7, 2 otherwise)

3 WIDE FSM: (id)

\ input: | other | 1letter I digit
\ state = = ——mmmmmmmmmmmmmmm
(0) NOOP >2 +id.len >1 NOOP >2
(1) NOQP >2 +id.len >17 +id.len >17 ;
s <id> ($end $beg —- f) \ f = -1 for id, O else
0 id.len ! 0 state< (id) ! \ initialize
BEGIN DUP C@ [id] (id) \ run fsm
DDUP > \ $end > $beg 7
state< (id) @ 2 < \ not terminated ?
AND \ combine flags
WHILE 1+ REPEAT DDROP \ $beg = $beg+l
state< (id) ¢ 1 = ; \ leave flag

The resulting FSM is nondeterministic because the word >1? induces a transition either
to state 1 or to (the terminal) state 2. It has fewer states and consumes less memory despite
the extra definitions. Because we have stuck to subroutines for mediating state transitions,
going from a definite transition (via a CONSTANT such as >0 or >1) to an indefinite one
requires no redefinitions.

The following FSM detects properly formed floating point numbers:

Finite State Machines in FORTH 10

128 TAB: [fp#] \ decoder for fp#

1 > [fp#] ASCII E ASCII D install

1 > [fp#] ASCII e ASCII d install

2 ° [fp#] ASCII 9 ASCII O inmstall

3’ [fp#] ASCII + + (!

3 7 [fp#] ASCII - + C!

4 ° [fp#] ASCII . + C!

: #err CRT \ restore normal output

." Not a correctly formed fp#" ABORT ; \ fp# error handler

5 WIDE FSM: (fp#)

\ input: | other | dDeE | digit | + or - | dp |

\ state: = ———————————————m—
(0) NOOP >6 NOOP >6 1+ >0 NOOP >6 1+ >1
(1) NOOP >6 1+ >2 1+ >1 #err >6 #err >6
(2) NOOP >6 #err >6 NOOP >4 1+ >3 #err >6
(3) NOOP >6 #err >6 1+ >4 #err >6 #err >6
(4) NOOP >6 #err >6 1+ >5 #err >6 #err >6
(5) NOOP >6 #terr >6 #terr >6 #terr >6 #terr >6 ;

: skip- DUP C@ ASCII - = - ; \ skip a leading -
\ Environmental dependency: assumes "true" is -1

: <fp#> ($end $beg -- £)

0 state< (fp#) ! \ initialize state
skip- \ ignore leading - sign
1- BEGIN 1+ DUP Ce [fp#] (fp#) \ run fsm
DDUP < \ $end < $beg 7
state< (fp#) @ 6 = OR \ terminated by error ?
UNTIL DDROP \ clean up
state< (fp#) @ 6 < \ leave flag

The FSM (£p#) does not count digits in the mantissa, but limits those in the exponent
to two or fewer. A nondeterministic version of (fp#) reduces the number of states, while
counting digits in both the mantissa and exponent of the number:

5 WIDE FSM: (fp#)

\ input: | other | dDeE | digit | + or - | dp |

\ state: = ————————-————mmmm
(0 NOOP >4 NOOP >4 +mant >07 NOOP >4 1+ >1
(1) NOOP >4 71+ >2 +mant >17 #err >4 #err >4
(2) NOOP >4 #err >4 +exp >3 1+ >3 #err >4
(3) NOOP >4 #err >4 +exp >37 #err >4 #err >4

The task of fleshing out the details—specifically, the words +mant, +exp, ?+1, >07, >17
and >37—is left as an exercise for the reader.

Acknowledgments

I am grateful to Rick Van Norman and Lloyd Prentice for positive feedback about
applications of the FSM compiler in areas as diverse as gas pipeline control and educational
computer games.

Finite State Machines in FORTH 11

Appendiz
Here is a high-level definition of the HS/FORTH CASE: ... code;CASE (albeit it imposes
more overhead than HS/FORTH’s version) that works in indirect-threaded systems:

: CASE: CREATE] DOES> (n --) O0OVER + + @ EXECUTE ;
; CASE [COMPILE] ; ; IMMEDIATE (or just use ;)

However, it will not work with a direct-threaded FORTH like F-PC. It fails because what
is normally compiled into the body of the definition (by using] to turn on the compiler)
in a direct-threaded system is not a list of execution tokens. The simplest alternative (it
also works with indirect-threaded systems) factors the compilation function out of CASE:

: CASE: CREATE ;
| O \ F83 and ANS version
;CASE DOES> OVER + + PERFORM ; \ no error checking

Here is a usage example:
CASE: TEST | * | / | + | - ;CASE
340 TEST . 12 ok
12 4 1 TEST . _3 ok
57 2 TEST . 12 ok

57 3 TEST . -2 ok

Although the CASE statement can be made to extend over several lines if one likes,
readability and good factoring suggest such definitions be kept short.

The same technique can be used to provide a version of FSM: that works with F-PC
and other F83-based or ANS-compliant systems, for those who want to experiment with
FSM: but lack HS/FORTH to try the version of The Best FSM So Far with. The definitions

are:

| Y, \ F83 and ANS version
: WIDE 0 ;
. FSM: (width 0 --) CREATE s, ;
;FSM DOES> (col# adr --)
DUP >R 20 * + (-- col#+width*state)
2% 2+ CELLS (-- offset-to-action)
DUP >R (-- offset-to-action)
PERFORM (?)
R> CELL+ (-- 7 offset-to-update)
PERFORM (-- ? state’)
R> ! ;0 (7)) \ update state

The FSM of An FElegant FSM now takes the form:
4 WIDE FSM: <Fixed.Pt#>

\ input: | other? | num? | minus? | dp? |

\ state: —————mmmmmmm
(O0) | DROP | >0 | EMIT | >1 | EMIT | >1 | EMIT | >2
(1) | DROP | >1 | EMIT | >1 | DROP | >1 | EMIT | >2
(2) | DROP | >2 | EMIT | >2 | DROP | >2 | DROP | >2 ;FSM

Finite State Machines in FORTH 12

. state< > >BODY LITERAL ; IMMEDIATE
: Getafix 0 state< <Fixed.Pt#> !
BEGIN KEY DUP 13 <> WHILE

DUP cat->col# <Fixed.pt#> REPEAT ;

References

[1] Scientific Forth: a modern language for scientific computing. J. V. Noble. Mechum
Banks Publishing, Ivy, VA, 1992. See esp. Ch. 11 and included program disk.

[2] A. V. Aho R. Sethi J.D. Ullman. Compilers: Principles, Tools and Techniques. Ad-
dison Wesley Publishing Company, Reading, MA, 1986.

[3] J[ames| Basile. A forth finite state machine. Journal of Forth Application and Re-
search, 1(2):76-78, 1982.

[4] D. W. Berrian. Forth based control of an Ion implanter. In Proc. 1989 Rochester
Forth Conf., pages 1-5. Inst. for Applied Forth Res., Inc., Rochester, NY, 1989.

[5] A. K. Dewdney. The Turing Omnibus: 61 Excursions in Computer Science. Computer
Science Press, Rockville, MD, 1989.

[6] C. E. Eaker. The CASE statement. Forth Dimensions, 2(3):37-40, 1980.

[7] Harvard Softworks, P. O. Box 69, Springboro, OH 45066. HS/FORTH.

[8] J. V. Noble. Avoid decisions. Computers in Physics, 5(4):386, 1991.

[9] E. Rawson. State sequence handlers. Journal of Forth Application and Research,
3(4):75-64, 1986.

0] R. Sedgewick. Algorithms. Addison Wesley Publishing Company, Reading, MA, 1983.
1] J. Woehr. Forth: The New Model. M&T Books, San Mateo, CA, 1992.

2] ANSI X3.215-1994. American National Standard for Infomation Systems — Program-
ming Languages — Forth. American National Standards Institute, New York, NY,
1994.

