
Using IBM’s NetBios from Forth

Peter Knaggs

Department of Computing and Information Systems,
University of Paisley, High Street,

Paisley, Scotland. PA1 2BE

Abstract
A general overview of the IBM NetBios system is given and its Multi-Tasking abilities

are discussed. A Forth interface that exploits these is presented along with an example
application program, which illustrates the integration of NetBios with Forth’s Multi-
Tasker is described.

Introduction
The Network Basic I nput/Output System (NetBios) is an “application program in-

terface” [2] between an application task and a Local Area N etwork (LAN) designed to
provide a common communication capability between IBM PCs and compatibles. It has
been implemented on a wide variety of physical networks including Ethernet, Token ring,
Insertion ring, etc.

NetBios provides a communication link (or connection) between named entities using
two main forms of communication, known as sessions and datagrams. Any application
may add a name to the network. In a Forth Multi-Tasking system it would be possible
to provide two separate application tasks, each with its associated name, on the same host
machine. The two tasks would then communicate with each other using the NetBios and
neither task need know where the other is situated.

All requests to the NetBios are made using a N etwork C ontrol B lock (NCB) supplied
by the application program. The NCB holds parameters for the network call and, on
completion, contains status information.

Functions
The functions provided by NetBios can be broken down into five groups [2, 4]: Naming,

Sessions, Datagrams, Broadcasting and General Housekeeping.

Naming
Each network card has its own unique physical name. To use this name in an application

would be too restrictive as such an application would be forced to know with which physical
system to communicate. NetBios provides some naming capabilities to allow applications
to refer to logical, rather than physical, names thus allowing a network application to be
independent of any physical machine.

The Add Name function will add a given logical name to the network, provided that the
name is unique. This will provide a logical name for the physical system performing the
add name function. Each physical system may have up to 255 logical names that could be
used by different tasks or applications. It should be noted that while the NetBios provides
for 255 logical names, in practise most network cards have a hardware limit of 16 names.

The function Add Group Name will add a group name to the network. A number of
different physical systems can add the same group name, in which case they are considered
to be a member of the same group. Thus a group name is a logical name that may refer
to any number of physical machines. This facilitates communication to a selected group of
machines, perhaps with special hardware to facilitate certain tasks. As with logical names

The Journal of Forth Application and Research, Volume 7

1

Using IBM’s NetBios from Forth 2

each physical system may be in several different logical groups. Thus any given machine
may have a number of unique logical names and a number of group names (a Group Name
will use a logical name slot).

Remove is used to remove a name from the Network. If the name is an logical name,
the name is completely removed. If it is a group name, the machine is removed from the
group.

Sessions
A Session provides a one-to-one connection, analogous to a telephone call.
A Session is started by one application making a call to another. The called application

must be listening for an incoming call. To call another application, the Call function is
used. The Listen function is used to wait for an incoming call, while Hangup is used to
disconnect the call. If you call a group name, only one member of the group will receive
the call. This is known as making a virtual circuit [6].

Once the connection has been established the applications can exchange data (up to
64K at a time) with the guarantee that it will arrive. To exchange data, one application
must use the Transmit function while the other is using a Receive function. If one side
issues a transmit before the other has issued the corresponding receive, the data will be
buffered until the receive is issued.

Datagrams
A datagram is a one-shot communication of up to 512 bytes.
If we can equate a session with a telephone call, then we can equate a Datagram with a

letter in a postal system. Each letter (datagram) is delivered separately, thus it must carry
the complete destination address. If the letter is lost the system does not time-out and
automatically send a duplicate; error control is the user’s responsibility. Finally, letters do
not necessarily arrive in the order they are mailed [6].

With a Session a connection is first established and data is then transmitted along the
connection. The connection remain open until the end of the session when it is terminated.
With a Datagram a new connection is established, the data transmitted and the connection
is terminated for each datagram.

A Datagram Transmit will send a datagram to a given name. The receiving name must
be waiting to receive it otherwise it will be lost. When a datagram is sent to a logical name,
only that name will receive it. However, if it is sent to a group name, all the members of
that group will receive a copy.

A Datagram Receive will wait for a datagram to be received by a given name. A
datagram transmitted from any name to the given name will be accepted. A datagram
receive request must be pending to receive a datagram, any datagram sent when a datagram
receive request is not pending will be lost.

Broadcasting
A Broadcast is a special form of datagram that is sent to all names. The Broadcast

Transmit function will send a datagram to all names known to the network. The Broadcast
Receive function is similar to the datagram receive function, except it will only receive a
Broadcast message, thus a broadcast message will only be received by names that have a
broadcast receive pending.

House keeping
There are four basic functions that are designed for the network manager to control the

Using IBM’s NetBios from Forth 3

network system. The Reset function is used to totally reset the network card. Network
Status will return the current status of the network card. A Cancel function is used to
cancel a given command. Finally the Un-Link function disconnects from a remote disk
server.

Invoking NetBios Functions
All NetBios functions are invoked in the same manner. The data required by the

function is placed in the relevant fields of the NCB and the NetBios system call is invoked.
This will take the NCB and post it into the NetBios for processing. The actual processing
of the function is interrupt driven and will run concurrently with the application program.

NetBios has three different ways of returning back to the application program. The
first is referred to as a Wait function, where NetBios will process the complete function
before returning to the application.

The second is to post a No-Wait function. NetBios will add the function to its internal
list of functions and return to the application directly. The application program must poll
the “command complete” flag of the NCB to determine if the NetBios has completed the
function.

The final method is to post a No-Wait function giving the address of an interrupt or
callback routine. The NetBios will add the function request to its internal list and return
to the application program. When the function has been completed, it will invoke the
callback routine.

Multi-Tasking
In order to exploit the concurrent execution abilities of Forth and the NetBios, we

use the “No-Wait with callback” invocation method. When a NetBios function is used, the
invoking task will typically execute a STOP after making the NetBios call.

In the Forth/NetBios interface, a field has been added to the NCB to store the identity
of the invoking task. The callback routine passed to the NetBios is always a “wake task”
routine that extracts the task identity from the NCB and sets the task status to active,
thus waking the task associated with the NetBios function.

More than one task can have a NetBios request pending. For example, one task may
be waiting on a Broadcast Receive whilst another is waiting on a Datagram Transmit.
Any one task may have several NetBios requests pending. For example, in the “Net-
Chat” application, one of the tasks posts four Datagram Receive requests to ensure that no
incoming datagrams are lost (see Net-Chat and The “Net-Chat” Application). When the
task is made active it has to poll the NCBs of the pending commands in order to discover
which of them has completed. The NetBios does not impose a limit on the number of
requests pending, although a network card might, there is however a cost as each request
must have a separate NCB.

Examples
In this section we provide the reader with two examples of how the Forth/ NetBios

interface can be used.

Block Transfer
To transfer a block of data from one system to another, both systems must make

themselves known to the network. This would be done by each of them creating an NCB.
They would then add their logical names to the network.

Using IBM’s NetBios from Forth 4

System One System Two
NEWNCB NCB NEWNCB NCB
" PETER" NCB ADD-NAME " JOHN" NCB ADD-NAME

Now PETER may call JOHN. The connection is made when Peter is calling John and John
is listening for a call from Peter (or when John makes a call to Peter, although Peter must
be listening for the call in this case).

" JOHN" NCB PHONE " PETER" NCB LISTEN
STOP STOP

PETER will now send a block of data over the network to JOHN.
9 BLOCK (Address of buffer) 10 BLOCK (Address of buffer)
1024 (Number of bytes) 1024 (Number of bytes)
NCB (NCB to use) NCB (NCB to use)
TX STOP (Transmit) RX STOP (Receive)

One of the systems must now disconnect. Our convention is that the caller is in charge
of the connection and hence is responsible for the disconnection.

NCB HANGUP (Disconnect)

The STOPs are required to allow other tasks to continue executing and to synchronise
communications.

Net-Chat
A simple example application program has been developed along the lines of the “Net-

Chat” program by Glass [1]. This is a Citizen Band radio emulation, in that if anyone
sends a message over “Net-Chat”, it will be received by all other systems running the
application.

The basic principle to a “Net-Chat” implementation is to have a group name of “NET-CHAT”
and a logical name for each person on the system. The screen is divided into two sections
with a small 5 line window provided for the Net-Chat display and a larger second window
displaying the normal OPERATOR environment.

A task (“CHAT-TASK”) will post four Datagram Receive requests on the group name
NET-CHAT. When a datagram is sent to NET-CHAT, all the members in the group will receive
a copy (including the sender). When receiving messages, CHAT-TASK will scan through the
NCBs to discover which one was honoured. It will take the message buffer of the NCB,
display it in the Net-Chat window and will use the NCB to post a new Datagram Receive
request. If only a single Datagram Receive was posted, it would be possible to miss a
datagram that arrives between the previous datagram being received and the Datagram
Receive request being re-posted. Having multiple receive requests allow us to continue to
receive messages while we are processing the first message, thus we should not miss any
messages.

To send a message, the user must type the word CHAT. This will ask for a message to
be sent. It will send the message buffer to the group name NET-CHAT.

The code and a more detailed description, is given in The “Net-Chat” Application.

Problems
As this system was originally intended for use with the Novix micro-processor system,

it was developed using the polyForth system. For various reasons [3] it was later ported
to the Forth++ system. In this section we describe some of the problems that had to be
overcome before this system became fully operational.

Using IBM’s NetBios from Forth 5

polyForth
The polyForth system operated correctly when used in a network based environment.

When we loaded the NetBios interface code, the system stopped operating altogether.
The polyForth code appeared to be correct while the interface code also appeared to be
correct.

After some experimentation, we discovered that the problem only occurred when the
polyForth serial communications package was loaded. By forcing the system not to load
this package, the problem was overcome. In order to continue with this project, it was
necessary to convert this system for use with the Forth++ system. Thus, the real cause
of the problem was never investigated.

Callbacks
The original version of this system used the No-Wait and Poll method of posting

a NetBios function. This meant that when an application task had posted a NetBios
function, it would enter a loop testing the command complete flag of the relevant NCB.
As the task is actively waiting for the function to complete, it is scheduled for time by the
multi-tasking scheduler.

The system was redeveloped to take advantage of the “No-Wait with Callback” ability
of the NetBios. The system developed to utilise this facility is described in Multi-Tasking .
The task posting a NetBios function is allowed to continue execution. Eventually the task
will execute a STOP. When the NetBios function has been completed the NetBios will invoke
the given callback code. This code will reset the associated task’s status to active thereby
making sure that the task will be executed.

This allows a task to post as many NetBios functions as it requires. It also allows
the task to be removed from the scheduler’s active tasks list. When one of the NetBios
functions associated with the task has completed, it will add the task to the active task
list, thus removing the responsibility of polling the command complete flag altogether.

Porting
The port from polyForth to Forth++ was a very simple one with only one small

problem. None of the code had to be changed with the exception of the two machine code
words.

The polyForth assembler system is designed to be as processor independent as possible,
while the assembler provided with the Forth++ system is designed around the Intel 80x86
family of processors. The two machine code words had to be converted from the polyForth
assembler form into the Forth++ form. The function of the code was not altered in any
way, nor was the machine code produced altered. The only alteration was to the source
code in order to produce the same object code.

We also took this opportunity to exploit Forth++’s ability of holding 64 KBytes of
strings to enhance the error messages and improve the error handling provided by the
interface.

Comparison with C interface
When compiled, the NetBios interface shown in Interface Code forms a run-time library.

The library comprises of 186 lines of Forth code and compiles to just 1.2 KBytes (when
compiled under Forth++). A simple C interface [5] takes some 110 lines of code (1.8
KBytes when compiled) and 270 lines of compile time definitions to provide the same
functionality as the (net) word. The C interface requires the application developer to
have a full knowledge of the NetBios and the NCB. A full C library that provides the same

Using IBM’s NetBios from Forth 6

functionality as the interface given in Interface Code requires some 115 KBytes (when
compiled using Microsoft C).

As the C language does not directly cater for multi-tasking, such an interface has to
use the No-Wait or No-Wait and Poll techniques for invoking a NetBios function. Using
the No-Wait and Poll technique puts the onus on the application programmer to poll the
command complete flag, thus does not provide the full abstraction one might hope for.

Interface Code
The following is an annotated source listing of the NetBios Interface provided for use

with the Forth++ system.

Error Handler
Here we define the word “(netable)” to display an understandable network error mes-

sage. It only displays the errors documented in the NetBios manual [2]. Any error code
not defined in the manual will be displayed as “Unknown”.

HEX

: (netable)
CASES
01 CASE ." Illegal Buffer Length" END-CASE
03 CASE ." Illegal Command" END-CASE
05 CASE ." Timed Out" END-CASE
06 CASE ." Message Incomplete" END-CASE
08 CASE ." Illegal Session Number" END-CASE
09 CASE ." No Resource Available" END-CASE
0A CASE ." Session Closed" END-CASE
0B CASE ." Command Cancelled" END-CASE
0D CASE ." Local Duplicate Name" END-CASE
0E CASE ." Name Table Full" END-CASE
0F CASE ." Name Not Registered" END-CASE
11 CASE ." Session Table Full" END-CASE
12 CASE ." Call Rejected" END-CASE
13 CASE ." Illegal Name Number" END-CASE
14 CASE ." Destination Not Found" END-CASE
15 CASE ." Name Not Found" END-CASE
16 CASE ." Remote Duplicate Name" END-CASE
17 CASE ." Name Deleted" END-CASE
18 CASE ." Session Aborted" END-CASE
21 CASE ." NetBios is busy" END-CASE
23 CASE ." Invalid LAN number" END-CASE
24 CASE ." Command not found" END-CASE
26 CASE ." Illegal Cancel Command" END-CASE
34 CASE ." Illegal Data Format" END-CASE
DROP
." Unknown"

END-CASES
;

We now define the default action to be taken when a network error occurs. This is
defined in the word (neterror), it will abort the current operation and display an error

Using IBM’s NetBios from Forth 7

message of the form:

Network Error code: 15 (Name Not Found)

Displaying the network return code and a text message relating to the code (if known).
Note that the word ?CASE takes a flag of the stack and executes the code between the
?CASE and the END-CASE if the flag is true, otherwise it simply skips over the code.

: (neterror) (n --)
CR ." Network Error code: " DUP . ASCII (EMIT
CASES

FF CASE ." Not Finished" END-CASE
DUP 50 FF WITHIN ?CASE ." Hardware Fault" DROP END-CASE
DUP 40 50 WITHIN ?CASE ." Unusual Condition" DROP END-CASE
(netable)

END-CASES
ASCII) EMIT CR ABORT

;

DECIMAL

Next we define the network error handling. This is provided by the word NETERROR, it
takes the NetBios return code and invokes the word, the execution token of which is stored
in the user variable ’NETERROR, if there has been an error, otherwise it simply removes the
return code. The defining word USER* is used to define a user variable at the next free slot
in the user area.

USER* ’NETERROR

: NETERROR (n --)
?DUP IF ’NETERROR @ EXECUTE THEN

;

Finally we initialise the network error handler to be our default error handler.

’ (neterror) ’NETERROR !

Network Control Block
In this part of the system we define the logical names for the fields of the network

control block (NCB), these are the names as given in the manual. It should be noted that
we are using the @ symbol to indicate a segment and offset pair in accordance with the
manual. The run-time action of these words is to return the address of the given field in
the given NCB.

The word pos is a defining word, the size of the field (in bytes) is given on the stack,
pos will then define a word, the action of which is to add the required byte offset to an
address in order to give the address of the required field. We have added the TASK@ field
to hold the address of the invoking task. This is not part of the standard NCB structure
but has been added to allow the callback routine to identify the associated task. Finally,
the constant ncb size is defined to hold the size of our NCB structure (in bytes).

: pos CREATE OVER C, + DOES> C@ + ;

0 \ Initial byte count

1 pos CMD 1 pos RETCODE 1 pos LSN 1 pos NUM

Using IBM’s NetBios from Forth 8

4 pos BUFFER@ 2 pos LENGTH 16 pos CALLNAME 16 pos NAME
1 pos RTO 1 pos STO 4 pos POST@ 1 pos LANA_NUM
1 pos CMD_CPLT 14 pos RESERVED 4 pos TASK@

CONSTANT ncb_size

Next we define some NCB control words. The first of these is NEWNCB, this will allocate
ncb size bytes of memory to act as an NCB. It also creates a word, the action of which is
to place the address of this memory area onto the stack.
: NEWNCB (--)
CREATE HERE ncb_size DUP ALLOT ERASE

;

The second control word is TIME-OUT, this is used to set the “Receive” and “Send” time-
outs for a given NCB. The time-outs are given in increments of 1

2 seconds. The system is
initialised to no time-outs by default.
: TIME-OUT (Receive-Time-Out Send-Time-Out NCB --)
DUP STO ROT SWAP C! RTO C!

;

The last of the NCB control words is COPYNCB. This is used to copy the data from one
NCB to another.
: COPYNCB (Source-NCB Destination-NCB --) ncb_size CMOVE ;

Assembler Interface
This is where we have developed the assembler code that interfaces between the Forth++

system and the NetBios.
First, we define a word FIELD that returns the byte offset of a named field in the NCB.

As this word is being defined exclusively for use in code level definitions, we place its
definition in the ASSEMBLER wordlist.
ASSEMBLER DEFINITIONS

: FIELD ’ >BODY C@ ;

FORTH DEFINITIONS

We now define the callback code that is invoked by NetBios when it has completed a
No-Wait with Callback operation. NetBios refers to such a callback as a post routine, thus
the name for this assembler word (post). On entry to this word, the ES:BX register pair
are pointing to the start of the NCB that has completed, the status of all other registers
are unknown, thus we can not make any assumptions about the state of the system (other
than the value of ES:BX). The callback routine uses the address stored in the TASK@ field
of the NCB to discover which task is related to the NCB. It will then place a 1 in that
task’s STATUS variable, thereby adding that task to the scheduler active task list.
CREATE-INTERRUPT (post)
DS PUSHSEG BX PUSH AX PUSH ES AX MOV AX DS MOV
FIELD TASK@ 2+) BX@ AX MOV AX PUSH
FIELD TASK@) BX@ AX MOV AX BX MOV
DS POPSEG 1 # USER STATUS MOV
AX POP BX POP DS POPSEG

IRET
END-CODE

Using IBM’s NetBios from Forth 9

This code is given as it is provided in the Forth++ interface. We now give the code
again in a commented Intel assembler format.
post: push ds ; Save the registers

push bx ; we are going to use

push ax

mov ax,es ; Copy ES to DS

mov ds,ax

mov ax,[bx+66] ; Get the DS for the task

push ax ; Save it for later

mov ax,[bx+64] ; Get the offset of the task

mov bx,ax ; Save in BX

pop ds ; Recover task’s DS

mov [bx+0],#1 ; Set task’s status to active

pop ax ; Recover registers

pop bx

pop ds

iret ; Return from interrupt

The next word we define is (net). This word will initialise the NCB with a given
command (CMD), buffer (BUFFER@) and post routine (POST@). It will then invoke the NetBios
interrupt asking the NetBios to perform the function indicated by the command number.
The POST@ value passed to this word is the 16 bit offset of the (post) routine. If this offset
is 0, an address of 0000:0000 is placed in the POST@ field. When the NetBios returns from
the interrupt it provides a “return value” that is passed back to the calling word.

HEX

CODE (net) (NCB Buffer Command ’Post -- Retcode)
CX POP AX POP DX POP DI POP
AL FIELD CMD) DI@ MOV DS AX MOV
AX FIELD BUFFER@ 2+) DI@ MOV DX FIELD BUFFER@) DI@ MOV
CX AX MOV 0 # AX = NOT IF CS AX MOV THEN
AX FIELD POST@ 2+) DI@ MOV CX FIELD POST@) DI@ MOV
DS AX MOV
AX FIELD TASK@ 2+) DI@ MOV BX FIELD TASK@) DI@ MOV
ES PUSHSEG BX PUSH DS AX MOV AX ES MOV DI BX MOV
5C INT BX POP ES POPSEG 0 # AH MOV AX PUSH

NEXT
END-CODE

DECIMAL

Again, this code is given as it is provided in the Forth++ interface. We now give a
version of the same code, with comments, in Intel assembler format.
net: pop cx ; CX = POST@ offset

pop ax ; AX = NetBios command

Using IBM’s NetBios from Forth 10

pop dx ; DX = BUFFER@ offset

pop di ; DI = NCB offset

mov [di+00],al ; Set NetBios command in the NCB

mov ax,ds

mov [di+06],ax ; Set the BUFFER@ segment to the current DS

mov [di+04],dx ; Set BUFFER@ to the given offset

mov ax,cx ; Is POST@ offset zero?

cmp ax,#0

jne $1 ; Yes, then AX and CX = 0

mov ax,cs ; No, then set AX to current CS

$1: mov [di+46],ax ; Set POST@ segment to CS (0000 if CX=0000)

mov [di+44],cx ; Set POST@ offset to CX

mov ax,ds

mov [di+66],ax ; Set TASK@ segment to current DS

mov [di+64],bx ; Set TASK@ offset to task user area

push es ; Save registers ES:BX

push bx

mov ax,ds

mov es,ax ; ES:BX = NCB address

mov bx,di

int 5Ch ; Invoke NetBios interrupt

pop bx ; Recover ES:BX

pop es

mov ah,#0 ; Clear top byte of "Return Value"

push ax ; Return "Return value"

NEXT ; Re-enter inner interpreter

Low-Level interface
The next part of the interface defines the low-level Forth words that are used to

interface with the assembler definitions.
The first of these words is +NET. It will post a NetBios function and wait for it to

complete before returning. It will then process the “Return Value”, checking it for errors.

: +NET (Buffer NCB Command --)
ROT SWAP 0 (net) NETERROR

;

The second word being -NET which will post a network function to the NetBios system
using the No-Wait with Callback variant of the command. The calling task will be placed in
the scheduler’s active list on completion of the function. However, the task is not removed
from the active list by this word. This is left to the application.

: -NET (Buffer NCB Command --)
128 OR ROT SWAP (post) (net) NETERROR

;

Using IBM’s NetBios from Forth 11

We now define the word COMPLETE to check the NCB command complete (CMD CPLT)
flag. It will return a TRUE when the function has completed. This word is provided so that
an application may test which of several possible NetBios commands has been honoured
(see Multi-Tasking and Net-Chat for a description and Listening for an example of its use).

: COMPLETE (NCB -- f)
CMD_CPLT C@ 255 = NOT

;

The final definition in this section is NERROR which is used in conjunction with the
COMPLETE word. It will check the return code (RETCODE) of a given NCB returning the
NetBios return code, if the function associated with the NCB has completed, otherwise it
returns a -1.

: NERROR (NCB -- n)
DUP COMPLETE IF RETCODE C@ ELSE DROP -1 THEN

;

General Support
Here we define a number of words for the general administration of the network. Most

of these commands would only be used by a supervisor or supervising software. These
commands do not have No-Wait variants, thus they all wait for the NetBios command to
complete before returning to the caller.

NET-RESET will Reset the network with the support for the given number of sessions
and the given number of outstanding commands using the given NCB.

: NET-RESET (#sessions #commands NCB --)
DUP >R NUM C! R@ LSN C! 0 R> 50 +NET

;

NET-CANCEL is used to Cancel a NetBios command. The NetBios command associated
with NCB1 is cancelled (removed from the command-pending list). Due to the way that the
NetBios system operates, it requires a second NCB to be used to issue the cancel command.

: NET-CANCEL (NCB1 NCB2 --) 53 +NET ;

The UNLINK word will disconnect the node from the “Remote Program Link”. This is
only used when booting the system over a network.

: UNLINK (NCB --) DUP 112 +NET ;

Finally the NET-STAT word returns the current status of the network to the given buffer
(addr) of a given maximum size (len1 bytes). Returning the number of bytes (len2)
of actual data received. This data is dependent on both the network hardware and the
particular NetBios implementation.

: NET-STAT (addr len1 NCB -- len2)
SWAP OVER LENGTH DUP >R ! DUP CALLNAME ASCII * SWAP C!
51 +NET R> @

;

Naming Support
In this section we define the Forth words that will give the programmer access to the

NetBios “Naming” functions.
Firstly, the word (name) is defined. This word takes a counted string (s) as a symbolic

name. It will place the name in the given NCB’s NAME field. This takes a fixed 16 character

Using IBM’s NetBios from Forth 12

name, thus (name) also pads out the field with zeros. Having copied the name into the
NAME field, it will then invoke the NetBios function given in n (either Add Name or Add
Group Name). Notice that it uses +NET to invoke the function, thus the system will wait
for the name to be added to the local name table before returning. This word forms the
bases of both the ADD-NAME and ADD-GROUP words.

: (name) (s NCB n --)
>R DUP NAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE
0 SWAP R> +NET

;

The word ADD-NAME is used to add an logical name to the list of logical names for this
node. It takes a counted string (s) and a NCB. It will add the name to the system, associating
the name with the NCB. Any command sent out using that NCB will be issued under the
given name. You must copy the NCB if you wish to post more than one (simultaneous)
command under this name.

: ADD-NAME (s NCB --) 48 (name) ;

The ADD-GROUP command works in much the same way as the ADD-NAME command with
the one exception that the name added to the local node is a group name. Thus several
different nodes may be known by the same name.

: ADD-GROUP (s NCB --) 54 (name) ;

The final word in this section is REMOVE-NAME. This will remove the name associated
with the NCB from the local name table. If the NCB is associated with a group name, the
node is removed from the group. The name is disassociated from the NCB, thus allowing
the NCB to be associated with another name.

: REMOVE-NAME (NCB --) 0 SWAP 49 +NET ;

Session Support
In this section, we provide words that allow the application programmer to access the

session handling facility of the NetBios.
Before we define the words that the application programmer is to use, we first define

two words that perform most of the operations. These words are internal to the interface
and are not meant to be used by the application programmer.

The first of these is (cname) which takes a counted string (s) and places it in the
CALLNAME field of the given NCB. As with the (name) word, this also pads the field out to
16 characters by adding zeros. (cname) not only leaves the NCB address on the stack, it
also places a 0 onto the stack to be used as a null buffer address. See the words PHONE and
LISTEN to see how the word is used.

: (cname) (s NCB -- 0 NCB)
DUP CALLNAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE 0 SWAP

;

The second internal word is (len). This will simply place the given buffer length (len)
into the LENGTH field of the given NCB without removing the NCB address from the stack.

: (len) (len NCB -- NCB)
SWAP OVER LENGTH !

;

Using IBM’s NetBios from Forth 13

Having defined the two supporting words, we can now go on to define the words that
the application programmer will use to gain access to the NetBios session capability. As we
have already likened a session connection to a telephone connection, we use telephone-like
words in our interface.

The word PHONE is used to establish a connection. This is similar to making a telephone
call where you give the name of the recipient as a counted string (s). If the call is being
made to a group name, only one member of the group will receive the call. The NetBios
selects the group member, a one-to-one connection is made with one of the group members.
The particular member is not known and is non-deterministic.

: PHONE (s NCB --) (cname) 16 -NET ;

The word LISTEN is similar to listening for a telephone call. You give the name of the
node you are waiting to hear from as a counted string (s). However, you will only hear calls
from that node, if another node is attempting to contact this name, the listen command
will not register the call. When a call is detected, a connection (session) is established on
both nodes.

There is a special name of “*” that will listen for a call from anyone. When a call is
detected, the session (connection) is established and the name of the caller is placed in the
CALLNAME field of the NCB.

: LISTEN (s NCB --) (cname) 17 -NET ;

The word HANGUP is used to disconnect the session. This is similar to someone hanging
up the telephone to break the connection. We use the same convention as is used for
telephones in that the caller is responsible for clearing the connection.

: HANGUP (NCB --) 0 SWAP 18 -NET ;

We now have the words that will allow one to set up a connection but we are still unable
to transfer data over this connection. The next two words provide this capability. The
connection must be established prior to any attempt to transmit data.

To transmit data over the connection (to source the data) we use the TX word. This
takes a buffer (buff) of len bytes (the maximum buffer size being 64 KBytes) and transmits
it over the connection. As this is a session connection NetBios provides a guarantee that
the data will arrive.

: TX (Buff Len NCB --) (len) 20 -NET ;

To sink (receive) the data the RX word is used. We give the system a buffer area (buff)
with a maximum size of len bytes where it can place the data when it is received. When
data has been received, the LENGTH field of the NCB will hold the actual number of bytes
received. If the buffer is not large enough to hold all the data, the system will buffer
the remaining data internally and report an error. Under these conditions an error code
of 6 is placed in the RETCODE field of the NCB. It is the responsibility of the application
programmer to detect and act on this condition by issuing another receive request.

: RX (Buff Len NCB --) (len) 21 -NET ;

The final word in this section is CALL-STAT which is used to obtain status information
on the connection (session) associated with the given NCB. It is given a buffer (buff) of
len1 bytes into which it will place the current status. The CALL-STAT word will return
the actual number of bytes used (len2) by the status information. The status information
returned by this word is partly defined, however a large part of the data is dependent on
the NetBios implementation.

Using IBM’s NetBios from Forth 14

: CALL-STAT (Buff Len1 NCB -- Len2)
SWAP OVER LENGTH DUP >R ! 52 +NET R> @

;

Datagram Support
This is where we develop the Forth words that will give the application programmer

access to the “Datagram” communication level provided by the NetBios. A datagram can
be thought of as a packet of up to 512 bytes on the network. Unlike session communication,
there is no built-in protocol associated with datagrams. The receiving node must be
listening for an incoming datagram, otherwise it will not receive it. The NetBios provides
no guarantee that the datagram will be delivered.

The first word we define in this section is DTX, the Datagram Transmit function. This
will take an area of memory (buff) of len bytes in length (maximum size being 512 Bytes).
This is sent, as a single unit, to the indicated node (whose name is given as the counted
string s).

Notice how this word uses (cname) to copy the destination node name into the CALLNAME
field of the NCB. The NIP is required to disregard the extra 0 that (cname) places on the
stack. We use (len) to copy the byte length into the LENGTH field of the NCB. We can
make the NetBios call with the -NET word.

: DTX (Buff Len s NCB --)
(cname) NIP (len) 32 -NET

;

The Datagram Receive function is provided by the word DRX. This is given an area of
memory to place the received data (buff) which is a maximum size of len bytes (maximum
buffer size is 512 bytes). This word will wait for an incoming datagram addressed to the
name associated with the NCB. On receiving a datagram, it will place as much data as
it can in the buffer returning the actual number of bytes received in the LENGTH field of
the NCB. Note that if the received datagram was too large for the receiving buffer, the
buffer is filled, the remaining data is lost, and a return value of 6 is given (in the RETCODE
field). The name of the sending node is placed in the CALLNAME field. See Listening for an
example of using datagrams.

: DRX (Buff Len NCB --) (len) 33 -NET ;

Broadcast Support
In this, the final part of the interface, we define the words that provide access to the

NetBios “Broadcast” commands. A broadcast can be thought of as sending a datagram to
everybody. If you are not listening for a broadcast, you will miss it. Like the datagram it
will not be buffered for you. As with datagram support, we only need two words to provide
broadcast support, one to transmit and one to receive.

The first of these words is BTX, providing the Broadcast Transmit function. This takes
the address of the memory buffer (buff) of len bytes in length (maximum size of 512
bytes). The data is then transmitted to every node on the system.

: BTX (Buff Len NCB --) (len) 34 -NET ;

The second word required to provide broadcast support is BRX, providing the Broadcast
Receive function. As with DRX, the address of a receive buffer is given (buff) with a
maximum length of len (maximum buffer size is 512 bytes). When the system receives a
broadcast message, it will place up to len bytes in the buffer loosing any additional data.
The LENGTH field holds the actual number of bytes received. The CALLNAME field will hold

Using IBM’s NetBios from Forth 15

the name of the sending node. If more than one Broadcast Receive is posted, they will all
receive the same message.

: BRX (Buff Len NCB --) (len) 35 -NET ;

It should be noted that the words (netable), (neterror), pos, FIELD, (post), (net),
+NET, -NET, (name), (cname) and (len) are internal to the interface and should not be
used when programming applications with this package.

The “Net-Chat” Application
The following is an annotated source listing of the “Net-Chat” example application as

described in Net-Chat .

Memory Buffers
The first part of the application is to reserve the memory buffers that are going to be

used. This section not only reserves the memory but also defines words that allow easy
access to this memory.

We are going to require five NCBs and buffers. We first reserve the space for the
five NCBs (one outgoing, four incoming). The number of bytes to reserve is calculated by
multiplying the number of bytes required for an NCB (ncb size) by five. We then initialise
this memory to zeros using the ERASE word.

CREATE ncbs ncb_size 5 * ALLOT ncbs ncb_size 5 * ERASE

Thus the word ncbs will return the start address of a block of memory large enough
to hold five NCBs. We now define a word NCB that take an NCB number and returns the
address of the indicated NCB from our table.

: NCB (n -- NCB) ncb_size * ncbs + ;

Now we do the same for the data buffers. This time the buffers are 60 bytes long and
is given the name buff, while the accessing word is called BUFF.

CREATE buff 60 5 * ALLOT buff 60 5 * ERASE

: BUFF (n -- buff) 60 * buff + ;

We now define the word name that takes an NCB number and initialises the stack
ready for a NetBios call to the Datagram Receive function, placing the corresponding
buffer address (buff), the maximum size of the buffer (60) and the indicated NCB (NCB)
on the stack.

: name (n -- buff 60 NCB)
DUP BUFF SWAP NCB 60 SWAP

;

Listening
In this section we define the “Listening” part of the application. This code will post

four Datagram Receives to the NetBios and wait for one of them to be honoured. It will
then display the name of the sender and a one line message.

The first item to define is the actor that is going to execute the code (CHAT-TASK). The
actor is defined now so as to indicate that all the code that follows (upto the CONSTRUCT
word) will be performed by the actor concurrently with the main system.

ACTOR CHAT-TASK

Using IBM’s NetBios from Forth 16

The first word we define in the section is NET-LISTEN which simply posts four Datagram
Receive functions which will operate in unison. It should be noted that NCB 0 has been
reserved for outgoing messages.

: NET-LISTEN
5 1 DO

I name DRX
LOOP

;

When one of these Datagram Receive functions has been honoured, the system will
execute the NET-DISP word. This will scan through the NCBs to discover which of them
has been honoured. It will then display the name of the sender (taking it from the CALLNAME
field) and the associated message. Finally it re-posts the Datagram Receive command.

: NET-DISP
5 1 DO \ Scan through the incoming NCBs
I NCB COMPLETE \ Has the command been honoured ?
IF

I NCB CR
CALLNAME 16 0 DO \ Display the CALLNAME filed
DUP C@ ?DUP 0= IF LEAVE THEN EMIT 1+

LOOP DROP
." : " \ Display a name separator
I BUFF I NCB LENGTH @ TYPE \ Display the message
I name DRX \ Re-post the DRX

THEN
LOOP

;

The output from NET-DISP will be displayed in a small window at the top of the screen.
The following line defines the window to start at the top left of the screen, being 78
characters wide and 5 lines high. The WITH-BORDER indicates that the window will have a
line boarder displayed around it. Finally the window will be called NET-WIN.

1 1 78 5 WITH-BORDER CREATE-WINDOW NET-WIN

The last word to be defined in this section is NET-GO. This is the word that the
CHAT-TASK will be asked to perform (by the GO word). It initialises the window and posts
the initial four Datagram Receive requests. It then enters into an infinite loop waiting for
one (or more) of the requests to be honoured when it will call the NET-DISP word to display
the message and re-post the receive request.

: NET-GO
NET-WIN <WIN \ Open the window.
*WCLEAR \ Clear it
*TITLE" Net Chat " \ Give it a title

NET-LISTEN \ Post initial four DRX commands
BEGIN
STOP \ Wait for one to be honoured
NET-DISP \ Display the message & re-post

AGAIN
WIN>;

;

Using IBM’s NetBios from Forth 17

The final act in this section is to indicate the completion of the code that is to be
executed by the CHAT-TASK actor. This also completes the definition of the actor. Any
words defined from this point on would not be accessible to the CHAT-TASK actor.
CHAT-TASK CONSTRUCT

Sending
In this section we define the “Sending” part of the application. In reality this consists

of one definition. The word CHAT will ask the user to type in a one line message. It will
then send the message as a datagram to the group name “NET-CHAT”, thus any node with
a Datagram Receive posted on the group name NET-CHAT will receive a copy of the message
(including the sending node).

Firstly, the word locates the outgoing message buffer (buffer 0). It then erases the
buffer making sure no other message is stored there. It now displays a message asking the
user to input the message they wish to transmit. The message is read directly into the
buffer with a maximum of 60 characters in length:

78 Characters in the display line
-16 Maximum characters in user name
-2 Name/Message separator (“: ”)
60 Total allowable size of message

The number of characters actually typed is taken as the size of the buffer. The buffer is
sent to the group name NET-CHAT via the outgoing NCB (NCB 0). Finally, the word waits
for the Datagram Transmit function to complete before returning to the user.
: CHAT
0 BUFF \ Find outgoing buffer
DUP 60 ERASE \ Erase buffer
CR ." Message: " \ Ask for the message
DUP 60 EXPECT \ Read in the message
SPAN @ " NET-CHAT" 0 NCB DTX \ Send the message
STOP \ Wait for NetBios to complete

;

Initialisation
In this part of the application, we provide the initialisation of the system. The word

GO initialises the system for use with the “Net-Chat” application as outlined in Net-Chat .
The first part of the initialisation is to define a word that is going to become the network

error handler for the application. This is a very simple word that simply ignores any errors.
This definition is required so that the INIT-CHAT word can examine the return code and
take appropriate action. (The default action will cause the system to abort on an error.)
: NO-ERROR DROP ;

The next part of the initialisation process is coded into the word INIT-CHAT. This
initialises the network handling side of the system. Firstly, it replaces the standard error
handling with our error handling system (NO-ERROR). It will then ask the user to type in
a unique name that it will use to identify the user to the other uses of the system. It
attempts to add the name to the network (Add Name). If an error occurs a message is
displayed and the user is asked to supply an alternative name.

When the logical name has been established (on the outgoing NCB, NCB 0), the error
handler is reset back to the default. The NO-ERROR handler is only used to allow the word
to extract the error code and ask for another name if necessary.

Using IBM’s NetBios from Forth 18

The group name NET-CHAT is added to the network (on NCB 1). The information
placed in the NCB by the Add Group Name function is copied to the remaining incoming
NCBs (2, 3 and 4).
: INIT-CHAT
’NETERROR @ \ Save the default error handler
[’] NO-ERROR ’NETERROR ! \ Reset the error handler

BEGIN
CR ." Enter your name: " \ Ask for a name
0 BUFF DUP 1+ 16 EXPECT \ Read the name (max 16 chars)
SPAN @ SWAP C! \ Make buff a counted string
0 BUFF 0 NCB ADD-NAME \ Add name to Network
0 NCB NERROR

WHILE \ While error in Add-Name
CR ." Sorry, someone else is already using that name, try another."

REPEAT \ Repeat input sequence

’NETERROR ! \ Reset error handler to default

" NET-CHAT" 1 NCB ADD-GROUP \ Add the group name
1 NCB DUP DUP
2 NCB COPYNCB \ Copy the NCB data to NCB 2
3 NCB COPYNCB \ ’’ NCB 3
4 NCB COPYNCB \ ’’ NCB 4

;

The window for use by the OPERATOR actor is now defined to be 15 lines of 78 characters
starting at line 8, complete with a line boarder.
1 8 78 15 WITH-BORDER CREATE-WINDOW OP-WIN

Finally, the word GO is defined. This is the word that the user will type to initialise the
“Net-Chat” application.

The first action of GO is to call the INIT-CHAT word. Thus it asks for an logical name
and initialise the NCBs. GO will then clear the screen (CLEAR) and turn the hardware cursor
off (HWC-OFF) ready for the windowing environment. It will then redirect the OPERATOR
output to the OP-WIN window (<WIN). Finally, the actor CHAT-TASK is sent the message
(SEND") to initialise its window and listen for and display incoming messages (NET-GO).
: GO
INIT-CHAT \ Initialise the Network
CLEAR \ Clear the screen
HWC-OFF \ Turn the hardware cursor off
OP-WIN <WIN \ Redirect output to OP-WIN window
*WCLEAR \ Clear the window
*TITLE" Operator " \ Title the window
CHAT-TASK SEND" NET-GO " \ Set the CHAT-TASK listening

;

Close Down
In this, the final section of the application, we provide the code that will close down the

application. All applications should provide a graceful close down, especially when they
are using the services of some kind of server such as the NetBios.

Using IBM’s NetBios from Forth 19

There are a number of things we need to do to close down: stop the CHATTASK actor;
remove the unique name from the system; cancel any outstanding commands; resign from
the NET-CHAT group; tidy up the screen. The order in which these events occur is quite
important. All of this can be accomplished in the one Forth word, CLOSE-CHAT. This is
the word that the user will type when they wish to close or leave “Net-Chat”.

Our first task is to force the CHAT-TASK actor to stop processing. This we do by forcing
it to accept a new task (via the MUST SEND" operation). We ask CHAT-TASK to close its
window (WIN>) and then to stop processing until further notice (HALT). Having stopped
CHAT-TASK from receiving any messages, we are now able to alter the status of the network.
We first remove the unique name from the name table (REMOVE-NAME). This provides us
with a free NCB which we use to cancel the Datagram Receive requests that CHAT-TASK
would have posted (NET-CANCEL). Notice how any task can cancel these requests as the
NetBios is unaware of our tasking mechanism, thus does not consider a NetBios request to
be owned by any particular task.

We are no longer able to send a message as we do not have a unique name. We are
no longer able to see messages as CHAT-TASK is not running. We are no longer listening
for messages sent to the NET-CHAT group as we have just cancelled all such requests. Thus
we are now in a position to be able to resign our membership of the NET-CHAT group
(REMOVE-NAME). Finally, we close the operations window (WIN>) and re-establish the cursor
(HWC-ON).

: CLOSE-CHAT
CHAT-TASK MUST SEND" WIN> HALT" \ Close NET-WIN and stop task

0 NCB REMOVE-NAME \ Remove outgoing unique name

1 NCB 0 NCB NET-CANCEL \ Cancel the DRX commands
2 NCB 0 NCB NET-CANCEL
3 NCB 0 NCB NET-CANCEL
4 NCB 0 NCB NET-CANCEL

1 NCB REMOVE-NAME \ Remove the group name

WIN> \ Close OP-WIN
HWC-ON \ Turn hardware cursor on

;

If the user wanted to restart the application, he would simply type GO and he would be
back in the application.

Acknowledgments
The work presented in this paper was preformed as a part of a research project sup-

ported by the UK Science and Engineering Research Council with a CASE award (number
B/88502911) and Computer Solutions Ltd [3]. I would like to thank Andrew Haley of
Computer Solutions Ltd. for giving me the idea and Bill Stoddart, my research supervisor,
for his guidance and for simply putting up with me.

References

[1] B. Glass. Understanding NetBios. Byte, pages 301–306, January 1989.
[2] IBM Corporation. NetBios Application Development Guide, 1987.

Using IBM’s NetBios from Forth 20

[3] Peter J. Knaggs. Practical and Theoretical Aspects of Forth Software Development.
PhD. Thesis, School of Computing and Mathematics, University of Teesside, 1994.

[4] Nine Tiles. SimpleNetBIOS Reference Guide, 1988.
[5] W. D. Schwaderer. C Programmer’s Guide to NetBIOS. Howard W. Sams & Company,

1988.
[6] Andrew S Tenenbaum. Computer Networks. Prentice Hall, second edition, 1988.

